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Abstract: PbTe-based alloys have the best thermoelectric properties for intermediate temperature
applications (500–900 K). We report on the preparation of pristine PbTe and two doped derivatives
(Pb0.99Sb0.01Te and Ag0.05Sb0.05Pb0.9Te, so-called LAST18) by a fast arc-melting technique, yielding
nanostructured polycrystalline pellets. XRD and neutron powder diffraction (NPD) data assessed the
a slight Te deficiency for PbTe, also yielding trends on the displacement factors of the 4a and 4b sites of
the cubic Fm-3m space group. Interestingly, SEM analysis shows the conspicuous formation of layers
assembled as stackings of nano-sheets, with 20–30 nm thickness. TEM analysis shows intra-sheet
nanostructuration on the 50 nm scale in the form of polycrystalline grains. Large numbers of grain
boundaries are created by this nanostructuration and this may contribute to reduce the thermal
conductivity to a record-low value of 1.6 Wm−1K−1 at room temperature. In LAST18, a positive
Seebeck coefficient up to 600 µV K−1 at 450 K was observed, contributing further towards improving
potential thermoelectric efficiency.

Keywords: thermoelectrics; nanostructuration; lattice thermal conductivity; lead telluride; neutron
powder diffraction

1. Introduction

Thermoelectric materials are relevant for a world relying on clean and sustainable energy sources.
Thermoelectrics can directly convert heat into electrical energy, and their efficiency is evaluated by the
figure of merit ZT = S2σT/κ, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the
absolute temperature, and κ is the total thermal conductivity, which contains the sum of the lattice (κl)

and electronic contributions (κe) [1].
Several approaches have been developed to boost the thermoelectric performance in different

ways, such as band engineering [2,3] or hierarchical architectures [4], leading to highly competitive
ZT values >1.5 [5–8]. Among all these strategies, nanostructuration is a key role to bear in mind,
because it is a useful tool to effectively reduce the thermal conductivity [4,9–11], and it has already
been used in different chalcogenide-type compounds [12,13].

In recent years, tellurium-based compounds are among the most efficient thermoelectric materials,
for instance, Bi2Te3, is widely used in near room temperature applications [1,14], or GeTe and its
alloys [15–19], rare-earth tellurides [20–24], or PbTe [25–29]. PbTe-based thermoelectrics are the best
performing materials in the middle-temperature range of 500 to 900 K [1,3,4,30,31], so they are one of
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the best options available for harvesting wasted thermal energy. In particular, Ag and Sb doping in
the so-called LAST-type compounds, induce an excellent performance [30,32,33]. To further improve
PbTe thermoelectric properties, it is important to understand the role that distinct defects may play on
the lattice thermal conductivity [28], and their effects in the density of states near the bottom of the
conduction band and the top of the valence band [25,29,34,35], as well as broadening our knowledge
on their crystalline structures.

The first achievement of very low lattice thermal conductivities in these tellurides using nanoscale
features consisted of designing superlattice structures grown by molecular beam epitaxy (MBE) [36]
and chemical vapor deposition (CVD) [37]. As for other techniques, solvothermal routes have been
used for nanostructuring to fabricate PbTe nanoboxes [38]. However, expensive and complex synthesis
procedures are necessary to grow superlattices or produce nanoboxes, which make them impractical
for real-world applications and devices [39]. For this reason, it is worth looking for alternative methods
that lead to nanostructured and mechanically robust materials.

The effect of Sb or Ag addition in the structure of lead telluride has been studied before,
concluding that the Sb-doping achieves a better thermoelectric performance [40,41], so we have
synthesized this composition to be able to compare both pristine and doped samples. In the same way,
Ag0.05Sb0.05Pb0.9Te (LAST18) was proposed several years ago as an efficient thermoelectric material
above room temperature [30], and it has been extensively studied since then [42–45].

