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Abstract

Spike-timing-dependent plasticity (STDP) modifies the weight (or strength) of synaptic connections between neurons and is
considered to be crucial for generating network structure. It has been observed in physiology that, in addition to spike
timing, the weight update also depends on the current value of the weight. The functional implications of this feature are
still largely unclear. Additive STDP gives rise to strong competition among synapses, but due to the absence of weight
dependence, it requires hard boundaries to secure the stability of weight dynamics. Multiplicative STDP with linear weight
dependence for depression ensures stability, but it lacks sufficiently strong competition required to obtain a clear synaptic
specialization. A solution to this stability-versus-function dilemma can be found with an intermediate parametrization
between additive and multiplicative STDP. Here we propose a novel solution to the dilemma, named log-STDP, whose key
feature is a sublinear weight dependence for depression. Due to its specific weight dependence, this new model can
produce significantly broad weight distributions with no hard upper bound, similar to those recently observed in
experiments. Log-STDP induces graded competition between synapses, such that synapses receiving stronger input
correlations are pushed further in the tail of (very) large weights. Strong weights are functionally important to enhance the
neuronal response to synchronous spike volleys. Depending on the input configuration, multiple groups of correlated
synaptic inputs exhibit either winner-share-all or winner-take-all behavior. When the configuration of input correlations
changes, individual synapses quickly and robustly readapt to represent the new configuration. We also demonstrate the
advantages of log-STDP for generating a stable structure of strong weights in a recurrently connected network. These
properties of log-STDP are compared with those of previous models. Through long-tail weight distributions, log-STDP
achieves both stable dynamics for and robust competition of synapses, which are crucial for spike-based information
processing.
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Introduction

Modifications of the strength (or weight) of synaptic connections

between neurons that occur in an activity-dependent manner are

hypothesized to play an active role in generating the structure of

neuronal networks [1–7]. The importance of the relative timing

between pre- and postsynaptic spikes for the weight modification,

known as spike-timing-dependent plasticity (STDP), has been

demonstrated in many brain areas and across many species [8–

10]. Many models have been proposed to investigate the

functional implications of STDP; see [11] for a review. Owing

to its time scale, STDP can capture fine temporal correlations

between incoming spike trains to select some synaptic input

pathways [1,12–16] However, which features of STDP are both

biologically realistic and functionally appropriate remains unclear.

In this paper, we propose a novel STDP rule, termed log-

STDP, that can produce long-tail distributions of synaptic

strengths similar to those reported in recent experiments.

Pyramidal cells in the rat visual cortex exhibit lognormal-like

distributions for the amplitudes of excitatory postsynaptic

potentials (EPSPs) [17]. Electrophysiological measurements in

the barrel cortex of mice also revealed rare large-amplitude

responses in addition to more frequent medium- and small-

amplitude responses [18]. In addition to their long-tail character,

the observed distributions also exhibit a couple of outliers many

times (e.g., 20) stronger than the mean. Similar long-tail

distributions have also been observed by two-photon imaging of

dendritic spines in the hippocampal CA1 of young rats [19], where

the spine size may be positively correlated with the strength of

synapse [20]. These findings led us to investigate the conditions

under which STDP can generate such long-tail weight distribu-

tions in an activity-dependent manner. While a learning rule

leading to lognormal weight distributions was formulated in terms

of firing rates [21], spike-based mechanisms have not been

examined theoretically. A recent numerical study [22] made use of

spread weight distributions obtained using STDP, but did not

investigate the underlying dynamics. Here we focus on the

conditions allowing STDP to produce long-tail weight distribu-

tions.

Moreover, we study the functional implications of log-STDP in

terms of synaptic specialization. We focus on how STDP can

achieve both a stable weight distribution and effective selection of
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synaptic input pathways, which we refer to as the stability-versus-

function ‘‘dilemma’’. Additive STDP (add-STDP) can rapidly and

efficiently select synaptic pathways by splitting synaptic weights

into a bimodal distribution of weak and strong synapses [1,14,23].

However, the stability of the weight distribution requires hard

bounds due to the resulting unstable weight dynamics. Moreover,

even for uncorrelated inputs, add-STDP can split a unimodal

weight distribution, in a way that does not meaningfully represent

the input statistics. In contrast, weight-dependent update rules can

generate stable unimodal distributions [24–26]. Weight depen-

dence is supported by experimental observations [27], which have

been used to fit the multiplicative STDP (mlt-STDP) proposed by

van Rossum et al. [24]. On the down side, weight dependence

weakens the competition among synapses and may lead to only

weakly skewed weight distributions. Narrow unimodal weight

distributions are functionally less interesting than either bimodal or

spread distributions with significant positive skewness [22]. Gütig

et al. showed that an intermediate parametrization between add-

STDP and the multiplicative STDP of Rubin et al. [25] provides a

solution to the dilemma [15]; we will refer to their ‘‘non-linear

temporally asymmetric’’ model as nlta-STDP. However, their

model relies on a ‘‘soft’’ upper bound for synaptic weights and thus

is not naturally reconcilable with long-tail weight distributions. We

will examine the advantages of log-STDP for 1) representing the

statistical properties of input spike trains (i.e., spike-time

correlations) [15,28–30] and 2) the reorganization of existing

circuitry to adapt to a new input configuration [2,31]. In doing so,

we will compare log-STDP with the ‘‘extreme’’ cases of add-STDP

and mlt-STDP, as well as nlta-STDP.

Results

We first explain how we derived the novel model of log-STDP.

Then, we study the synaptic dynamics for a single neuron whose

plastic synapses are stimulated by an arbitrary number of input

spike trains, as illustrated in Fig. 1A. Finally, we examine how the

results for a single neuron extend to the case of a recurrent

network.

Toy plasticity model producing lognormal weight
distribution

Following previous studies [24,29,32], we use the Fokker-Planck

formalism to study the probability density P(J) of a population of

weights J that are modified by many plasticity updates. Denoting

by A(J) and B(J) the first and second stochastic moments of the

weight updates (or drift and diffusion terms, resp.), the stationary

solution of the Fokker-Planck equation is the following distribu-

tion:

P(J)~
N

B(J)
exp

ð J

0

2A(J ’)
B(J ’)

dJ ’
� �

, ð1Þ

where N is a normalization factor. We observe that there exists a

family of functions A and B for which the expression in (1) is

Figure 1. Single neuron equipped with STDP-plastic synapses. A: Single neuron excited by N input spike trains. The synaptic strength of
synapse i is denoted by Ji . B: Potentiation (LTP) and depression (LTD) curves W (J; u) with u~tpre{tpost in (4). Darker curves indicate stronger values
for the weight J : 0:25|J0 (light blue), J0 (medium blue), and 20|J0 (dark blue) in (6). In the top left quadrant for LTP, the two curves in lighter blue
are superimposed, since potentiation is quasi-constant for small weights. C: Functions fz for LTP and {f{ for LTD in log-STDP (blue solid curve) in
(6) with J0~0:25, a~5 and b~50; mlt-STDP similar to van Rossum et al.’s model [24] (pink dashed line); and add-STDP similar to Song et al.’s model
[1] (gray dashed-dotted curve for depression and pink dashed curve for potentiation). D: Weight change (in percent of the original weight) resulting
from 20 successive modifications induced by log-STDP with random pairing of pre- and postsynaptic spikes (within the range +100 ms). In
qualitative agreement with experimental measurements [19], smaller weights experience large fluctuations whereas larger weights exhibit less
variability. The mean expected modification (blue solid curve) and J0 is indicated by the vertical arrow.
doi:10.1371/journal.pone.0025339.g001
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exactly a lognormal distribution, namely

PLN(J)!
1ffiffiffiffiffiffi

2p
p

sJ
exp {

½ln (J){m�2

2s2

" #
ð2Þ

with parameters m and s, the latter being related to the spread of

the distribution. Typical examples for A and B are represented in

green in Fig. 2A (solid and dashed curves, resp.). The key features

here are the decreasing log-like saturating profile for A which

crosses the x-axis, and the linearly increasing function for B. Note

that these conditions need only be satisfied around the crossing

value to obtain a close-to-lognormal distribution. Details can be

found in Methods with explicit expressions for A and B in (22).

