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Abstract: microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are
involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism
of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control
group (CON–G) and 8 in the experimental group (HFD–G), were chosen to construct an obese model
induced by a high–fat diet fed from 35 to 70 days of age. Subsequently, 54 differentially expressed
miRNAs, 248 differentially expressed mRNAs, and 108 differentially expressed proteins related to
the metabolism of skeletal muscle were detected and analyzed with three sequencing techniques
(small RNA sequencing, transcriptome sequencing, and tandem mass tab (TMT) protein technology).
It was found that 12 miRNAs and 12 core genes (e.g., CRYL1, VDAC3 and APIP) were significantly
different in skeletal muscle from rabbits in the two groups. The network analysis showed that seven
miRNA-mRNA pairs were involved in metabolism. Importantly, two miRNAs (miR-92a-3p and
miR-30a/c/d-5p) regulated three transcription factors (MYBL2, STAT1 and IKZF1) that may be
essential for lipid metabolism. These results enhance our understanding of molecular mechanisms
associated with rabbit skeletal muscle metabolism and provide a basis for future studies in the
metabolic diseases of human obesity.
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1. Introduction

The metabolism and development of skeletal muscle are crucial in the process of
animal growth. Additionally, the metabolism of energy for normal life activities is affected
by a variety of growth, differentiation, and nutritional environment factors. An increasing
number of people have suffered from obesity-related metabolic diseases in recent decades
due to excessive intake of high–fat diets. Obesity also caused intramuscular metabolic
disorders, such as mitochondrial disease, systemic inflammation, abnormal adipocytokine
signal transduction, and excessive lipid accumulation [1–3]. Previous studies have shown
that the metabolic regulation model of skeletal muscle is of great significance to the regu-
lation of obesity [4]. In particular, the content of intramuscular fat in rabbits is relatively
lower than in other livestock, indicating that it has unique patterns of muscle growth and
metabolism. However, there have been few studies addressing the regulatory mechanisms
involved in rabbit muscle growth and metabolism.

microRNAs (miRNAs) are a type of evolutionarily conserved short non-coding RNA
with a length of about 20 to 23 nucleotides. They can bind to specific sites in the 3′-
untranslated region (3′-UTR) of messenger RNAs (mRNAs) to regulate gene transcription.
Numerous studies have shown that miRNAs are widely involved in the regulation of
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growth and development in skeletal muscle. For example, miR-27, miR-133a/b, miR-
499a/b, miR-208a/b, and other miRNAs participate in the regulation of muscle differentia-
tion and are primarily expressed in muscle tissues [5,6].

Skeletal muscle is closely associated with meat yield and other important economic
characteristics in domestic animals. Multiple miRNAs and candidate genes active during
various growth and development stages of muscle tissue have been identified through
sequencing technologies. Studies have shown that a large number of miRNAs and genes
are involved in growth and metabolism regulation during skeletal muscle development
in pigs, cattle, sheep and poultry [7–10]. Further, the targeted regulatory relationship
between miRNAs and mRNA plays a vital role in the process of mRNA transcription and
protein translation [11]. miR-130b and miR-696 target the peroxisome proliferator-activated
receptor-γ coactivator-1α (PGC-1α) gene to regulate skeletal muscle metabolism [12,13].
miR-499 targets the PRDM16 gene to regulate adipogenic differentiation between muscle
and adipose tissue [14]. miR-143 and miR-378 target the IGFBP5 and POLA2 genes, re-
spectively, to regulate skeletal muscle satellite cell proliferation and differentiation [15,16].
However, miRNA–mRNA network regulation and genetic mechanisms of skeletal muscle
growth and metabolism in rabbits are far from clear.

Thus, the objectives of this study were as follows: (1) to differentially screen expressed
miRNAs and genes associated with rabbit skeletal muscle growth and metabolism in an
obese group fed a high–fat diet and a control group fed a commercial diet; (2) to perform
a regulatory network and functional analysis of miRNA–mRNA to help elucidate rabbit
skeletal muscle growth and metabolic regulatory mechanisms.

2. Results
2.1. Phenotypic Difference and Small RNA Deep Sequencing Data from CON–G and HFD–G

Anatomical phenotypic differences (Supplementary Figure S1) showed that rabbits
fed a high–fat diet contained large amounts of fat under the skin and on the viscera,
which was consistent with previous studies, indicating that the high–fat diet achieved
the expected obesity effect [17]. Small RNA from skeletal muscles of rabbits in CON–G
and HFD–G were sequenced with a HiSeq 2500 (SE50) sequencer. A range of 10097828 to
10354071 clean reads of skeletal muscle samples from six rabbits (three from each group)
was obtained. Low-quality and meaningless reads were filtered out; these reads had quality
scores (QS) ≤ 5, and accounted for more than 50% of the complete reads, reads with 5′

joint contamination, reads with greater than 10% of unidentifiable base information, reads
without a 3′ connector sequence and insertion fragment, and reads with mostly continuous
missequenced polyA/T/G/C.

The data quality of small RNA sequences (18 to 32 nt) in the six skeletal tissue samples
from CON–G and HFD–G is shown in Table 1. The number and length distribution of
small RNA tags are presented in Figure 1a. Most of the small RNA sequence lengths were
mainly concentrated in the range of 21 to 23 nt; 22 nt sequences were the most frequent,
followed by 21 and 23 nt sequences. Subsequently, the unique small RNA reads were
mapped to chromosomes by blasting the rabbit genome. Results showed that over 90% of
the reads and 60% of the tags could be perfectly mapped to the rabbit genome. Finally, the
type and number of sRNAs were classified into seven groups by using Bowtie2 software
and the Rfam database (https://rfam.xfam.org/, accessed on 20 July 2020) to blast total
sRNA tags. sRNAs are different from small RNAs, which are the total RNA species in
the extracted RNA of muscle tissues. sRNAs are small, non-coding RNA species that
regulate most cellular processes. In total, 81% of small RNA reads were identified as
miRNAs and 13.96% as precursor RNA, 1.65% were unmatched, and the remaining ones
were identified as ribosomal RNA (rRNA), small noncoding RNA (sRNA), small nuclear
RNA (snRNA), small nucleolar RNA (snoRNA), or transfer RNA (tRNA) (Figure 1b). These
results indicated the miRNA data were reliable for study.

https://rfam.xfam.org/
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Table 1. Quality statistics for data generated from small RNA deep sequencing.