We have established arc-melting as a direct procedure to synthesize highly nanostructured
Bi2Te3 [46,47] and SnSe [48] chalcogenides in short reaction times, obtaining hard pellets that could be
directly used into devices. In this way, we avoid the use of sintering techniques, such as spark plasma
sintering (SPS) or hot-pressing method, making the process more straightforward and easily scalable.
In this work, we describe the preparation, with the same straightforward arc-melting method, of cubic
PbTe and PbTe(:Sb, Ag) specimens showing a conspicuous laminar nanostructure, responsible for a
significant reduction of the thermal conductivity. The samples have been structurally studied using
X-ray diffraction (XRD) and neutron powder diffraction (NPD), as well as scanning electron microscopy
(SEM), transmission electron microscopy (TEM) and the three main thermoelectric properties (Seebeck
coefficient, resistivity, and thermal conductivity) that were measured as a function of temperature.

2. Materials and Methods

The pristine PbTe compound and derivative Pb0.99Sb0.01Te and Ag0.05Sb0.05Pb0.90Te (LAST18)
alloys were synthesized in an Edmund Buhler MAM-1 mini-arc furnace (Bodelshausen, Germany),
using direct arc melting in a water-cooled copper crucible, with a tungsten electrode under purified
argon atmosphere. The starting materials were pure elements of Pb (99.9%, Cerac, Milwaukee,
WI, USA), Te (99.99%, Alfa Aesar, Kandel, Germany), Ag (99.99%, Cerac, Milwaukee, WI, USA), and
Sb (99.5%, Alfa Aesar), which were weighted and mixed according to the stoichiometric ratio. Part of
the resulting ingots was ground to powder for structural characterization, and the remaining part was
pressed in a Retsch Pellet Press PP25 (Haan, Germany) under an isostatic pressure of 10 MPa, and then
cut with a diamond saw in bar-shape to perform transport measurements. All thermoelectric properties
were measured perpendicular to the pellet pressing direction, using a Physical Properties Measurement
System (PPMS) by Quantum Design (San Diego, CA, USA) in the residual vacuum of He atmosphere,
under a pressure of 0.1 MPa in the temperature range of 2 to 390 K. In complement, high-temperature
measurements were performed on the cold-pressed sample in a homemade apparatus, along the
direction of the pellet pressing [49]. The Hall coefficient was measured using the four-probe resistivity
option of the PPMS in delta-mode with a DC current of I = 5 mA as a function of the magnetic field up
to ±8 T. The density of the cold-pressed pellet was ~96% of the theoretical crystallographic density.

Phase characterization was carried out for the pulverized sample using X-Ray diffraction (XRD) on
a Bruker-AXS D8 diffractometer (Karlsruhe, Germany, 40 kV, 30 mA), run by DIFFRACTPLUS software
(version 2.5.0, Bruker-AXS, Karlsruhe, Germany), in Bragg–Brentano reflection geometry with Cu Kα

radiation (λ = 1.5418 Å). Moreover, NPD was used to characterize the crystal structure concerning
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possible atomic vacancies and displacement factors. High-resolution patterns were collected in the D2B
diffractometer at the Institut Laue-Langevin, Grenoble, France, in the high-flux configuration with a
neutron wavelength λ = 1.549 Å at 298 K (RT) for PbTe. Typically, 2 g of the samples were measured in
a vanadium can. Diffraction data were analyzed using the Rietveld method employing the FULLPROF
program (version Sept 2018, Grenoble, France). The line shape of the diffraction peaks was modeled by
a pseudo-Voigt function. The following parameters were refined in the final run for all the atoms: scale
factor, zero shift, background points, pseudo-Voigt corrected for asymmetry parameters, half-width,
unit-cell parameters, and isotropic displacement factors. Occupancy factors for Te atoms were also
refined from NPD data. The coherent scattering lengths of Pb, Te, Ag, and Sb were 9.405, 5.80, 5.992,
and 5.57 fm, respectively. High-resolution FE-SEM images were collected in an FEI-Nova NanoSEM
230 microscope (Denton, Texas, TX, USA).

Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM)
were carried out in a JEOL ARM 200 electron microscope (Peabody, MO, USA) with the aberration
corrector enabling the spatial resolution of 0.8 Å when operated at 200 kV. The microscope is equipped
with a Gatan Quantum electron energy loss spectrometer (EELS, Pleasanton, CA, USA).

3. Results and Discussion

3.1. Crystal Structure

Figure 1 illustrates the Rietveld-refined XRD pattern of PbTe prepared by arc melting after
carefully grinding the as-grown ingot. The diagram corresponds to a single-phase, well-crystallized
NaCl-like structure with cubic symmetry, defined in the face-centered space group Fm-3m, with
unit-cell parameter a = 6.4595(1) Å. The unit-cell size is substantially identical to that described in the
literature, e.g., 6.46 Å [50]. Similar diagrams were obtained for Sb-doped and LAST18 alloys.

Neutron powder diffraction (NPD) is essential to obtain accurate structural details of PbTe and
PbTe-LAST-18. Neutrons sample a much wider range of the reciprocal space. The displacement factors
can be determined precisely thanks to the lack of form factors. Furthermore, a strong aspect of this
study, using NPD, is the precise characterization of any possible off-stoichiometry within the relevant
crystalline phase. Losses due to evaporation are an important issue for many thermoelectrics, and NPD
can keep track of the consequent stoichiometry changes, refining the occupation factor of each atom
position. Despite the possible evaporation of the various elements during arc-melting, NPD showed
practically the same ratio as the weighed elements before the synthesis, as described below. Technical
advantages of NPD over XRD include the bulk (larger sample quantity) analysis, and the minimization
of preferred orientation effects by the packing of the ground crystals in vanadium cylinders, and the
rotation of the sample holder during the experiments.

The crystal structure of PbTe was refined in the NaCl-type, defined in the cubic Fm-3m space
group [50] from NPD at RT, with Pb and Te atoms located at 4a (0,0,0) and 4b (1/2,1/2,1/2) sites,
respectively. Table 1 includes the atomic parameters and displacements factors. The occupancy
factors of Pb and Te could be refined and a slight Te deficiency was detected within the standard
deviations (focc = 0.986(5), see Table 1). Regarding the PbTe-LAST18 specimen, we proposed a model
corresponding to the stoichiometry Ag0.05Sb0.05Pb0.90Te (equivalent to AgPb18SbTe20) where Ag and
Sb occupy at random the 4a sites together with Pb. This model provided good agreement factors
(Table 1 and Figure 1c), observing a slight Te deficiency, only two standard deviations away from
the full stoichiometry. This fact additionally assessed that Ag and Sb are not located at Te sites since
both elements exhibit higher scattering lengths than Te. Remarkably, the Pb displacement factors are
consistently large (≈1.8 Å2), and almost double than those of Te atoms. The smearing of the nuclear
scattering density of Pb may be related to the presence of the lone electron pair attributable to Pb2+

ions (in an ionic model for lead telluride), which for the very symmetric unit cell is certainly located at
random in subsequent PbTe6 octahedra. This implies, in each case, a displacement of the Pb atoms and
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the Pb-Te chemical bonds opposite to the location of the lone pair lobe. Globally, this accounts for the
disorder or smearing of the scattering density, which translates into an enhanced displacement factor.
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Figure 1. Observed (crosses), calculated (full line), and difference (at the bottom) profiles for (a) XRD
pattern for as-grown PbTe, Rietveld-refined in the space group Fm-3m, (b) neutron powder diffraction
(NPD) pattern for PbTe and (c) NPD patterns for PbTe-LAST18, at RT.

Figure 1b,c show good agreements between observed and calculated NPD profiles for PbTe
and LAST18, respectively, with correspondingly good discrepancy factors (RBragg = 2.61 and 2.06%,
respectively).