However, we cannot regard this fictive plasticity model, hereafter

referred to as ‘toy model’, as biologically realistic. A first reason is

that the mean weight update in the case of uncorrelated inputs is

A(J), which diverges as the weight J approaches 0. Another

reason is that an STDP rule cannot be explicitly derived from this

model. For STDP, A and B cannot be freely chosen, but are tied

to each other. Nevertheless, from this toy model we design a

biologically realistic STDP rule that is also inspired by the

experimentally-inspired mlt-STDP proposed by van Rossum et al.

[24].

STDP model capable of generating long-tail weight
distributions

Here we present the mathematical description of ‘log-STDP’. In

this phenomenological model, the change in the synaptic weight

induced by pre- and postsynaptic spikes at respective times tpre and

tpost is given by

DJ ~g 1zfð ÞW (J; tpre{tpost) , ð3Þ

where the learning rate g determines the speed of learning. The

Gaussian white noise f describes the variability observed in

physiology; it has zero mean and variance s2. Here, we treat the

case where all spike pairs contribute to STDP. Depending on the

relative timing of the spike pair u~tpre{tpost, the learning

window W (J; u) represented in Fig. 1B leads to potentiation (LTP)

or depression (LTD), respectively:

W (J; u)~

fz(J) exp {
juj
tz

� �
for uv0 ,

{f{(J) exp {
juj
t{

� �
for uw0

:

8>>><
>>>:

ð4Þ

The shape of the weight distribution produced by STDP can be

adjusted via the scaling functions f+ in (4) that determine the

weight dependence. These functions are involved in the drift term

A and noise term B that determine the synaptic dynamics and

particularly the stationary weight distribution in (1). For a general

model of STDP described by (3) and (4) A and B are given by:

A(J)~g tz fz(J){t{ f{(J)f g ,

B(J)~g2 tz

2
½fz(J)�2 z

t{

2
½f{(J)�2

n o
1zs2
� �

,
ð5Þ

where s2 is the variance of the white noise f. The derivation of (5)

neglects input-output correlations. This is a good approximation

when a neuron is stimulated by many uncorrelated inputs. In this

case, the neuron model does not play a significant role in the

synaptic dynamics. Details can be found in Methods (‘STDP

dynamics for uncorrelated inputs’). Here the idea is to obtain

similar dynamics for the toy model and the STDP rule, such that

the latter produces lognormal-like weight distributions. To do so,

we match the functions A (solid curves) and B (dashed curves) for

our novel model (blue) and the toy model (green) represented in

Fig. 2A. In particular, we focus on the profile of A around its

crossing point with the x-axis to infer the shapes of the LTP and

LTD curves. From (5), A(J) relates to the difference

tzfz(J){t{f{(J). To obtain the log-like profile of A in the

toy model, several possibilities can be imagined. An option is

increasing LTP and linear LTD, somewhat similar to the ‘power-

law’ STDP model proposed by Morrison et al. [26]. However, we

will focus on the ‘‘converse’’ solution with almost constant LTP

and sublinear LTD. This leads to the following expressions that

are represented in Fig. 1C:

fz(J)~cz exp {J =J0 bð Þ ,

f{(J)~c{ J =J0 for JƒJ0 ,

f{(J)~c{ 1z
ln 1za J

J0
{1

	 
h i
a

8<
:

9=
; for JwJ0 :

ð6Þ

Figure 2. Comparison between the toy model and our new
model of log-STDP. A: Plot of the functions A (solid curves, left y-
axis) and B (dashed-dotted curves, right y-axis) that describe the first
and second moments of the weight dynamics, cf. (1). Comparison
between log-STDP (blue curves) with g~0:1, s~0:6, a~5, b~50,
J0~0:25, cP~2cD~1, tP~tD=2~17 ms in (3), (4) and (6); and the toy
model (green curves) with a1~0:0062|g, a2~0:0021|g, a3~12, and
a4~0:0020|g2 in (22). B: Solutions of the Fokker-Planck equation for
the curves plotted in A. The x-axis has a log scale. Left inset: log scales
for both axes.
doi:10.1371/journal.pone.0025339.g002
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LTD discriminates between the ranges of small weights (vJ0) and

large weights (wJ0). The weight dependence for LTD in log-

STDP is similar to mlt-STDP [24] for JƒJ0, i.e., it increases

linearly with J. However, the LTD curve f{ becomes sublinear

for J§J0, and a determines the degree of the log-like saturation.

This choice is motivated by examining the sole effect of changing

LTD for ‘‘large’’ weights compared with the classic model of mlt-

STDP. In practice, we choose the function fz for LTP to be

roughly constant around J0, such that the exponential decay

controlled by b only shows for, say, J§5J0. Note that, in the

range J§J0, log-STDP coincides with mlt-STDP when a?0 and

b??; and it tends toward add-STDP when a?? and b??.

Noise scheme
Before studying the dynamics induced by log-STDP, we discuss

the role of noise in our model in the light of previous models. Our

model involves two sources of noise in the STDP dynamics, via the

white noise f (with variance s2) and the learning rate g in (3). The

learning speed resizes the weight updates, which matters when

input spike trains are random to a large degree. As can be seen in

(5), the order of magnitude between A and B crucially depends on

g [29]. Because f modulates the term involving W in (3), its effect

depends on J via the scaling functions f+. For log-STDP with

quasi-constant LTP and sublinear LTD, the noise experienced by

a strong weight is weaker in proportion as compared to a weaker

weight; see Fig. 1D. In this sense, log-STDP qualitatively

resembles the model of activity-dependent plasticity used by

Yasumatsu et al. [19] to explain the observed fluctuations of spine

volumes. In contrast, the original model proposed by van Rossum

et al. [24] involves a STDP noise that linearly increases with the

weight J for both LTP and LTD, namely DJ!½f+(J)zJf�
exp ({jtpre{tpostj=t+). Further details are discussed in Methods

(‘Baseline parameters for log-STDP’).

Compared to the study by van Rossum et al. [24], we use a

relatively fast learning rate g and a weaker value for s in our

version of mlt-STDP (and log-STDP, etc.). The original model of

van Rossum et al. assumes that the variability observed in the

weight updates [27] originates from STDP only. There, the

intrinsic variability of single synapses and measurement noise are

neglected. This means that STDP updates may not be as noisy as

proposed by van Rossum et al. This motivates the use of a smaller

value for s here. Note that, interestingly, plasticity-independent

variability has been recently reported to be proportionally larger

for weak than strong synapses [18]. This goes in the same line as

more stability for strong weights in our model, via the dependence

of W (J; u) on J.

A last point concerns spike-pair restrictions: all pairs of pre- and

postsynaptic spikes contribute to STDP in the present study, which

implies more updates and thus more noise in the synaptic

dynamics. Consequently, even though individual updates in our

version of mlt-STP are less noisy than in the original model of van

Rossum et al. [24], the global noise experienced by the synaptic

weights is comparable in both models during the ongoing spiking

activity and leads to spread distributions.

Predicting the stable weight distribution
Our theoretical framework allows us to evaluate the weight

distribution produced by an arbitrary weight-dependent STDP

model, by combining (1) and (5). In this section, we focus on the

case of uncorrelated input spike trains, for which (5) is valid.

However, the theoretical prediction may not be reliable when the

synaptic dynamics does not have a stable fixed point. For example,

add-STDP requires taking into account the effect of input-output

spike-time correlations to obtain a bimodal distribution of [24,32].

Such theoretical refinements will be discussed later. In this study,

J0 is chosen such that LTP and LTD in log-STDP (roughly)

balance each other for uncorrelated inputs, namely A(J0)~tzfz
(J0){t{f{(J0)^0. It corresponds to the intersection of the drift

(solid curve) and the x-axis in Fig. 2A. Therefore, J0 will also be

referred to as the ‘fixed point’ of the dynamics in the following. In

the absence of noise and for slow learning, the weights cluster

around the fixed point *J0, when it is stable (negative slope for

A). Otherwise, the weight distribution spreads around the fixed

point. The noise term B (dashed curves in Fig. 2A) can be

somewhat interpreted graphically from the LTP and LTD curves,

fz(J) and f{(J) in Fig. 1C. When they are farther apart, the

resulting noise is stronger. In log-STDP, because depression

increases sublinearly (blue solid curve for f{ in Fig. 1C), noise in

log-STDP is weaker than that for mlt-STDP for which depression

increases linearly (pink dashed curve for f{). Figure S1 provides a

qualitative comparison of the relationship between the f+ curves

(column A) and the drift and noise terms (A and B in column B) for

different STDP models, as well as the resulting weight distributions

(column C).