Sample Clean Reads Clean Bases Q20(%) 1 GC(%) 2

CON–M1 10,342,003 228,333,247 99.85 46.81
CON–M2 10,354,071 230,699,706 99.58 45.86
CON–M3 10,268,517 226,301,819 99.6 45.47
HFD–M1 10,097,828 223,290,399 99.57 46.89
HFD–M2 10,314,308 228,316,610 99.85 46.54
HFD–M3 10,293,639 228,541,211 99.57 45.57

1 Q20(%) = quality score percentage (–10log10(e) × 100) = probability percentage of 1 incorrect in 100 base calls;
2 GC(%) = percentage of (G + C) of all bases (A + T+ G +C).
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Figure 1. Quality analysis of small RNA sequencing. (a) Distribution and abundance of small RNA
sequence lengths (18 to 32 nt) in clean reads of skeletal muscle tissue samples from rabbits in CON–G
and HFD–G; (b) statistical distribution of small RNA annotations. Left, classification statistics of all
small RNA reads; right, classification statistics of small RNA tags.

2.2. Identification and Screening of Differentially Expressed miRNAs

A total of 1207 miRNAs (687 known mature miRNAs and 520 novel miRNAs) were
identified in skeletal muscle samples from the CON–G and HFD–G rabbits. The known
miRNAs were regarded as the main content and chosen for subsequent differential ex-
pression analysis because of the relative lower expression level of novel miRNAs. The
differentially expressed miRNAs (DEMs) were the main target of this research to help
understand changes in the metabolism of skeletal muscle in rabbits fed a high–fat diet. The
DEMs from the CON–G and HFD–G rabbits were screened out using an EdgeR analysis
with a |log2Foldchange (FC)|≥ 1 and false discovery rate (FDR) < 0.05 as screening criteria
(Figure 2a). The details of different expressed novel miRNAs are presented in Supplemen-
tary Table S1. In all, 54 DEMs (32 upregulated and 22 downregulated) were identified with
the heatMap package for miRNA expression pattern cluster analysis (Figure 2b). These
reflected the huge difference in miRNAs in rabbit muscle caused by obesity.
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Figure 2. Map of identified DEMs in skeletal muscle samples from CON–G and HFD–G rabbits. (a) Volcano map of
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respectively. Cluster analysis was conducted for sample and differential miRNAs.

Subsequently, we chose the top 20 DEMs, 10 upregulated (miRNAs of miR-499-5p,
miR-30e-5p, miR-363-3p, let-7i-3p, miR-19b-3p, miR-26c, miR-6529a, miR-148a-3p, miR-30c-
5p, and miR-92a) and 10 downregulated (miR-30a-5p, miR-30d-5p, miR-125b-3p, miR-7,
miR-99a-3p, miR-3596, let-7f-2-3p, miR-218, miR-20a-2-3p, and miR-133-3p) for further
analysis (Table 2). Seven miRNAs, four upregulated (miR-499-5p, miR-30e-5p, let-7i-3p,
and miR-26c) and three downregulated (miR-99a-3p, miR-3596, and miR-133-3p) had
significant differential expression in the two rabbit groups. Twenty important DEMs in
muscle, induced by obesity, were considered for further study.

Table 2. Differential expression information of top 10 upregulated and top 10 downregulated DEMs
between CON–G and HFD–G.

Gene ID CON-G
Mean

HFD-G
Mean log2FC p-Value Regulation

miR-499-5p 220.6667 19,848 6.435477 7.98 × 10−8 Up
miR-30e-5p 708 12,837.67 4.043857 0.000164 Up
miR-363-3p 248.6667 3624.333 3.755788 0.000396 Up

let-7i-3p 10857.33 103,267.7 3.202507 0.001939 Up
miR-19b-3p 26.66667 255 3.170493 0.002356 Up

miR-26c 28,567 260,880.7 3.065703 0.002842 Up
miR-199a-5p 1258.666667 20,851 3.857928946 0.000287665 Up
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Table 2. Cont.

Gene ID CON-G
Mean

HFD-G
Mean log2FC p-Value Regulation

miR-148a-3p 8216 55,153 2.715061 0.007331 Up
miR-30c-5p 1221.667 6581.333 2.313511 0.020359 Up
miR-92a-3p 464.6667 1771.333 2.019203 0.040922 Up
miR-30a-5p 18,928 5391 −1.94918 0.047754 Down
miR-30d-5p 61,709.33 16,716 −2.00517 0.042075 Down
miR-125b-3p 22,741.33 5481.667 −2.15275 0.029903 Down

miR-7 3289.667 652.6667 −2.47901 0.013516 Down
miR-99a-3p 129,929 23,586 −2.50911 0.012485 Down
miR-3596 25,770.33 3702.667 −2.82627 0.005459 Down
let-7f-2-3p 22,724.67 3421 −2.85288 0.005083 Down
miR-218b 471.3333 65.33333 −2.92167 0.004402 Down

miR-20a-2-3p 360.3333 42.33333 −3.09849 0.002779 Down
miR-133-3p 182,602.7 18,092 −3.29051 0.001512 Down