Figure 2 illustrates the crystal structure of pristine PbTe, consisting of a simple NaCl arrangement
of both elements in the cubic unit cell. Given the spatial positions occupied by both Pb and Te, only
isotropic displacement factors can be defined. Lead atoms are coordinated to six Te atoms and vice versa.
The structure contains Pb-rich and Te-rich planes along the [110] crystallographic directions, which
may have important repercussions on the physical properties, providing with preferred directions
for the cleavage and nanostructuration yielding layered structures, thus hindering the thermal and
electronic transport across the layers, as described below.
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Table 1. Structural parameters of pristine PbTe and LAST-18 (AgPb18SbTe20) from NPD data at 298 K,
with λ = 1.594 Å.

PbTe LAST-18

a(Å) 6.4595(1) 6.4590(1)

V(Å3) 269.522(8) 269.460(9)

Pb,Ag,Sb 4a(0,0,0)

focc Pb/Ag/Sb 1.00/0.0/0.0 0.90/0.05/0.05

B(Å2) 1.80(3) 1.75(4)

Te 4b (1/2,1/2,1/2)

focc Te 0.985(6) 0.96(1)

B(Å2) 1.19(4) 1.13(5)

Agreement factors

Rp (%) 3.07 3.66

Rwp (%) 4.67 4.95

RBragg (%) 2.61 2.06

χ2 8.22 3.04

Distances (Å)

Pb-Te (x6) 3.230(1) 3.229(1)
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Figure 2. Crystal structure of PbTe along [110] directions, highlighting Te-rich planes alternating with
Pb-rich planes.

3.2. Nanostructuration

Figure 3 displays the morphology of the as-grown PbTe pellets imaged with several magnifications
(from 5000× to 80,000×) by field-effect-scanning electron microscopy (FE-SEM). The as-grown ingots
are formed of parallel stacked nanosized sheets, also showing growing steps, as a conspicuous feature
in all the examined specimens obtained by arc-melting, from various regions of various samples.
Despite the 3D-type crystal structure exhibited by these materials, a strong cleavage effect is apparent,
as a consequence of weak bonding directions occurring within the crystal structure, as commented
above. The approximate thickness of individual sheets can be estimated in the 20 to 30 nm range. We
consider that this lamellar nanostructuring is present throughout the volume of the material, since the
images of Figure 3, and many similar, were taken from different parts of the broken-up ingot. In fact,
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according to [51], a faster cooling rate provides more homogeneous PbTe and LAST samples. Indeed,
arc-melting quenches the samples from the molten state to room temperature at extremely high cooling
rates estimated to be several hundreds of degrees per second.
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Figure 3. FE-SEM images displaying the superficial morphology of PbTe. A conspicuous laminar
nanostructuration is achieved with the arc melting technique.

We have examined the crystalline powder of our PbTe material with transmission electron
microscopy (TEM). Figure 4a shows the TEM image of a submicron-size conglomerate. The electron
energy loss spectrum (EELS, Figure 4c) shows both Te and Pb M4,5 absorption edges and yields 50:50
relative concentrations of both atoms. No impurities are detected by EELS, demonstrating the high
purity of our material (Figure 4c). The central part of the conglomerate in Figure 4a is a single crystalline
grain, as can be seen by examining diffraction patterns in different areas (inset). However, even on the
scale of this image (50–100 nm), grains with different orientations can be seen: two such crystalline
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grain-boundaries are indicated by yellow dashed lines, and the different grains are labeled from 1 to 3.
In the high magnification STEM ABF image (Figure 4b), one can see more closely one of these grain
boundaries (marked by the arrow). One can conclude that our PbTe material is polycrystalline, even at
a scale of 50 nm.Materials 2019, 12, x FOR PEER REVIEW 7 of 14 
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Figure 4. (a) TEM image of a conglomerate consisting of three crystalline grains. The boundaries of
different grains are marked by yellow lines. The grain orientations are checked by spatially resolved
diffraction patterns, the grain 1 being oriented along the [111] zone axis (inset). (b) High magnification
image of the boundary between the grains 1 and 2. (c) Electron energy loss spectrometer (EELS)
spectrum of the conglomerate in this figure. Only Te M4,5 and Pb M4,5 edges are detected.