As a first control, we verify that the stationary distributions in

Fig. 2B are similar for the toy model and log-STDP, even though

we only roughly match A and B in Fig. 2A. The tail of strong

weights vanishes slightly faster for log-STDP than for the toy

model (see inset with a log-log plot) because of the weaker noise for

large weights, cf. the dashed curves in Fig. 2A. The comparison

with mlt-STDP (pink solid curve) in Fig. 3A shows the influence of

sublinear LTD. The weight distribution is more skewed and the

tail of large weights extends further for log-STDP (blue solid

curve); see also Fig. 3B with log-scaled axes. Even though the

difference between log-STDP and mlt-STDP may not look

dramatic in Fig. 3A and B, we will show later that the underlying

dynamics are clearly different, especially in the case of correlated

inputs. The weight distribution for add-STDP (gray dashed-dotted

curve) is spread because our choice of parameters leads to strong

noise in the synaptic dynamics (especially the fast learning rate g).

Note that, in contrast to Fig. 3B, STDP can also lead to a bimodal

distribution clustered at each bound or even a unimodal

distribution located at the upper bound, e.g., for weaker LTD

than used here. Then, the value of the upper bound on the weights

may critically affect the resulting distribution.

The toy model is sufficiently simple to obtain an analytical

expression for the spread of the resulting distribution, see (24) in

Methods. Because of the proximity between the dynamics induced

by the toy model and log-STDP, we can predict the effect of the

parameters in log-STDP on the stationary weight distribution.

These trends are illustrated in Fig. 3C (log-log plots), which

compares the weight distributions for the baseline parameters

(medium blue curve; same as Fig. 3B) and two variants for a given

parameter, a smaller value and a larger value (lighter and darker

blue curves, resp.). For larger a, LTD has a more pronounced

saturating log-like profile and the tail of strong weights extends

further. Both stronger noise with a larger value for s and a faster

learning rate g strengthen the shuffling of the weights, which

results in more widely spread distributions.

Continuous shuffling of synaptic weights
Rapid adaptation to the external world is enhanced when

weights experience a certain degree of noise. With log-STDP,

synapses are shuffled because of the plasticity-intrinsic noise f and

random input spikes in a highly dynamical manner, even after the

synaptic population reaches the equilibrium state. To show this,

we conduct numerical simulations of an integrate-and-fire neuron

(parameters are given in Methods) with N~3000 synapses, each

Stability vs Neuronal Specialization for STDP
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receiving uncorrelated (Poisson) spike trains with input firing rate

n0~5 Hz (Fig. 4A). The output neuronal firing rate, hereafter

denoted by nout, stabilizes between 6 and 8 Hz (Fig. 4B). The

evolution of synaptic weights is displayed in Fig. 4C, which shows

that individual synaptic weights are constantly shuffled by STDP

(cf. black thin trace) within the stable weight distribution (right

inset). The simulated mean weight (black thick dashed-dotted

trace) stabilizes around 0:33, which is actually larger than the fixed

point J0~0:25: this mainly follows because of the lower bound

enforced on the weight at J~0, which prevents the weights from

spreading downward. (The solution of the Fokker-Planck equation

takes this into account via the boundary condition at zero.) In

Fig. 4D, the resulting weight distribution (purple curve) is

satisfactorily predicted by expression in (1) (blue curve), except

for small weights. The latter discrepancy arises from the finite size

of the weight updates. Two fits using linear regression on the

simulated weights (black thin curves) confirm that their distribu-

tion is closer to lognormal (dashed curve) than Gaussian (dashed-

dotted curve). Figure S2 provides comparisons between the

simulated and predicted distributions when varying the parame-

ters a and g. Those simulation results agree with the predictions in

Fig. 3C.

Representation of input spike-time correlations in the
weight structure

The temporal ‘‘antisymmetry’’ (i.e., LTP versus LTD) of the

learning window has been shown to favor correlated inputs,

therefore generating weight specialization [1,14,15]. In order to

examine how an input correlation structure is encoded in the

weight structure by STDP, we consider the configuration in

Fig. 5A that involves a small group of correlated inputs (bottom

red circles) among many other uncorrelated inputs (bottom open

circles). The correlated group consists of 50 input spike trains that

have instantaneous pairwise spike-time correlations with strength

cw0. The mean firing rate is the same for uncorrelated and

correlated inputs, namely n0~5 Hz. Details about the input

generation can be found in Methods (‘Generating correlated spike

trains’). Only a few tens of inputs take part in the volleys of

correlated spikes, which are embedded in the synaptic bombard-

ment of the total N~3000 inputs. In comparison, in the absence

of any other stimulation, the coincident spiking of more than 500

inputs is necessary to trigger an output spike. In this sense, we

consider ‘‘weak’’ spike-time correlations in a physiologically

plausible range.

When the inputs are only weakly correlated (c~0:04, meaning

that 20% of the spikes are involved in synchronous events for

each input), the weight distribution remains unimodal, as

illustrated in Fig. 5B. Nevertheless, weights from correlated

inputs are found more often in the tail of the distribution (red

traces). In Fig. 5C, the weights from correlated inputs (red solid

curve) survive for a longer time in the top 20% of the distribution

compared to uncorrelated inputs (purple solid curve). The mean

dwell time for both groups of inputs is given in Table 1. (Note

that the ‘‘survival’’ here does not consider the history of the

weights between the checks that are performed every 20 s.

Nevertheless, this describes well the comparative trends in the

persistence of strong weights for the different STDP models.)

Weights from uncorrelated inputs are subject to shuffling only,

whereas weights from correlated inputs also experience (weak)

potentiation. Although the inputs remain correlated, the

temporary weight structure is not robustly sustained and is

erased due to the STDP noisy dynamics.

In contrast, stronger input correlations (c~0:25, meaning that

50% of the input spikes correspond to synchronous events) can

potentiate the corresponding weights to a value many times larger

than the mean. In Fig. 5D, the mean weight for the 50 correlated

inputs is 3:12 (with the strongest weights up to 10), as compared to

0:30 for the 2950 uncorrelated inputs. Here the drift clearly

overpowers the noise to extract those weights from the main body

of the distribution. Strongly potentiated weights are inhomoge-

neous and experience relative stability despite the noise (see the

black trace of an individual weight). This occurs even for identical

synaptic delays, meaning that the weight potentiation is not all-or-

nothing, but rather gradual.

Figure 3. Theoretical predictions of weight distribution shaped by STDP. A: Resulting weight distribution for log-STDP (blue solid curve)
with the saturation for LTD corresponding to a~5 in (6); mlt-STDP inspired by the model of van Rossum et al. [24] (pink solid curve) in (27); and add-
STDP [1,14] (gray dashed-dotted curve) in (26). Log-STDP and mlt-STDP are parameterized to obtain roughly the same equilibrium value for the mean
weight (arrows); without noise and very slow learning, the resulting narrow distribution would be centered around the fixed point J0~0:25. The
curves are evaluated using (1) and (5) with the same learning rate g~0:1 and noise level corresponding to s~0:6 in (3). B: Similar to A with log-
scaled axes. C: Effect of the parameters in log-STDP. Comparison between the predicted weight distributions with the baseline parameters a~5,
s~0:6 and g~0:1 in (6) (medium blue curve in B) and two variants with the parameter change indicated in each plot (darker curves correspond to
larger values).
doi:10.1371/journal.pone.0025339.g003
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When synaptic inputs involve multiple correlated groups, log-

STDP can sort the corresponding mean weights in increasing

order of their correlation strengths; see Fig. S3 for an illustrative

example. Both the slowly increasing LTD and decaying LTP

contribute to this effect. The trends shown here are in agreement

with previous results using the almost-additive version of nlta-

STDP and the Poisson neuron model [30], which examined in

depth the potentiation for several input pools with distinct

correlation levels and different degrees of weight dependence.

Note that nlta-STDP incorporated single-spike plasticity contri-

butions in order to sort the mean weights of the input groups

depending on their correlation strengths between the lower and

upper weight bounds in that previous study. Here, however, log-

STDP may produce a multimodal weight distribution, but the

global mean of the distribution is kept small (around J0).

Therefore, the weights from strongly correlated inputs are pushed

to the tail of strong synapses while the majority of weights remains

in the main body of weak synapses. The emerging distribution

may thus be highly skewed.