2.3. Target Gene Prediction, Function Enrichment Analysis

A total of 6739 potential target genes were obtained for 14 DEMs through Targetscan,
miRanda and RNAhybrid target-gene prediction analyses, and the resulting miRNA tar-
get gene network is shown in Figure 3a. All target genes were submitted to the DAVID
database to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses of functional differences between DEMs in skeletal
muscle from CON–G and HFD–G rabbits. The GO enrichment analysis showed that the
target genes were involved in 347 GO terms (p < 0.05), 190 GO terms in biological processes
(BP), 90 GO terms in cellular components (CC), and 67 GO terms in molecular functions
(MF). The top GO terms in each category are shown in Figure 3b. The BP GO terms were
mostly involved in the downregulation of transcription from RNA polymerase II promoter,
small GTPase mediated signal transduction, and intracellular signal transduction functions.
The CC GO terms were mainly involved in nucleoplasm, Golgi apparatus and cytoplasm
functions. The MF GO terms were primarily involved in transcriptional activator activities,
sequence-specific RNA polymerase II core promoter proximal region binding, and protein
serine and ATP binding functions. The KEGG enrichment analysis of DEM target genes
indicated that they were involved in 115 pathways (p < 0.05). The top 20 KEGG pathways
were mainly involved in MAPK signaling, endocytosis, regulation of actin cytoskeleton, cir-
cadian entrainment and PI3K-Akt signaling (Figure 3c). Enrichment analysis of target genes
showed that these miRNAs may play an important role in regulating the development and
metabolism of rabbit muscle.
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2.4. Transcriptome Analysis

Figure 4a shows a volcano plot of the 248 differentially expressed genes (DEGs)
(137 upregulated and 111 downregulated) identified from a total of 18,862 genes with the
|log2FoldChange| > 1 and p < 0.05 screening criteria. The specific difference information
is shown in Table S2. All DEGs were submitted to the DAVID database to run GO term
and KEGG pathway enrichment analysis. The GO analysis indicated that these DEGs
mainly downregulate ribosome and structural constituents of ribosomes and upregulate
blood vessel morphogenesis, immune effector processes, cell motility, cytokine production,
and calcium ion binding functions (Figure 4b). The KEGG pathway enrichment analysis
(Figure 4c,d) uncovered upregulated DEGs that were significantly enriched in inflamma-
tory signaling pathways (Th17 cell differentiation, antigen processing and presentation,
chemokine signaling, Th1 and Th2 cell differentiation) and downregulated DEGs that
were significantly enriched in amino acid metabolism and synthesis pathways (glycol-
ysis/gluconeogenesis, starch and sucrose metabolism, carbon metabolism, biosynthesis
of amino acids). The results of differential gene enrichment indicate that obesity could
increase the intramuscular inflammatory response in rabbits.
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Figure 4. DEGs analysis of transcriptome between CON–G and HFD–G. (a) Volcano map of differentially expressed genes
for transcriptome sequencing. Green, blue, and red represent downregulated genes with significant differences, genes with
nonsignificant differences, and upregulated genes with significant differences, respectively. (b) Enrichment analysis diagram
of GO function. Green and red represents downregulated and upregulated differentially expressed genes, respectively.
(c,d) KEGG signaling pathway of upregulated and downregulated genes. Color of scattered dots varies from blue to red,
representing a range of nonsignificant to significant differences, and circle size indicates number of enriched differentially
expressed genes.



Int. J. Mol. Sci. 2021, 22, 4204 8 of 19

2.5. Identification and Functional Analysis of Differentially Expressed Proteins (DEPs)

A total of 286,536 spectra and 39,425 peptide spectrum matches (PSMs) were identified
using a tandem mass tag spectrometry analysis with Proteome Discoverer 2.2 software.
FDR verification (FDR > 1%) determined that 14,075 peptides and 2079 proteins were
reliable proteins. The t–test of relative quantitative values of DEP proteins indicated that
1659 proteins were significantly differentially expressed in skeletal muscle from CON–G
and HFD–G rabbits (Figure 5a). A heat map of differentially expressed proteins revealed
that there were 108 DEPs (54 upregulated and 54 downregulated) in skeletal muscle
samples from CON–G and HFD–G rabbits (Figure 5b).
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GO function and KEGG pathway enrichment analysis of DEPs was performed to
increase our understanding of the biological functions of skeletal muscle DEPs from CON–
G and HFD–G rabbits (Figure 5c,d). GO function enrichment analysis indicated that
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DEPs in rabbit skeletal muscle were mainly concentrated on BP GO terms (translation,
gene expression, cellular macromolecule biosynthetic processes), CC GO terms (cytoplasm,
intracellular, ribosomes), and MF GO terms (structural constituents of ribosomes, structural
molecular activities, chromatin binding). Meanwhile, KEGG pathway enrichment analysis
indicated that the significant pathways involving DEPs in rabbit skeletal muscle included
ribosome, glycosaminoglycan degradation, glycosphingolipid biosynthesis-globo and
isoglobo series, and glycosphingolipid biosynthesis-ganglio series. Thus, the DEPs in rabbit
skeletal muscle are involved in intracellular changes in gene transcription, translation, and
ribosomal protein structure. The results of differential protein function enrichment indicate
that obesity may increase carbohydrate metabolism and synthesis in rabbit muscle.