This extremely small size of crystalline order may contribute to the observed low thermal
conductivity, due to increased phonon scattering on a larger density of grain boundaries provided by
the morphology of many nanosized sheets, produced by arc-melting.

The morphology of the PbTe based materials prepared by arc-melting is quite complex. Primarily,
there are interlayer boundaries at the surfaces between neighboring nanosized sheets, which are
clearly shown in the SEM images of Figure 3. Furthermore, as the high-resolution TEM images
along the [111] axis shown in Figure 4 demonstrate, each nanometric layer is made of polycrystalline
material that consists of single crystalline grains of 50 nm characteristic size. Thus, there are two
types of nanostructuring present, both on the 20–50 nm scale. This morphology has not been reported
before in PbTe specimens prepared by standard procedures (ball milling, reactions in sealed quartz
capsules, etc.). Note that we use the term “grain boundary” quite generally in this study to refer to
both the nanosheet-to-nanosheet interfaces (Figure 3), as well as the intra-sheet boundaries between
single-crystalline grains (Figure 4b).

3.3. Transport Properties

The electrical resistivity and the Seebeck coefficient for PbTe, Pb0.99Sb0.01Te, and AgPb19SbTe20

are displayed in Figure 5; the corresponding curves for LAST18 data at mid-temperature are displayed
in Figure 6. The resistivity of the pristine PbTe and Pb0.99Sb0.01Te increased with temperature in the
2-390 K range, as expected for metallic compounds; that of the Sb-doped sample was slightly lower,
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and the difference increased with temperature. For instance, at 300 K PbTe exhibited a resistivity of
1.6× 10−4 Ω·m at 300 K, whereas for the Sb-doped compound it was 6.5× 10−5 Ω·m. It seems that the
Sb doping increased the electron concentration, raising the electrical conductivity while the Seebeck
coefficient (Figure 5b) was reduced (in absolute value). This behavior has been already reported in
Sb-doped PbTe prepared by a melting procedure in vacuum sealed-tubes [41,52].
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Figure 5. (a) Resistivity, (b) Seebeck coefficient, (c) thermal conductivity, and (d) figure of merit versus
temperature for PbTe, Pb0.99Sb0.01Te, and LAST18 prepared by arc melting. The inset in (c) shows the
Hall Effect measurement of the pristine PbTe.

The behavior of the Seebeck coefficient from 10 K up to 390 K displayed in Figure 5b is similar
to those reported elsewhere [2,25,53,54], where the thermopower is slowly but continuously rising
up to higher temperatures. At room temperature, the Seebeck coefficient of PbTe is reported to be
150 µV/K [53], or even below that value [26], like the heavy hole-doped PbTe, which shows a Seebeck
coefficient around 50 µV/K [54]. Compared with these data, the Seebeck coefficients of our samples
were higher (in absolute value), reaching −220 µV/K at RT, which is also related to the higher resistivity
we found, following the well-known Pisarenko relationship. The antimony doping in this sample did
not alter the fact that the electrons are the majority carriers, yielding an n-type material, in accordance
with the results for other Sb doping levels [40].

At room temperature, the Seebeck coefficient should be positive and then switch to a negative
value with increasing temperature [55,56]. We think that the obtained behavior of the Seebeck coefficient
for pristine PbTe could occur due to slight evaporation of Te during synthesis. We can identify the
tiny reflection on XRD at ~32◦ as Pb metal. Therefore, the material could probably have a slight
deviation from stoichiometry, as shown from NPD data, and also contain precipitates of Pb. That
is likely the reason why the PbTe material shows n-type behavior at 300 K. The room temperature
Hall Effect measurements (inset of Figure 5c) confirmed the n-type behavior of our pristine PbTe,
showing a carrier concentration of ∼ 1.9 × 1018 cm−3, similar to other reported results [40], but a
bit lower than the optimum carrier concentration for n-type lead telluride, which stands between
4 − 40 × 1018 cm−3 [35,57]. Considering a single parabolic band approximation and a scattering of
charge carriers dominated by acoustic phonons [58], we calculated an effective mass of 0.19 me,
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which agrees with similar reported data for n-type lead telluride, with effective masses slightly above
0.20 me [35].
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Figure 6. (a) Resistivity, (b) Seebeck coefficient, and (c) power factor above room temperature for PbTe
and AgPb18SbTe20 prepared by arc melting.