Sensitivity to input correlations
Now we examine in more detail how log-STDP is sensitive to

input correlations. For any STDP model, potentiated weights

imply stronger input-output correlations and, in turn, larger LTP

induced by STDP. This self-reinforcing potentiation mechanism

may be blocked when the weight dependence is ‘‘too’’ strong,

though. Because of its sublinear profile for LTD and the resulting

spread weight distribution, log-STDP exhibits an enhanced

potentiation capability compared to mlt-STDP. Using the Poisson

neuron model, we can evaluate how the equilibrium mean weight

for the correlated inputs depends upon the input correlation c.

This provides a qualitative prediction for the behavior of integrate-

and-fire neuron, for which a full calculation is out of the scope of

this paper. Figure 6A illustrates the predicted effect of input

correlations for several STDP models; see (21) in Methods for

details on the calculations. Log-STDP (blue curve) exhibits a

rather steep curve for the fixed point, indicating graded but strong

potentiation when input correlations increase. For comparison, we

examine the model recently proposed by Hennequin et al. [22],

which has a roughly piecewise profile for LTD with a slower

increase for JwJ0 than JvJ0 (the details are provided in

Supporting Information). Because of this change in curvature, this

model behaves similarly to log-STDP (black dashed-dotted curve).

The nlta-STDP model proposed by Gütig et al. [15] is also

sensitive to input correlations. In the parameter range where nlta-

STDP can induce strong potentiation (mƒ0:2 in (28) in Methods),

the equilibrium weight always exhibits a sharp step from the lower

to the upper bound (cyan curve). Outside this parameter range,

nlta-STDP resembles mlt-STDP, meaning weak competition. In

other words, potentiation for nlta-STDP is rather all-or-nothing.

In contrast to these three models, mlt-STDP (pink curve) and

power-law STDP proposed by Morrison et al. [26] (black dotted

curve) appear far less sensitive to input correlations. LTD in both

models increases linearly with the weight, which strongly

counterbalances LTP. The weak potentiation of correlated inputs

by mlt-STDP explains the only minor increase of stability for the

tail of the distribution in Fig. 5C (thick dashed curves) and Table 1.

The weight distributions corresponding to the five STDP models

are illustrated in Fig. S1 (column C). Although the predictions in

Fig. 6A do not include noise, simulations in Fig. 6B for log-STDP

(blue), mlt-STDP (pink) and nlta-STDP (cyan) agree with the

trends. Namely, log-STDP exhibits a gradual potentiation of

correlated inputs, which is intermediate between the weak increase

for mlt-STDP and the all-or-nothing behavior for nlta-STDP. The

number of correlated inputs also plays a role here: a larger

correlated group induces stronger potentiation (as indicated by (18)

in Methods), as does stronger correlation.

The presence of strong weights also affects the neuronal output

firing rate. The simulation for log-STDP in Fig. 5D corresponds to

Figure 4. Strong shuffling of individual weights within the
stable distribution. A: Schematic diagram of the neuron (top blue
filled circle) stimulated by a pool of 3000 uncorrelated inputs (bottom
open circles). B: Evolution of the neuronal output firing rate. C:
Evolution of synaptic weights in the case of uncorrelated inputs. The
purple traces represent a portion of the input weights recorded every
20 s, the black thin trace corresponds to an individual weight, and the
black thick dashed-dotted trace indicates the mean weight over the
N~3000 inputs. Right inset: The mean weight histogram averaged over
the learning epoch is plotted in purple and the spot histogram at time
1000 s is represented by the black thin line. D: Comparison between
the simulated weight distribution (purple thick curve; it corresponds to
the purple curve in C) and the analytical prediction (blue thick curve;
same as Fig. 3) with a log scale for the weights (x-axis). The black thin
curves represent a Gaussian fit (dashed-dotted) and a lognormal fit
(dashed) of the simulated weight distribution, obtained using linear
regression. The same baseline parameters as in Fig. 3 have been used
here.
doi:10.1371/journal.pone.0025339.g004
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nout^15 Hz (black solid line in Fig. S3C). In comparison, the

baseline firing rate for uncorrelated inputs stabilizes around

nout^7 Hz in Fig. 4B. The larger total incoming weight in Fig. 5D

alone does not explain the gap in the firing rate. Rather, this

significant increase arises because input correlated events cause the

neuronal output to effectively fire. This is confirmed by the post-

stimulus time histogram of the output neuron in Fig. 6C, where

correlated events are taken as the reference stimulus. The stronger

input correlations are (indicated by darker color), the stronger

some weights are potentiated and the more reliable the drive of the

output firing by each correlated event is. For c§0:15, the

neuronal response is locked to each input correlated event with

log-STDP. In Fig. 6D, mlt-STDP (darker to lighter pink) leads to a

weaker and later-in-time histogram, especially for c~0:15

(medium pink). The corresponding neuronal firing rate is then

nout^8 Hz, almost unchanged compared to about 7 Hz for

uncorrelated inputs. These results clarify that the neuronal

response is robustly and precisely driven in a broader range of

input correlations for log-STDP than for mlt-STDP. Note that the

good overall reliability of the neuronal response even when

weights are weakly potentiated (especially for mlt-STDP) is partly

related to the integrate-and-fire neuron model. The difference

between log-STDP and mlt-STDP is much clearer when using a

Poisson neuron as shown in Fig. S5, for which the output firing

probability linearly increases with the synaptic weights.

Now we show how the sensitivity to input correlations for log-

STDP and mlt-STDP (Figs. 6C and D) affects the resulting

synaptic competition. When two identical correlated groups (with

no correlation between each other) excite a neuron, a desirable

outcome is the specialization to only one of those while discarding

the other. This is important to select functional pathways in a

consistent manner, without ‘‘mixing’’ spiking information. Add-

STDP and nlta-STDP can perform such a ‘symmetry breaking’,

whereas mlt-STDP cannot do so [2,15]. Because of its sensitivity to

input spike-time correlations shown in Fig. 6C, we expect log-

STDP to be capable of symmetry breaking, at least when input

correlations are sufficiently strong. For the baseline parameters

(a~5) and strong correlations (c~0:25), the first correlated group

slightly dominates (circles), but does not completely repress the

other group (pluses) in Fig. 7A. However, with very strong

Figure 5. Input spike-time correlations lead to robust weight specialization. A: Schematic diagram of the neuron (top blue filled circle)
stimulated by a pool of 2950 uncorrelated inputs (bottom open circles) and a pool of 50 correlated inputs (bottom red filled circles). B: Evolution of
the synaptic weights for the configuration in A with weak correlation (c~0:04). The correlated group is favored (red traces, mean in black thick solid
line), synonymous with a greater chance of appear in the tail of the distribution compared to uncorrelated inputs (purple traces, mean in black thick
dashed-dotted line). Right insets: normalized time-averaged histograms. C: Survival time of the weights from uncorrelated (purple curves) and
correlated (red curves) inputs in the top 20% of the distribution. Comparison between log-STDP (solid curves) and mlt-STDP (dashed curves). The y-
axis indicates the number of synapses present in the top 20% at each counting round (performed every 20 s) from 100 s until the time on the x-axis.
The data are averages over 20 trials. D: Similar to B with stronger correlation (c~0:25). The weights from correlated inputs are pushed out of the
main body of the distribution and saturate to a much larger value than the mean (black thick dashed-dotted line), roughly 30 times larger here.
doi:10.1371/journal.pone.0025339.g005

Table 1. Mean dwell time of the input weights in the top
20% of the distribution.

uncorrelated inputs correlated inputs

log-STDP 9.0 s 78.4 s

mlt-STDP 5.2 s 11.6 s

The dwell times correspond to the simulation for a single neuron and weak
input correlation in Fig. 5A–C.
doi:10.1371/journal.pone.0025339.t001
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correlations (c~0:5) in Fig. 7B, the second group clearly takes over

the driving of the neuronal firing, and the red group is at the level

of uncorrelated inputs (black dashed line). With still c~0:5, but

tuning LTD closer to mlt-STDP with a~2, we obtain a similar

situation to that in Fig. 7A, with no clear winner (not shown). In

such winner-share-all cases, either group may slightly and

temporarily dominate the other group during the simulation

(and roles may swap over time), but both groups coexist in the tail

of strong weights. In contrast, winner-take-all can be obtained for

c~0:25 as in Fig. 7A when using a more pronounced saturating

LTD (a~20), as illustrated in Fig. 7C. Altogether, stronger

saturation for LTD and, to a lesser extent, stronger potentiation

(i.e., higher values for a and b in our model, resp.) favor a winner-

take-all behavior. In contrast, the same simulation as Fig. 7B with

mlt-STDP not only shows weakly potentiated weights, but the two

input groups cannot be separated by the learning dynamics; only a

winner-share-all behavior occurs (Fig. 7D).