2.6. Integrated Analysis of DEGs and DEPs

A total of 18,863 genes and 1659 proteins were identified in RNA-seq and TMT
analyses. A Venn diagram of DEGs and DEPs in skeletal muscle samples from CON–
G and HFD–G rabbits shows a total of 1152 differentially expressed genes, of which
60 are significantly different (Figure 6a). The correlation between transcriptome and
proteome expression levels in skeletal muscle from CON–G and HFD–G rabbits is shown
in Figure 6b. Subsequently, the correlated DEGs and DEPs were submitted to the DAVID
database to perform GO term and KEGG pathway enrichment analysis to identify genes
associated with skeletal muscle metabolism (Table 3). Seven DEGs (CRYL1, VDAC3,
BST1, APIP, ENOPH1, SLC37A4, and GSTO1) were downregulated, three DEPs (GPT2,
FLOT2, and L2HGDH) were downregulated, and two DEGs (AQP4 and TXNDC12) were
upregulated in five metabolism-related pathways (cysteine and methionine metabolism,
glutathione metabolism, apelin signaling, nicotinate and nicotinamide metabolism, and
insulin signaling). The above combined analysis results indicate significant differences in
the transcription and translation results of different genes, but the correlative genes and
proteins caused by obesity merit future studies on the muscle metabolism of rabbits.
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Table 3. GO function, KEGG signaling pathway, and log2FC for key differentially expressed genes and proteins involved in
rabbit skeletal muscle metabolism.

Gene ID GO Function KEGG Signaling Pathway Transcribed Genes
(log2FC)

Translated Proteins
(log2FC)

CRYL1 Primary metabolic
process

Pentose and glucuronate
interconversions (map00040) −0.34786 −0.2887

AQP4 Transport Bile secretion (map04976) −0.41118 0.458027

VDAC3 Intracellular Cholesterol metabolism
(map04979) −0.4851 −0.62335

BST1
Hydrolase activity,
acting on glycosyl

bonds

Nicotinate and nicotinamide
metabolism (map00760) −0.17229 −0.34353

APIP intracellular Cysteine and methionine
metabolism (map00270) −0.40076 −0.46668

ENOPH1 - Cysteine and methionine
metabolism (map00270) −0.13566 −0.30252

TXNDC12 Regulation of biological
quality

Glutathione metabolism
(map00480) 0.049503 0.349659

FLOT2 - Insulin signaling pathway
(map04910) 0.126643 −0.26827

SLC37A4 Transport Carbohydrate digestion and
absorption (map04973) −0.33128 −0.2698

GSTO1 Intracellular Glutathione metabolism
(map00480) −0.28975 −0.26433

L2HGDH - Butanoate metabolism
(map00650) 0.17351 −0.47531

GPT2 Biosynthetic process 2-Oxocarboxylic acid
metabolism (map01210) 0.208941 −0.26321

2.7. Network Analysis of DEMs, DEGs, and DEPs

To better understand the regulatory relationship between genes and proteins, com-
bined interaction network analysis was performed to increase our understanding of the
regulation of DEGs and DEPs in rabbit skeletal muscle using STRING online software. The
construction of the combined interaction network was completed by importing the correla-
tion coefficient from STRING into Cytoscape 3.7.0 software (Figure 7a). Combined interac-
tion network and miRNA target gene network analysis predicted that 12 miRNAs (miR-7-
5p, miR-499-5p, miR-125b-3p, miR-30d-5p, miR-30e-5p, miR-363-3p, miR-92a-3p, let-7i-3p,
miR-30a-5p, miR-199a-5p, miR-30c-5p, and miR-148a-3p) regulated 85 genes (65 DEGs and
20 DEPs; Figure 7b). Lastly, miRNA–mRNA network analysis revealed that seven miRNAs–
mRNA pairs play a key role in the regulation of seven genes (MAP3K3, MYH9, PARP12,
GPT2, VDAC3, NCAM1, and GCLC) and three transcription factors (MYBL2, STAT1 and
IKZF1) involved in rabbit skeletal muscle metabolism (Table 4). All of these important reg-
ulatory networks of DEMs, DEGs, and DEPs in rabbits with induced by obesity enable us
to better understand the potential molecular mechanism of muscle metabolism regulation.



Int. J. Mol. Sci. 2021, 22, 4204 11 of 19
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 20 

(a) (b) 

Figure 7. Combined interaction network diagram of DEGs and DEPs and regulatory network diagram of key miRNAs.
(a) In protein interaction network diagram, circles range in color from blue to purple to red, representing the greater role 
of genes in the network, and each circle represents a gene. Larger circles represent a greater role of genes. Lines from 
purple to red show correlations between genes from low to high. (b) In miRNA network regulation diagram, triangles 
represent miRNAs, and red and blue represent upregulation and downregulation, respectively. Color of lines in the net-
work goes from red to blue to indicate that correlation goes from high to low.

Table 4. Description of regulatory networks for seven key miRNAs–mRNA pairs involved in rabbit skeletal muscle metabolism.

Gene ID Transcribed Genes 
(log2FC)

Translated 
Proteins 
(log2FC)

miRNA Regulation Gene Description Transcription 
Factor 

MAP3K3 0.22279 −0.35343 let-7i-3p
Mitogen-activated protein 

kinase kinase kinase 3 - 

MYH9 0.539348 0.143813 miR-92a-3p,miR-363-3p Myosin heavy chain 9 - 

PARP12 0.74067 - let-7i-3p Poly(ADP-ribose) polymer-
ase family member 12 - 

GPT2 0.208941 -0.26321 miR-30a-5p,miR-30c-5p
Glutamic--pyruvic transami-

nase 2 - 

VDAC3 −0.4851 −0.62335 miR-7-5p Voltage dependent anion 
channel 3 

- 

NCAM1 0.593775 - miR-30d-5p,miR-30a-5p Neural cell adhesion mole-
cule 1 

- 

GCLC 0.449528 −0.16912 miR-30a-5p
Glutamate-cysteine ligase 

catalytic subunit - 

MYBL2 1.563326 - 
miR-30c-5p,miR-30a-

5p,miR-30d-5p MYB proto-oncogene like 2 MYB 

STAT1 0.849922 0.078617 miR-30c-5p Signal transducer and acti-
vator of transcription 1 