From carrier density and resistivity, we can calculate the mobility of the electrons in PbTe at room
temperature. This calculation showed a mobility of 205 cm2/V·s, which was relatively high, but it is
still far from the best results obtained for this composition. For example, Dow et al. reported a mobility
of 2955 cm2/V·s for a carrier density of 2.67 × 1018 cm−3 [40], and Pei et al. found a mobility above
2000 cm2/V·s for a carrier concentration of 4.3× 1018 cm−3 [35].

Figure 5c displays temperature-dependent total thermal conductivity. It shows the expected
Umklapp maximum at 30 K and then a monotonous decrease to a minimum value of 1.6 W m−1 K−1 at
room temperature for pristine PbTe. For the Sb-doped specimen, a slightly higher value was observed.
Because of its high resistivity, the electronic contribution to the total thermal conductivity was negligible,
so we can consider the lattice and the total thermal conductivity nearly equal. In contrast, other authors
reported measurements of the thermal conductivity around 2 W m−1 K−1 [35,54], for PbTe and some
different alloys [53,59].

The observed reduction of the thermal conductivity with respect to the literature values could be
related to the nanostructuration that was observed in the FE-SEM and the TEM images. The underlying
reason for this decrease is likely the strong phonon scattering happening at the grain boundaries,
associated with the sheet-type nanostructuration, which is of great importance when considering the
formation of nanostructures to obtain higher figures of merit [60].

This thermal conductivity can be a good starting point to improve the thermoelectric performance
of nanostructured arc-melted PbTe. It has been demonstrated that PbTe alloys, such as PbTe:Na [54],
Pb1−xLaxTe [35], Pb1−xMnxTe [26], PbTe-MgTe [25] or PbTe-SrTe [59], can reach a high thermoelectric
performance through the improvement in their power factor. Bearing this in mind, with an adequate
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doping element, a nanostructured arc-melted PbTe with a great thermoelectric performance could be
produced using this fast and straightforward method.

The figure of merit of both PbTe and Pb0.99Sb0.01Te is shown in Figure 5d. The antimony doping
enhanced the thermoelectric performance of PbTe. Pb0.99Sb0.01Te had a higher figure of merit than that
of the pristine compound at room temperature, reaching almost 0.1. This value is similar to others
reported for PbTe and PbTe-based compounds at this temperature [10,28,50,52,53]. Pei et al. [35] found
a ZT of 0.3 at room temperature for PbTe for a slightly higher carrier density of 4.3× 1018 cm−3, the
difference with this work is mainly the high mobility they achieve in their samples, reaching a mobility
of around 2000 cm2/V·s at room temperature.

The behavior of the resistivity and the Seebeck coefficient for PbTe and LAST18 (AgPb18SbTe20)
above room temperature are displayed in Figure 6a,b. The resistivity of the LAST compound decreased
with temperature from 300 K up to 550 K, being slightly above, but with similar behavior, than those
also found by other authors [32,33]. In the case of PbTe, its resistivity stood below 1 × 10−3 Ω·m
from room temperature up to 550 K. For pristine PbTe, the Seebeck coefficient continued increasing
(in absolute value) with temperature, with the same behavior as shown below 300 K. However,
for the LAST compound, the Seebeck coefficient was positive, reaching a maximum of 620 µVK−1

at 480 K, and 540 µVK−1 at 580 K, which is significantly larger than other thermoelectric factors
reported elsewhere [30,32,33], both p and n-type. There have been other attempts to substitute silver
by isoelectronic copper in this composition using different synthesis routes [61], yielding similar
transport properties than that of LAST-18. However, the resulting thermopower is almost 50%
lower, especially at higher temperatures, which results in a lower figure of merit compared with the
AgPb18SbTe20 composition.