Remodeling of synaptic pathways
The external world to which the brain has to adapt keeps

changing over time. When the input configuration changes

significantly, a desirable behavior for a neuron with plastic

synapses consists in forgetting the previously learned weight

structure to readapt. To compare the performance of the different

STDP models, we consider a neuron receiving inputs from a large

uncorrelated pool and two small pools (either uncorrelated or

correlated) of 50 inputs. As illustrated in Fig. 8A, the two pools

switch their correlation strengths at 500 s: before 500 s the first

(second) group is strongly correlated (uncorrelated), while after

500 s the second (first) group is strongly correlated (uncorrelated,

resp.). The restructuring process goes quite efficiently with mlt-

STDP (Fig. 8D), but not with add-STDP (Fig. 8C). Because of

unstable weight dynamics, add-STDP may fail to forget the

previously learned structure [31]. The strong weights clustered at

the upper bound then drive the neuronal output (even without

input correlations), which prevents the second correlated group to

be learned. The stronger the upper bound, the more difficult it is

for the neuron to readapt. In contrast, even though mlt-STDP

manages to readapt, the weight specialization remains weak, as

explained in the previous section. Because of its well-balanced

dynamics, log-STDP successfully combines the strong points of

add-STDP and mlt-STDP. As shown in Fig. 8B, log-STDP rapidly

selects the input pathway from the second group when it starts to

show strong correlations, while rapidly weakening the pathway

from the first group. Note that similar results can be obtained with

nlta-STDP.

After the correlation switch at 500 s, the potentiated weights

from the first correlated group return to their baseline equilibrium

value, close to the fixed point J0. In a similar simulation to that in

Fig. 8B, the weights stronger than 1 at 500 s are represented by the

Figure 6. Sensitivity to input correlations. A: Theoretical equilibrium weights plotted as a function of the input correlation. Comparison of log-
STDP (blue), mlt-STDP (pink), nlta-STDP (cyan), Hennequin et al.’s model [22] (dashed-dotted black) and ‘power-law- STDP of Morrison et al. [26]
(dotted black). The parameters for the Poisson neuron and the last two models are the same as Fig. S1. The curves are estimated using the zeros of
(20), which is based on the Poisson neuron and also neglects the effect of noise. B: Simulated potentiated weights as a function of the input
correlation for the same configuration as in Fig. 5B and D. Comparison of log-STDP (blue), mlt-STDP (pink) and nlta-STDP (cyan). The respective mean
weights and standard deviations are represented by the black curves and error bars. The results are taken from 10 simulations. C & D: Post-stimulus
time histograms of the output neuron after training (averaged over 100 s), where the stimuli are the input correlated events. Comparison between C
log-STDP (blue) and D mlt-STDP (pink) for c~0:25, c~0:15 and c~0:04 (from darker to lighter color, resp.). For log-STDP, the neuronal response is
reliably and precisely triggered by correlated events (more than 80% occurrence) for c§0:15, whereas mlt-STDP yields 70% for c~0:25 and only 50%
for c§0:15.
doi:10.1371/journal.pone.0025339.g006
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gray traces in Fig. 8E. Their decay is driven by the drift A(J),
which is affected by the weight dependence [31]. Neglecting noise,

we can use the expression in (5) to approximate the trajectory of

the mean weight (black curve)

dJ ~gn0noutA(J) dt: ð7Þ

By integrating this formula and using the simulated firing rate for

nout, we obtain the blue dashed-dotted curve, which satisfactorily

predicts the decaying mean weight. From (7), it is clear that a

weaker drift A leads to a longer decay time. In Fig. 8F, a more

pronounced saturating LTD (i.e., larger values for a) increases the

decay time, up to several tens of seconds. In comparison, mlt-

STDP (pink curve) forgets the learned structure after a much

shorter period. (The trajectory for mlt-STDP is exponential [31],

but a simple analytical result cannot be derived for log-STDP. The

Poisson neuron model was used to evaluate nout.)

Emergence and persistence of a weight structure in a
recurrently connected network

In order to assess whether the interesting dynamics produced by

log-STDP for a single neuron also holds in the case of a recurrent

network, we first reproduce a previous result of network self-

organization [33]. The goal for STDP is to split of the initially

homogeneous distribution for both input and recurrent weights. As

shown in Fig. 7, such a symmetry breaking requires strong

competition. As illustrated in Fig. S6, log-STDP produces a clear

weight structure that represents the input correlation configura-

tion, even though the potentiation is weaker than in Fig. 5D. Here

log-STDP performs as well as an almost-additive version of nlta-

STDP model in terms of competition.

Following the results in Fig. 5C, we evaluate now whether log-

STDP favors the stability of strong weights in a network. As

illustrated in Fig. 9A, the network neurons have plastic recurrent

connections (thick arrows) and fixed input connections (thin

arrows) from two pools of inputs, here 2900 with no correlation

(open circles) and 100 with correlations (red filled circles). To

compensate the partial connectivity (10% for all connections), all

inputs have a higher firing rate equal to 10 Hz and the input

weights have been scaled up (1:5+0:5) in order to obtain neuronal

firing rates in the same range as in the case of a single neuron (Fig.

S7). Even without input correlation, recurrent excitatory connec-

tions induce (positive) spike-time correlations. The cross-correlo-

grams between neurons are symmetric [33], which results in both

LTP and LTD. Due to a net LTD effect, the weight distribution in

Fig. 9B is slightly shifted toward smaller values (purple thick solid

curve), compared to the case of feed-forward connections (black

thin dashed curve). Here input correlations have a small effect on

the weight distribution, as indicated by the red solid curve in

Fig. 9B to be compared with the purple solid curve. The resulting

interneuronal correlations are weak and comparable to the

situation in Fig. 5B.

However, these input correlations do affect the fine structure of

recurrent connections for log-STDP. To show this, we firstly

examine the ‘‘survival’’ of the potentiated synapses in the top of

the distribution, as in Fig. 5C. Figure 9C represents the survival of

the strongest synapses from time t0~200 s onwards, checks being

performed every 5 s. The curves correspond to the number of

weights that are present in the top 20% of the distribution at each

Figure 7. Competition between two identical strongly correlated input pools. The configuration is similar to Fig. 5 with two groups of 100
correlated inputs each with the same strength c, in addition to 2800 uncorrelated inputs. A: Winner-share-all for c~0:25 and log-STDP with a~5. B:
Winner-take-all for c~0:5 and log-STDP with a~5. C: Winner-take-all for c~0:25 and log-STDP with a~20. D: Winner-share-all for c~0:5 and mlt-
STDP. The circles and pluses indicate the weight strengths averaged values over 300 s of simulation (after the initial development of the structure) for
the two correlated groups, respectively. The dashed line indicates the fixed point J0~0:25 of the weight dynamics.
doi:10.1371/journal.pone.0025339.g007
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check from t0 to t, in a similar fashion to Fig. 5C. Formally, we

denote by I (t) the set of weight indices in the top 20% of the

whole population at time t (roughly 2|104 among the total 105

synapses). The curves in Fig. 9C correspond to the number of

weights in

St0
(t)~

\
t0ƒt’ƒt

I (t’) , ð8Þ

where t’ is a multiple of 5 s. When the small pool of 100 inputs has

no correlation, the number of surviving synapses in St0
(t)

decreases to zero (purple solid curve). In contrast, correlated

inputs allow strong synapses to survive for a longer time (red solid

curve) and a few even persist until the end of the simulation.

Figure 9D and E show similar curves for different starting times t0.

For uncorrelated inputs, the surviving time is comparable for all t0

and no structure emerges. However, input correlations build up a

structure (Fig. 9E), which grows larger as time goes.

Compared to log-STDP, the weights are shuffled more quickly

with mlt-STDP and no structure develops. This is illustrated in

Fig. 9C by the thick dashed curves, to be compared with the thick

solid curves. The survival time of strong weights for correlated

inputs with mlt-STDP (red dashed curve) is even shorter than that

for uncorrelated inputs with log-STDP (purple solid curve). The

mean dwell time for the 6000 weights that last the longest in the

top 20% is given in Table 2. Note that only a few recurrent

weights persist in the tail for a long time compared to the input

weights of a single neuron (leading to smaller values compared to

Table 1), because the correlations between network neurons are

quite weak here.