STAT 

IKZF1 1.978475 - miR-30c-5p,miR-92a-3p IKAROS family zinc finger 1 zf-C2H2 

3. Discussion
High-fat and high-sugar diets are important factors causing obesity in human beings. 

These types of diets are essential for the study of metabolic differences among animals 
[18]. Compared with different types of induction diets (unsaturated fatty acids, protein, 
and saccharides), a high–fat diet is more likely to increase the amount of fat deposition in 
different tissues of animals, thereby increasing the incidence of obesity-related metabolic 

Figure 7. Combined interaction network diagram of DEGs and DEPs and regulatory network diagram of key miRNAs.
(a) In protein interaction network diagram, circles range in color from blue to purple to red, representing the greater role of
genes in the network, and each circle represents a gene. Larger circles represent a greater role of genes. Lines from purple
to red show correlations between genes from low to high. (b) In miRNA network regulation diagram, triangles represent
miRNAs, and red and blue represent upregulation and downregulation, respectively. Color of lines in the network goes
from red to blue to indicate that correlation goes from high to low.

Table 4. Description of regulatory networks for seven key miRNAs–mRNA pairs involved in rabbit skeletal mus-
cle metabolism.

Gene ID Transcribed
Genes (log2FC)

Translated
Proteins (log2FC)

miRNA
Regulation Gene Description Transcription

Factor

MAP3K3 0.22279 −0.35343 let-7i-3p Mitogen-activated protein
kinase kinase kinase 3 -

MYH9 0.539348 0.143813 miR-92a-3p,miR-
363-3p Myosin heavy chain 9 -

PARP12 0.74067 - let-7i-3p
Poly(ADP-ribose)

polymerase family
member 12

-

GPT2 0.208941 -0.26321 miR-30a-5p,miR-
30c-5p

Glutamic–pyruvic
transaminase 2 -

VDAC3 −0.4851 −0.62335 miR-7-5p Voltage dependent anion
channel 3 -

NCAM1 0.593775 - miR-30d-5p,miR-
30a-5p

Neural cell adhesion
molecule 1 -

GCLC 0.449528 −0.16912 miR-30a-5p Glutamate-cysteine ligase
catalytic subunit -

MYBL2 1.563326 -
miR-30c-5p,miR-
30a-5p,miR-30d-

5p
MYB proto-oncogene like 2 MYB

STAT1 0.849922 0.078617 miR-30c-5p Signal transducer and
activator of transcription 1 STAT

IKZF1 1.978475 - miR-30c-5p,miR-
92a-3p IKAROS family zinc finger 1 zf-C2H2

3. Discussion

High-fat and high-sugar diets are important factors causing obesity in human beings.
These types of diets are essential for the study of metabolic differences among animals [18].
Compared with different types of induction diets (unsaturated fatty acids, protein, and
saccharides), a high–fat diet is more likely to increase the amount of fat deposition in
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different tissues of animals, thereby increasing the incidence of obesity-related metabolic
diseases [19]. Especially, the amount of intramuscular fat deposition can influence the
oxidative metabolic capacity and insulin resistance of skeletal muscle [20]. Studies in
rodents and other animals have also shown that intramuscular fat deposition and the
proportion of unsaturated fatty acids are closely related to body fat consumption [21,22].
Similarly, a high–fat diet will also lead to increased intramuscular fat content in humans,
which will lead to increased insulin resistance and inflammatory factors [23]. There are
great differences in intramuscular fat deposition in different animals, which is related to
the metabolic mechanism of muscle. In view of this, it is necessary to explore the potential
metabolic mechanism of rabbit skeletal muscle. The present study was aimed at screening
out the DEMs, DEGs, and DEPs in rabbit skeletal muscle from two groups (HFD–G and
CON–G). Additionally, functional analysis of DEM–DEG pairs and regulatory network
analysis of DEMs, DEGs, and DEPs associated with the development and metabolism of
skeletal muscle in rabbits were conducted.

microRNAs can be treated as key regulatory factors for a variety of important target
genes involved in protein coding that influence a variety of phenotypes. Mature miRNA
sequences are classes of 22 nt short non-coding RNAs processed in the cytoplasm by nuclear
endogenous transcripts (pri-miRNAs). A comparison of miRNAs in various organisms
by genome sequences revealed that they evolved in a different way from genes. The gene
family of miRNAs evolved in a continuously updating way, in which new miRNAs were
generated in each derived evolutionary pedigree [24]. Based on the analysis of existing
miRNA data, it appears that some miRNAs in transcriptional binding sites of the 3′ non-
coding regions of target genes are conserved, suggesting the potential involvement of
miRNAs in animal evolution [25]. For example, the let-7 family, miR-9, and miR-183 may
have similar developmental regulatory functions across model organisms [26–28]. The
evolutionary model of miRNAs also fully demonstrates that they have complex regulatory
roles in cell development and regulation.

In this study, small RNA sequences showed that known miRNAs were highly ex-
pressed in obese rabbits. However, the expression levels of novel miRNA were lower than
those of known miRNAs. Low miRNA expression plays a certain role in the regulation
of cells biological responses [29]. Conversely, high miRNA expression plays a key roles
in the regulation of targeted molecules in tissues and cells, indicating that miRNAs are
highly involved in intracellular molecular regulation [30]. Highly expressed miRNAs
that are highly conserved have more abundant and extensive functional mechanisms as-
sociated with intracellular gene regulation. We identified 520 novel miRNAs in rabbit
skeletal muscle that may potentially have regulatory effects on muscle metabolism and
need further verification. Notably, among the 20 miRNA identified, there were four from
the miR-30 family (miR-30e-5p, miR-30c-5p, miR-30a-5p, and miR-30d-5p) and two from
the let family (let-7i-3p and let-7f-2-3p), two families known to be important for skeletal
muscle metabolism [31,32]. miR-30-5p inhibits muscle cell differentiation and regulates the
alternative splicing of Trim55 and INSR by targeting MBNL [33]. The miR-30 family also
regulates myogenic differentiation and targets the Tnrc6a gene to downregulate the miRNA
pathway, indicating that the miR-30 family is a key factor in muscle development [34].
Additionally, miR-148a-3p, miR-499-5p, miR-199a-5p, miR-133-3p, and miR-92a-3p were
associated with myofiber specification, apoptosis, and the proliferation of skeletal muscle
cells [35–37]. Combined miRNA–target gene prediction and functional enrichment anal-
ysis indicated that the top 10 KEGG pathways were involved in six metabolic signaling
pathways (MAPK signaling, cGMP–PKG, insulin, PI3K–Akt, cAMP, and calcium signaling)
associated with skeletal muscle metabolism in rabbits. The miRNA–target gene enriched
pathways reflected a possible function of DEMs in the regulation of skeletal muscle devel-
opment. These results indicate that the role of the miR-30 family and other miRNAs in
rabbit skeletal muscle development and metabolism merit further study.