The power factor for PbTe and LAST18 is shown in Figure 6c, calculated as S2/ρ using the
experimental values of the resistivity and the Seebeck coefficient. Beyond 500 K, the power factor
increased, reaching 0.33 and 0.23 mW m−1 K−2 for the pristine PbTe and LAST compound, respectively,
indicating promising properties in this temperature range, which is where these PbTe-type compounds
present their best transport properties [28,35,54]. Moreover, according to literature, a minimum
deviation from the stoichiometric composition can significantly alter the thermoelectric properties [32,
33], so the thermoelectric performance of LAST material could be improved, modifying the silver
and lead quantity. For a more thorough comparison, data of PbTe prepared by different methods are
displayed in Table 2.

Usually, the thermal conductivity of these lead telluride materials shows a monotonous decrease
beyond room temperature. This allows us to calculate a lower limit for the figure of merit of this
material, using the thermal conductivity at room temperature (1.6 W/mK and 1.28 W/mK for PbTe
and LAST, respectively) as well as the power factor for each composition. We obtained a figure of
merit of ZT~0.59 at 630 K for PbTe, quite higher than other reported data for pristine PbTe [55,56], but,
of course, far from the highest figures of merit reached by other doped lead tellurides. In the case of
the LAST compound, the calculated figure of merit was around ZT~0.1 at 580 K, quite lower compared
with the best results reported for LAST compounds [30,32].

PbTe prepared by arc-melting shows the lowest thermal conductivity and the highest Seebeck
coefficient at room temperature, although its resistivity is significantly higher compared to other
synthesis routes. However, the resistivity and Seebeck coefficient can be balanced with adequate
doping to enhance the general thermoelectric performance. In conjunction with the short synthesis
time of arc-melting, this could result in lead telluride derivatives competitive with those synthesized
by other methods.
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Table 2. Comparison of lead telluride thermoelectric properties obtained by different synthesis processes. All data are measured at 300 K.

Thermal
Conductivity
(W/m−1K−1)

Seebeck
Coefficient

(µV/K)

Resistivity
(Ω m) Synthesis Method Synthesis Time Density Reference

PbTeM
(This Work)

(n = 1.9 × 1018)
1.6 −215 1× 10−4 Arc-melting +

cold pressing ~1 h ~96% -

PbTe

2.25 (κlattice) - - Quartz tubes (Liquid
matrix encapsulation) Several hours - [13]

4.25 30 4.2× 10−6 Quartz tubes + SPS ~60 h - [62]

3.8 60 4× 10−6 Graphite coated
quartz tubes ~62 h - [10]

PbTe
(n = 4.3 × 1018) 2.1 −170 1.2× 10−5

Graphite coated quartz
tubes + Hot pressing

8 h + 3 days
of annealing

>98% [35]

PbTe
(n = 9.4 × 1019) 5.5 −40 1× 10−6 >98%

PbTe
Nanocrystals 1.85 150 8× 10−3

Low temperature route
(353 K) in a micellar

medium + SPS
~3.5 h ~ 98.5% [63]
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4. Conclusions

Three thermoelectric materials were prepared by a straightforward arc-melting technique: pristine
PbTe, Pb0.99Sb0.01Te, and Ag0.05Sb0.05Pb0.9Te (LAST18). All show highly nanostructured morphology
with improved thermal transport properties. A structural NPD study accurately determined the
displacement factors at the NaCl-type structure and assessed the almost full stoichiometry of the
specimens, with a slight Te deficiency for PbTe. The trend to cleave and to form nanostructured
materials, despite the 3D crystal structure, is observed by FE-SEM. TEM imaging revealed intra-sheet
nanostructuration on a 50 nm scale. This nanostructuring affects the physical properties of the material,
enhancing the phonon scattering and yielding a reduced thermal conductivity with respect to literature
values, on samples prepared by alternative procedures. The as-grown robust pellets are suitable to
be manipulated and used in thermoelectric devices, and their physical properties could be improved
even more with proper doping elements.
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