Finally, we assess the persistence of weights in the strong tail in

another manner. Because input correlations are sustained here, it

makes sense to check how many times each weight appears in the

strong tail. The repeated presence of weights in the tail implies

some consistency for an emerged weight structure, even though

some weights get repressed and pushed out at some times. We thus

calculate for each weight i the ratio of presence in the strong tail

between 200 and 395 s (n~40 checks), namely

ri ~
1

n

X
200ƒtv400

1 Ji[I (t)f g , ð9Þ

where 1 is the characteristic function, valued 1 when its argument is

true. The 20|104 highest ratios ri are plotted in Fig. 9G in a rank

order for log-STDP (red solid curve) and mlt-STDP (red dashed

curve) when inputs have correlations. The (smoothed) histograms of ri

for the whole population is represented in Fig. 9H. As expected, we

find more weights with a higher ratio ri for log-STDP than mlt-STDP,

750

Figure 8. Remodeling of synaptic weights when the input configuration changes. A: Schematic representation similar to Fig. 5A for two
groups of 50 inputs each, which exhibit strong spike-time correlations (c~0:25, represented by the bottom red filled circles) only between 0 and
500 s for the first group and between 500 and 1000 s for the second group. B,C,D: Comparison of the evolution of the synaptic weights for B log-
STDP (baseline parameters); C add-STDP with a ratio between depression and potentiation equal to cDtD=cPtP~1:2 and an upper bound set to 15;
and D mlt-STDP where depression is linearly increasing with the current value of the weight strength (cP~1 and cD~0:4125). These three plots are
similar to Fig. 5B, except that red traces indicate weights coming from correlated inputs only when correlation is turned on (purple otherwise). The
black thick solid and dashed curves represent the respective mean weights for the first and second correlated groups, respectively. E Decay of
potentiated weights back to the baseline equilibrium value (*J0) after input correlation is switched off. Simulated weights are represented by gray
traces and their mean by the red thick curve. The theoretical prediction in (7) is plotted in dashed-dotted blue. F Comparison of the predicted decay
of potentiated weights for mlt-STDP (pink) and log-STDP for a~1, 5 and 20 (light to dark blue, resp.). The curves correspond to (7), where nout is
calculated using the Poisson neuron model.
doi:10.1371/journal.pone.0025339.g008
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meaning that the tail of strong weight is more stable over time. In the

extreme case where the synaptic dynamics is very noisy, the weights in

the strong tail are like chosen by a random draw of 2|104 weights

among the total 105. Here it corresponds to the average presence ratio

x~20% (lower horizontal dotted line in Fig. 9G) and the standard

deviation SD~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x(1{x)=n

p
^6:3%, as a random draw of a portion

x of elements within the whole pool n checks. We set a significance

threshold for the ratios ri at three times the standard deviation above

the mean (the upper horizontal dotted line in Fig. 9G indicates

xz3SD^40%). For a random draw every 5 s (thin dashed-dotted

curve), only 130 weights among the total 105 have a ratio ri§40%.

With mlt-STDP, 2142 weights satisfy ri§40%, but only 46 weights

ri§60%. This is much lower than the figures for log-STDP, for which

about a third of the tail, namely 6351, have ri§40% and 1075

weights ri§60%. The same calculations with the 10% strongest

weights for the tail instead of the 20% give similar results.

Discussion

The present paper proposes a novel STDP model called log-

STDP that combines a number of interesting properties. Log-

STDP inherently produces long-tail (e.g., lognormal-like) distribu-

tions of synaptic strengths that agree with physiological observa-

tions [17,18]. From a functional point of view, log-STDP

combines the strong points of add-STDP and mlt-STDP: robust

specialization and flexibility, respectively. A schematic comparison

of their synaptic dynamics is given in Fig. 10. Two main

ingredients underly the desirable properties of log-STDP: 1) a

sublinear weight dependence for LTD and 2) noise in the STDP

update that spreads the weight distribution, but does not shuffle

strong weights too strongly compared to weak weights.

Weight dependence and noise scheme
A first important feature of log-STDP is its log-like saturating

LTD, an intermediate variation between constant and linear

Figure 9. Stability of the emerging structure of strong weights in a recurrently connected network. A: Schematic representation of the
network with plastic recurrent connections (thick arrows) and fixed input connections (thin arrows). The network neurons (top blue filled circles) are
excited by one pool of 2900 uncorrelated inputs (bottom open circles), and one pool of 100 inputs (bottom red filled circles) whose spike trains may
be correlated. B: Time-averaged distributions of the recurrent weights over the learning epoch. Comparison of log-STDP (solid curves) and mlt-STDP
(dashed curves) when the small group (red filled circles in A) is uncorrelated (purple) and correlated (red). C: Survival of strong synapses (top 20%) of
the distribution over time. The color coding is similar to B. As in Fig. 5C, checks are performed every 5 s and the y-axis indicates the number of
surviving synapses from t0~200 s until the time on the x-axis, cf. (8). D,E,F: Similar curves to B with different starting times t0 . Comparison of D log-
STDP with no correlation; E log-STDP with correlations; and F mlt-STDP with correlations. G: Ratio of presence in the top 20% at each check (every 5 s
between 200 and 395 s) for the initially strongest at t0~200 s, cf. (9). Comparison between log-STDP (solid curve) and mlt-STDP (dashed curve) for
correlated inputs. The weight indices (x-axis) are sorted. The two horizontal dotted lines indicate 20% and 40%, respectively. H: Distributions of the
presence ratio corresponding to G, with a log-scaled y-axis.
doi:10.1371/journal.pone.0025339.g009

Table 2. Mean dwell time for the 6000 recurrent weights that
last the longest in the top 20% of the distribution.

without input correlation with input correlation

log-STDP 7.2 s 9.0 s

mlt-STDP 4.5 s 5.0 s

The dwell times correspond to the simulations of the recurrent network in
Fig. 9C. Because roughly two thirds of the 104 initial weights in the tail (top
20%) at 200 s disappear at the following counting round, only the 6000 weights
with longest dwell times are taken into account here.
doi:10.1371/journal.pone.0025339.t002

Stability vs Neuronal Specialization for STDP

PLoS ONE | www.plosone.org 11 October 2011 | Volume 6 | Issue 10 | e25339



functions. The scaling functions in (6) have been designed to

coincide with mlt-STDP model in the range of ‘‘small’’ weights

(JƒJ0). This choice was motivated by studying the effect of the

change from linear to sublinear LTD for J§J0. One could argue

that extremely strong synapses are less likely to be observed in

physiology (even though easy to detect). Consequently, saturation

of LTD for strong weights may not appear clearly in available

data, such as those [27] used to fit van Rossum et al.’s original

model [24]. (Here we have chosen J0 to be both the point where

the curvature for LTD changes and the fixed point of the learning

dynamics. If the range where LTD is linear extends beyond the

fixed point, the main body of the weight distribution and dynamics

will resemble those for mlt-STDP, while the properties of log-

STDP would only be observed if some weights can become larger

than J0.) Although we have formulated a direct relationship

between the weight and LTD here, recent experiments in

hippocampal microcircuits have shown that LTD (and LTP) for

excitatory synapses can be regulated by GABAergic signals in a

way that depends on the excitatory weight [34]. Such functional

network effects appear compatible with our model of saturating

LTD (personal communication).

In addition, LTP decays slowly for large weights in our model.

Such a decrease for LTP can be related to a limitation of resources

at the synaptic site, such that the weight does not grow indefinitely.

For very strongly correlated inputs, this is important in order to

prevent a runaway behavior of the weights (results not shown).

Similar to mlt-STDP and in contrast to add-STDP and nlta-

STDP, log-STDP requires neither ‘‘hard’’ or ‘‘soft’’ upper bound

on the weights to secure the stability of their distribution.

Another property of log-STDP that supports its functional

capabilities is the noise in the STDP update. Due to the sublinear

LTD (and quasi-constant LTP), W (J; :) f grows more slowly than

J in magnitude. It follows that large weights experience less

variability in proportion to their current value than small weights

(Fig. 1D). Here we have considered noise in the weight update

only; a further step consists in incorporating activity-independent

noise in the synaptic strengths. For example, recorded EPSPs

exhibit a large variability [18] or, on a slower time scale, spine

volumes fluctuate even when NMDA receptors are blocked [19].