Transcriptome analysis demonstrated that upregulated pathways were closely associ-
ated with inflammatory signaling pathways. Previous studies have shown that a high–fat
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diet induces obesity by increasing intramuscular fat content, triggering a skeletal muscle
inflammatory response [38]. The TLR4 signaling pathway and other pattern recognition re-
ceptors (PRRS) in muscle cells can respond to inflammatory signals and influence metabolic
changes [39]. The T cells and macrophages are involved in the production of inflamma-
tory cytokines and insulin resistance in skeletal muscle [40,41]. Similarly, we found that
Th17 cell differentiation, antigen processing and presentation, and chemokine signaling
pathways were upregulated in the skeletal muscle of obese rabbits in the HFD-G group.
Additionally, glycolysis/gluconeogenesis pathways play an essential role in the process
of carbohydrate metabolism in various tissues of the body. The disorder of this pathway
can cause the occurrence of human myopathy and is closely associated with function of
adipose tissue macrophages (ATMs) in a high–fat diet–induced model of mice for respond-
ing to cellular insulin resistance [42,43]. The Gene Expression Omnibus (GEO) database
of humans from non-insulin dependent diabetes mellitus (NIDDM) and obesity found
that the biosynthesis of amino acids and notch signaling pathway were down regulated in
adipose tissues [44]. Our results indicated that the glycolysis/gluconeogenesis pathway
and amino acid synthesis pathway were down regulated in skeletal muscle of obese rabbits,
which were similarly consistent with these previous studies. However, the metabolic signal
pathways in this study (glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan
sulfate (CSGALNACT1 and CHSY3), adipocytokine signaling (TNFRSF1B, mTOR, ACSL5
and ADIPOR2), gastric acid secretion (ADCY7, SLC9A1 and ATP1A1)) seemed to not play a
key role in the regulation of skeletal muscle metabolism.

Glycosaminoglycan (GAG) is a type of polysaccharide with a long-chain macro-
molecule that is widely present in the extracellular matrix of vertebrate tissues. There are
six types of GAGs, including hyaluronic acid (HA), chondroitin sulfate (CS), dermatan
sulfate (DS), keratan sulfate (Kep-S), and heparin (Hep) [45]. GAGs have been shown to be
involved in many physiological and pathological processes, and they can also be used as
effective anti-inflammatory drugs for the treatment of diseases [46]. Glycosphingolipids
are a class of lipid compounds containing glycosyl ligands. They are an indispensable
part of the cell membranes that can be synthesized or catabolized with sphingomyelin
to be transformed into ceramides, which affect cellular immune response, development,
recognition, and differentiation [47]. Human obesity studies have found that saturated
fatty acids can induce TLR4 expression to activate MyD88- and TRIF-dependent pathways
that participate in disease occurrence, thereby increasing the synthesis of ceramides in
skeletal muscle and liver tissues [48,49], which is crucial for skeletal muscle to improve the
symptoms of insulin resistance caused by obesity [50]. The proteomics enrichment analysis
in this study confirmed that the glycosaminoglycan degradation and glycosphingolipid
biosynthesis pathways were significant and could perhaps play a key role in the regulation
of skeletal muscle metabolism.

The integrated analysis of DEG and DEP changes indicated that a high–fat diet
induced the differential expression of genes associated with mitochondrial proteins, mito-
chondrial oxidative metabolism factors, and gluconeogenesis of skeletal muscle in rabbits.
Mitochondria play a vital role in the regulation of energy metabolism in skeletal muscle.
Oxidative damage to the mitochondria of skeletal muscle can cause insulin resistance [51].
Mitochondrial proteins are closely associated with energy metabolism in skeletal muscle.
VDAC3 is a member of the voltage-dependent anion channel (VDACs) protein family,
also known as mitochondrial porins, and plays a vital role in transporting mitochondrial
metabolites [52]. Glutamate pyruvate transaminase 2 (GPT2) protein, also known as alanine
transaminase 2 (ALT2) or alanine aminotransferase 2 (ALAT2), is located in mitochondria
and involved in amino acid metabolism and the tricarboxylic acid (TCA) cycle. A change
in the GPT2 protein can lead to metabolic disease [53]. Expression of VDAC3 and GPT2
proteins was significantly downregulated in the skeletal muscle of obese rabbits in this
study. The accumulation of fatty acids in skeletal muscle can lead to abnormal mitochon-
drial oxidative metabolism. The glutathione S-transferase (GST) enzyme is widely present
in various tissues. Its main function is to eliminate free radicals and detoxify the body, and
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it plays a critical role as an antioxidant and in the detoxification metabolism of poisons.
The overexpression of the glutathione S transferase omega1 (GSTO1) enzyme can enhance
antioxidant stress in animals [54]. Enolase phosphatase 1 (ENOPH1) is an important en-
zyme in the methionine rescue pathway. It has a phosphatase function and belongs to the
dual function enzymes of atypical enolase activity. It plays an important role in regulating
oxidative stress response [55]. Thioredoxin domain-containing protein 12 (TXNDC12) is
highly expressed in liver, brain, and skeletal muscle tissues, and has a function in response
to cell oxidative stress and cellular detoxification [56]. We also found that the proteins
GSTO1, ENOPH1, and TXNDC12 had significant differential expressions in the skeletal
muscle of rabbits in the obese group (HFD-G) versus rabbits in the control group (CON-G).