Interestingly, such fluctuations were found to be smaller

proportionally to their mean for larger synapses. This means less

relative variability for strong synapses, in line with our model.

The present analysis only considers all-to-all spike contributions

to STDP. For low (input and output) firing rates, as was used here,

typical interspike intervals are larger than the temporal range of

STDP. This means that the synaptic dynamics for models with

restricted interactions, where not all pairs of spikes contribute to

STDP [35,36], is practically the same as in our (unrestricted) case.

For high firing rates, such restrictions imply fewer updates and

thus less noise in the weight dynamics. Nevertheless, the Fokker-

Planck calculations adapted to spike-pair restriction lead to similar

expressions to (5); see Supporting Information for the example of

input-restricted STDP. We thus expect our results to qualitatively

hold in general (e.g., influence of saturating LTD). Similar results

were obtained using the alternative parametrization for sublinear

LTD in (25) in Methods, and with the Poisson neuron model

(although this requires stronger input correlations, see Supporting

Information for details). This suggests that our conclusions mainly

arise from the qualitative properties of log-STDP, but do not

heavily rely on fine tuning or a specific neuron model.

Shaping the weight distribution
Because of its sublinearly increasing LTD, log-STDP alone

produces a long-tail weight distribution, even for uncorrelated

inputs. The change of curvature around the fixed point of the

dynamics (*J0 in our model) is a key factor to spread the tail of

strong weights (Fig. 3C). Intrinsic noise in the STDP updates and

fast learning also contribute to spread the weight distribution.

Weights from correlated inputs are pushed toward the tail of

weight distribution. Saturating LTD and decreasing LTP lead to

graded equilibrium values for weights in terms of the correspond-

ing correlation strengths (Figs. 7A, B and S3B). Without being so

dramatic a case compared to binary synapses [37], log-STDP can

produce a clear structure where some weights (Fig. 5D) or all

weights (Fig. 7) from correlated groups are separated from the

main body of the distribution. A more elaborate input structure

with inhomogeneous correlation levels is expected to modify the

tail of strong weights. For example, graded input correlations lead

to graded potentiation that further populates the tail of the

distribution (Fig. S3). A recent study [22] has used gradually

correlated inputs (repeating spike pattern) in order to obtain a

long-tail distribution without noise in the STDP update. This was

made possible using a change of curvature for LTD (quasi

piecewise-linear curve) in the triplet STDP model [38] around the

fixed point for the weight dynamics. In any case, we stress that log-

STDP produces a long-tail distribution for a broad range of input

configurations. The resulting distribution is compatible with the

data obtained by Song et al. [17] and Lefort et al. [18]. For

example, when sampling a ‘‘small’’ number (say, a few hundreds)

of weights from those in Fig. 5D or Fig. S3, the resulting

distribution has a lognormal-like main body together with a few

very strong outliers.

Functional implications
Activity-dependent plasticity in general and STDP in particular

aims to represent the statistical properties of the input spike trains

Figure 10. Schematic illustration of stability and neuronal specialization. Comparison of additive STDP; multiplicative STDP; and our new
model of ‘‘lognormal’’ STDP (log scale for the weights on the x-axis). The horizontal arrows represent the direction of the weight drift resulting from
STDP for different values of the weight; a thicker arrow indicates a stronger drift. For mlt-STDP and log-STDP, the zig-zag arrows represent the noise,
whose amplitude is indicated by the horizontal scaling.
doi:10.1371/journal.pone.0025339.g010
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in the weight structure. Here we have focused on the case where

spike-time correlations dominate the synaptic dynamics. For

correlated inputs, log-STDP performs a selection of input

pathways close to the performance of add-STDP [1,14]. As an

example that requires strong competition, Fig. S6 shows symmetry

breaking in a recurrently connected network for both afferent and

recurrent connections [33]. Depending upon the input configura-

tion and log-STDP parameters, both winner-take-all and winner-

share-all behaviors may occur (Figs. 7 and S3). This is important in

the context of spike-based independent component analysis

(symmetry breaking in Fig. 7B being the simplest example), for

which winner-take-all is necessary [2,7,39]. Log-STDP exhibits

strong competition for large values for the parameter a, as nlta-

STDP does for small values of the power factor m. The

competition appears more gradual with log-STDP, though

(Figs. 6A and B). Specifically about nlta-STDP, beyond the

biological relevance of the soft upper bound, an issue concerns

whether the bound takes similar values or differs across synapses.

Various bounds can lead to a spread tail in the weight distribution,

but would imply ‘‘unfair’’ competition between synapses (i.e., some

would be easier to potentiate). With log-STDP, all synapses

experience the same dynamics and their potentiation level thus

reflects the input correlations, leaving aside the noise. On the other

hand, log-STDP with small values for a resembles mlt-STDP,

which appears clearly inferior in terms of synaptic competition.

Note that the stronger STDP noise in the original model of van

Rossum et al. [24] further impairs the neuronal specialization,

especially for weak spike-time correlations. Although we have

constrained our study to the case of pools of coincidentally firing

inputs, these conclusions are expected to hold for any inputs with

correlations in the temporal range of STDP, such as spike patterns

[23]. Additional mechanisms such as synaptic scaling may be used,

for example, to constrain the neuronal firing rate in a homeostatic

fashion. In our model, adjusting the fixed point J0 (e.g., decrease

when the output firing rate is ‘‘too’’ high) would guarantee that the

flexibility and robustness of our results are preserved. Our results

were obtained using axonal delays; the effect of synaptic delays on

the topology and persistence of weight structure is left to

subsequent study.

When the input configuration changes, synaptic weights trained

by log-STDP rapidly reorganize to adapt to the new configuration

pattern (Fig. 8B). This rapid rewiring is also favored by the

continuous shuffling exhibited by the individual synapses receiving

uncorrelated inputs (Fig. 4B). Note that the newly learned inputs

are very strongly potentiated, as if learned from scratch. In other

words, the previously learned structure is completely forgotten

(after 50 s in Fig. 8B). This arises from the intermediate

parametrization between add-STDP and mlt-STDP, in a similar

manner to nlta-STDP [15].

A last point concerns the stability of the emerged weight

structure. Sufficiently strong input correlations is necessary to

overcome the relatively strong noise used here. The presence of

strong weights has been shown to be useful for pattern activity [4],

firing avalanches [40], and spike-based information transmission

[22]. In such cases, the stability of the tail of strong weights is crucial

for sustaining the spiking activity in a consistent fashion over time.

During the stimulus presentation, so long as the drift of the weights

dominates the synaptic dynamics, the stability of the learned

structure is ensured (Figs. 5D and 8B). In contrast, for weak

correlations, noise may be comparable to the drift in Figs. 5B and 9.

This implies a competition between shuffling and sustained

potentiation of the weights. Then, our model of noise in log-STDP

turns out to be crucial to favor the stabilization of a weight structure.

Even the weak spike-time correlations that arise within a recurrent

network stimulated by a rather small number of correlated inputs

can be picked up by log-STDP to build up among plastic recurrent

weights a structure that can persist over a significant period

(hundreds of seconds in Fig. 9). In contrast, mlt-STDP induces too

strong a shuffling, which prevents such a structure to emerge and

stabilize. After the end of the stimulus presentation, the persistence

of potentiated weights determines the memory depth of the learning

system. After ceasing the stimulus presentation, the decay time back

to the baseline level is longer for more pronounced LTD saturation

in log-STDP (larger value for a in Fig. 8F), generalizing previous

results for add-STDP and mlt-STDP [31]. Altogether, weaker LTD

and noise for large weights improve their stability.

Conclusion
Our results show that weight dependence and noise in the

weight update are crucial features to obtain a realistic and

functionally efficient STDP model. To our knowledge, this has not

been explicitly studied in biophysical models of STDP [7,41,42].

In complement to previous studies on weight-dependent STDP

[15,24,25,29], we have focused on the advantages for STDP to

generate long-tail distributions that involve weights many times

stronger than their mean. In our model, the extent to which

weights are potentiated is determined by the interplay between the

STDP properties (LTD profile) and input correlations (group size

and correlation strength). The tail of strong weights encodes the

‘‘meaningful’’ component of input statistics and gives rise to

function (e.g., temporal correlation transmission). In this way, log-

STDP overcomes the limitations of mlt-STDP when synapses have

(roughly) linear responses. Our results open a promising way to

investigate persistent synaptic structures and efficient spiking

information processing in neuronal networks.