Other relevant skeletal muscle proteins include SLC37A4, known as glucose 6-phosphate
translocase (G6PT), which is closely associated with glycogen storage diseases [57]. The
G6PT/G6pase-complex is widely expressed in many tissues, and the G6pase-complex, ex-
pressed in gluconeogenic tissues, maintains glucose homeostasis and neutrophil/macrophage
energy homeostasis and function [58]. The BST1 gene encodes a multifunctional extracellu-
lar enzyme involved in regulating adenosine diphosateribose (ADPR). As an intercellular
receptor, BST1 is involved in inflammatory response by changing cell morphology, inter-
cellular adhesion ability, and cell migration to regulate leukocyte function [59]. We found
that the SLC37A4 and BST1 genes were significantly overexpressed in skeletal muscle,
suggesting the existence of a disorder in the gluconeogenic pathway of skeletal muscle in
obese rabbits (HFD-G). However, most genes had inconsistent transcription and protein
levels, suggesting that the regulation process of mRNA translation events plays a key role
in the response to metabolic changes in the skeletal muscle of obese rabbits. Previous
studies showed that gene transcription levels are not completely correlated with protein
translation levels, indicating that the regulation of mRNA translation events is a complex
process [60]. Network analysis of DEMs, DEGs, and DEPs identified seven miRNA–mRNA
pairs involved in cell metabolism, muscle development, and disease. We also found three
transcription factors (MYBL2, STAT1 and IKZF1) regulated by two miRNAs (miR-92a-
3p and miR-30a/c/d-5p) that may play a key role in the regulation of skeletal muscle
metabolism. Transcription factors play an important regulatory role in gene transcription
by recognizing transcription binding sites in the promoter region of genes in response to
complex external stimuli. Previous studies have shown that these three transcription factors
were mainly associated with many process of cell cycle regulation, aging, carcinogenesis,
and tumorigenesis, through a variety of metabolic signaling pathways, such as Chemical
signaling pathway, JAK-STAT signaling pathway, and MAPK signaling pathway [61–63].
In this study, we found that they were closely involved in the skeletal muscle metabolism
process of obese rabbits induced by high–fat diet, which were worthy of being used as
important regulators for the future study of human obesity syndrome.

4. Materials and Methods
4.1. Construction of the Obesity Model with Young Rabbits

Female Tianfu black rabbits (n = 16) were selected from the teaching and research
rabbit farm of Sichuan Agriculture University. All rabbits were kept under the same
management conditions and were regularly vaccinated. The 16 weaned rabbits were
divided into 2 groups at about 35 days of age, a control group (CON–G; n = 8) fed a
commercial diet, and an obese group (HFD–G; n = 8) fed a high–fat diet composed of a
commercial diet mixed with 10% pork lard. Rabbits in both groups were fed from 35 to
70 days of age. The methods in this study were based on our previous research [17], which
indicated that body weight at 70 days of age (2–2.5 kg) is an important reference index
to evaluate obesity in rabbits under the same feeding conditions. In this study, 3 rabbits
with the highest body weight in each group were screened out before all of the rabbits
were killed by intravenous injection. The 3 rabbits sampled from each group (CON–G and
HFD–G) were used to collect samples of the right Biceps femoris muscle after slaughter at
70 days of age. Muscle samples were rapidly stored in liquid nitrogen at −80 ◦C.
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4.2. Total RNA Extraction and Small RNA Sequencing

Total RNA was extracted from the skeletal muscle samples (stored at −80 ◦C) accord-
ing to the TakaRa MiniBEST Universal RNA Extraction Kit instruction manual (TakaRa,
Japan). RNA concentration and purity were determined by using a NanoDrop 2000 spec-
trophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). Small RNA was se-
quenced using SE50 sequencing mode. The sequenced reads were filtered by SOAPnuke
software (https://github.com/BGI-flexlab/SOAPnuke/releases/tag/SOAPnuke2.1.5, ac-
cessed on 15 July 2020). A comparison of sRNA tags (tag ≥ 18 nt) with the species genome
and an evaluation of all the comparison data and sample distributions were performed
with Bowtie2 software (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml, accessed
on 20 July 2020). All known miRNAs were identified by using the miRBase database
(http://www.mirbase.org/, accessed on 20 July 2020). Novel miRNAs were predicted
from unannotated sRNA by using MIREAP (https://tools4mirs.org/software/sequencing_
analysis/mireap/, accessed on 20 July 2020) and miRNA visualization software (https:
//tools4mirs.org/software/sequencing_analysis/mireap/, accessed on 20 July 2020). The
edgeR package (https://bioconductor.org/packages/release/bioc/html/edgeR.html, ac-
cessed on 20 July 2020) was used to analyze the differential expression of miRNAs. Differ-
entially expressed miRNAs were filtered and identified as significant using the standard
log2fold change (log2FC) and false discovery rate (FDR), with thresholds of |log2FC| ≥
1 and FDR < 0.05 for differentially expressed miRNAs. The target genes were predicted
by Targetscan (http://www.targetscan.org/vert_72/, accessed on 20 July 2020), miRanda
(https://tools4mirs.org/software/target_prediction/miranda/, accessed on 20 July 2020),
and RNAhybrid (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid, accessed on 20 July
2020) software.

4.3. Transcriptome. Sequencing (RNA-seq)

Sequencing libraries were generated using NEBNext® UltraTM RNA Library Prep Kit
for illumina® (NEB, Ipswich, MA, USA) following the manufacturer’s recommendations.
The library preparations were sequenced on an illumina Novaseq platform (https://
www.illumina.com/systems/sequencing-platforms/novaseq.html, accessed on 15 August
2020). After screening the total_reads data for high quality clean reads, HISAT2 v2.0.5
software (http://daehwankimlab.github.io/hisat2/, accessed on 15 August 2020) was
used to match clean reads to the reference genome sequence (GCF_000003625.3) to assess
the overall sequencing quality. FeatureCounts v1.5.0-p3 (https://academic.oup.com/
bioinformatics/article/30/7/923/232889, accessed on 15 August 2020) was used to count
the number of reads mapped to each gene. Subsequently, the fragments per kilobase of
transcript per million mapped reads (FPKM) for each gene was calculated based on the
length of the gene and reads count mapped to this gene. Information from differentially
expressed genes (DEGs) from the RNA-seq analysis was filtered with the edgeR (3.18.1) and
DESeq2 (1.16.1) (https://bioconductor.org/packages/release/bioc/html/DESeq2.html,
accessed on 15 August 2020) R packages. Significantly differentially expressed genes were
screened out according to their threshold log2FC and p values (|log2FC| ≥ 1 and p < 0.05).

4.4. Protein Isolation, Enzymolysis, and TMT Labeling

Total proteins in muscle samples were extracted using a mammalian protein extraction
kit (Product ID C600589, Sangon Bioengineering Co., Ltd., Shanghai, China) according
to the manufacturer’s instructions. Protein concentrations were detected using a Brad-
ford protein quantitative kit (Product ID C503031-1000, Sangon Bioengineering Co., Ltd.,
Shanghai, China) following the manufacturer’s instructions. A bovine serum albumin
(BSA) standard protein solution was prepared with a gradient concentration ranging from
0 to 0.5 g/L. The protein concentration in samples was calculated using a standard curve
constructed using the absorbance of the BSA standard protein solution. Then, 120 µg of
each protein sample was mixed and digested with trypsin and CaCl2 at 37 ◦C overnight.
After elution (0.1% formic acid, 3% acetonitrile, and 70% acetonitrile), protein peptides
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from the protein hydrolysates were labeled by using acetonitrile-soluble tandem mass
tagging kits and reagents (Thermo Fisher Scientific, Wilmington, DE, USA).

4.5. LC-MS/MS Analysis

After desalting, the lyophilized products were separated by distillation using an
L-3000 HPLC system with a Waters BEH C18 chromatographic column (4.6 × 250 mm,
5 µm) and a column temperature of 50 ◦C. A 1 µg supernatant of each distillate was
assessed for liquid quality detection with an EASY-nLCTM 1200 nano-flow UHPLC system
(Thermo Fisher Scientific, Wilmington, DE, USA). The raw data were generated with a Q
ExactiveTM HF-X mass spectrometer (Thermo Fisher Scientific, Wilmington, DE, USA) and
a Nanospray Flex™ (SI) ion source with data-dependent acquisition mode.

4.6. Database Search and Protein Identification and Quantification

Proteome Discoverer 2.2 software (https://www.thermofisher.com/us/en/home/industrial/
mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-
data-analysis/proteome-discoverer-software.html, accessed on 25 August 2020) was used to
search the Ensemble database (Oryctolagus_cuniculus_41055_release 100_ensembl.fa) and
quantify the peptide data to filter and retain peptide spectrum matches (PSMs) with more
than 99% confidence. Credible PSMs were verified with FDR, and peptides and proteins
with FDR > 1% were removed. A t–test was used to compare the protein data from
the control (CON–G) and obese (HFD–G) rabbits. Proteins with significant differences
(p < 0.05, |log2FC| > 0 (ratio > 1.2 or ratio < 0.83) were defined as differentially expressed
proteins (DEPs).

4.7. GO and KEGG Enrichment Function Analysis of Target Genes, DEGs, and DEPs

The miRNA target genes, DEGs in RNA-seq, and DEPs were classified using GO and
KEGG with DAVID online software (https://david.ncifcrf.gov/, accessed on 20 October
2020). GO terms and KEGG pathways with corrected p-values < 0.05 were considered
significantly enriched. The diagram R package (https://cran.r-project.org/web/packages/
diagram/vignettes/diagram.pdf, accessed on 20 October 2020) and GraphPad Prism 8
(https://www.graphpad.com/scientific-software/prism/, accessed on 20 October 2020)
were used to draw diagrams.

5. Conclusions

We constructed a high–fat–diet–induced rabbit obesity model and detected differen-
tially expressed miRNAs, mRNAs, and proteins, which were all significantly enriched in
metabolic pathways of amino acids, glycosaminoglycan, and glycosphingolipid in skeletal
muscle. We developed a reliable regulatory network of differentially expressed genes
and proteins involved in the metabolism of skeletal muscle in rabbits using an integrated
analysis of DEMs, DEGs, and DEPs. We also found a number of statistically significant
interactions between miRNAs and mRNAs as well as three key transcription factors
(MYBL2, STAT1, and IKZF1) that were regulated by two types of miRNAs (miR-92a-3p
and miR-30a/c/d-5p). These results enhance our understanding of molecular mechanisms
associated with rabbit skeletal muscle growth and metabolism and provide a basis for
future studies in the metabolic diseases of human obesity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22084204/s1, Figure S1: Anatomical differences of subcutaneous fat (SF) and visceral fat
(VF) in rabbit between CON-G (a) and HFD-G (b), Table S1: The different expressed information of
novel miRNAs between CON–G and HFD–G, Table S2: The different expressed information of the
genes between CON–G and HFD–G.
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