Methods

Using a mathematical model of STDP, we examine the

relationship between the weight dependence and the resulting

learning dynamics. First, we present a framework to study the

synaptic dynamics based on the Fokker-Plank formalism. This

allows us to study the stationary weight distribution for various

STDP models. Then, we study particular solutions of the Fokker-

Planck equation that are exactly lognormal distributions. This

family of solutions is referred to as ‘toy model’, from which log-

STDP is derived. Finally, we provide details on the parameters

used in the present study.

Fokker-Plank formalism
We constrain the theoretical analysis to the case of a single

neuron excited by an arbitrary number N of synapses, cf. in

Fig. 1A. Following previous studies [24,32,36], we adapt the

framework to the model of STDP defined by (3) and (4), for which

all pairs of pre- and postsynaptic spikes contribute. The Fokker-

Planck equation determines the evolution over time of the

probability density P(J)~P(J,t) of the synaptic weights. When

the weights are modified by many STDP updates, they can be

assimilated to transitions in the state space ½0,z?). Denoting by

A(J) and B(J) the first and second stochastic moments of the

weight updates, respectively (or drift and diffusion terms), the

general formulation is given by

dP(J)

dt
~{

d

dJ
A(J)P(J)½ �z 1

2

d2

dJ2
B(J)P(J)½ � : ð10Þ

Equating the lhs of (10) to zero leads to the unique normalized

solution in (1), which is the stationary distribution. To study (1),
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it is necessary to evaluate the functions A and B. As their names

imply, A describes the mean effect (first stochastic moment) and

B the variability (second moment) of the weight update DJ in

(3):

A(J)~E½DJ�~
ð z?

{?
DJ PrfDJg d(DJ) ,

B(J)~var½DJ�~
ð z?

{?
(DJ)2 PrfDJg d(DJ) ,

ð11Þ

where E and var denotes the expectation value and the

variance, respectively. Following (3) in the main text, the

probability PrfDJg of a given value for the weight update DJ

depends on the probability of two independent factors: the

respective timing of the pre- and postsynaptic spike trains for

each synapse (denoted by tpre{tpost), and the Gaussian white

noise f. This leads to

PrfDJg d(DJ)~ Prftpre{tpostg d(tpre{tpost) Prffg df : ð12Þ

Equation (12) means that the integration with respect to DJ in

(11) can be performed by integrating with respect to the two

independent variables u~tpre{tpost and f over the real line (for

each of them). In our model, the probability density Prffg is a

Gaussian function with zero mean and variance s2. Then, the

probability Pr tpre{tpost

� �
is the key quantity to calculate the

drift term A and noise term B.

STDP dynamics for uncorrelated inputs
In this section, we focus on a simple solution for (12), assuming

that the following conditions are satisfied:

(i) The pre- and postsynaptic spike trains are (quasi) probabi-

listically independent for all pairs input/output; this is a good

approximation in the case of many uncorrelated Poisson-

generated inputs.

(ii) The neuronal output firing rate is not too high (e.g.,

ƒ20 Hz) such that, for each input, an output spike does

not effectively interact with too many incoming spikes.

The first point (i) leads to approximated expressions that do not

take the neuron model into account, but describe satisfactorily the

asymptotic weight distribution when the learning dynamics has a

stable fixed point [36]. This means that A(J) in (5) satisfies

A(J�)~0 and A’(J�)v0 for a given J�. In other words, weight

dependence scheme with stronger LTD and/or weaker LTP for

larger weights is sufficient, which is the case for log-STDP, mlt-

STDP and nlta-STDP. However, add-STDP is weight indepen-

dent and thus does not satisfy this; its case will be studied in the

next section.

Under assumption (i), the pre- and postsynaptic spike trains

behave as two Poisson processes. This means that (12) can be

rewritten as

PrfDJg d(DJ)~nout n0 du
1ffiffiffiffiffiffi
2p
p

s
exp

{f2

2s2

 !
df , ð13Þ

where u is the spike-time difference, nout the output neuronal firing

rate, and n0 the input firing rate (assumed to be identical for all

inputs).

Using (13), the drift A in (11) can be rewritten as:

A(J)~gnout n0

ð 0

{?
fz(J) exp

u

tz

� �
duz

�
ð z?

0

f{(J) exp {
u

t{

� �
du

�

|

ð z?

{?
1zfð Þ 1ffiffiffiffiffiffi

2p
p

s
exp

{f2

2s2

 !
df ,

~nout n0 g½tz fz(J)zt{ f{(J)� :

ð14Þ

Here we have separated the effect of LTP for uv0 and LTD for

uw0, and integrated with respect to the spike-time difference u.

Because the stochastic noise f has a zero expectation value, it

vanishes in the expression for A(J).
Likewise, we can evaluate the noise term B in (11) by replacing

the weight update by its square in the integral:

B(J)~g2 nout n0

ð 0

{?
½fz(J)�2 exp 2

u

tz

� �
duz



ð z?

0

½f{(J)�2 exp {2
u

t{

� �
du

�

|

ð z?

{?
1zfð Þ2 1ffiffiffiffiffiffi

2p
p

s
exp

{f2

2s2

 !
df ,

~nout n0 g2 tz

2
½fz(J)�2 z

t{

2
½f{(J)�2

n o
1zs2
� �

:

ð15Þ

In contrast to the expression for A(J), f contribute to B(J) via its

variance s2. In the previous calculation, it is assumed that the

weight changes at each time only concern a single DJ for a single

pair of spikes. This is not strictly rigorous: for example, when all

pairs of spikes contribute to STDP, a postsynaptic spike may lead

to several updates DJ with several input spikes, all contributions

being summed together to modify the weight J. If this does not

matter for A, it is problematic for B since the square of a sum is

not the sum of the squares [36]. Nevertheless we will stick to this

approximation assuming relatively low firing rates, in which case

not many significant STDP updates occur for each input or output

spike.

The results in (14) and (15) are reproduced in (5) in the main

text. There, we have dropped the input firing rate n0 and the

output firing rate nout, the latter depending on the whole weight

distribution. Actually, they do not play any role in the solution in

(1) in the case of uncorrelated inputs. Recall that these calculations

are valid for any weight dependence f{ and fz, provided the

model is formulated using (3) and (4). Although the stability of the

stationary solution in (1) is not always granted, this is the case when

A(J) has a stable fixed point for reasonable levels of ‘‘noise’’ B(J)
[29].

Generating correlated spike trains
To obtain a group of spike trains with a given correlation

strength cw0, we use a thinning of Poisson processes. More

precisely, for each input, the spikes are generated using sampling

from two homogeneous Poisson processes [15,29]. The first

process is individual for each correlated input. Its baseline firing

rate is set to n0(1{
ffiffiffi
c
p

). The second ‘reference’ Poisson process is

common to all inputs forming a correlated pool and determine
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correlated events that occur at rate n0. At each correlated event,

the concerned inputs increase their instantaneous firing rate such

as they take part in the synchronous spike volley with probabilityffiffiffi
c
p

. In this way, we obtain a spike train with mean firing rate n0

and the desired pairwise correlation strength.

Taking spike-time correlations into account using the
Poisson neuron model

Now we extend the result in (14) and (15) to incorporate input-

output correlations. We do not aim to develop the full theory here

for integrate-and-fire neuron. Rather, we aim for a simpler result

using the Poisson neuron. This provides insight on sensitivity of

STDP rules to input spike-time correlations for integrate-and-fire

neuron (Fig. 6A). The firing mechanism for the Poisson neuron is

governed by a stochastic rate intensity l, from which spikes are

generated as an inhomogeneous Poisson process. Here we consider

the simple expression for l, which can be seen as the soma

potential and evolves due to the incoming spikes:

l(t)~
X

i,l

Ji(t
l
i)E(t{tl

i) : ð16Þ

Here the synapse i receives inputs at times tl
i and has weight Ji.

The postsynaptic response kernel E determines the time course of

the soma potential for each incoming pulse at synapse i; we require

E(t)~0 for tv0, E(t)§0 for t§0 and
Ð z?

0
E(t)dt~1.

When a correlated event occurs, the synchronous incoming

spike volley causes the firing probability l of the neuron to increase

on the short time scale of the PSP response. With our model of

correlated inputs (see previous section), a given input in a group of

size M1 with correlation strength c has probability
ffiffiffi
c
p

of taking

part in any correlated event. Correlated events occur randomly

with rate n0. For a given event at time tcorr, the mean increase of l
compared to its baseline value nout comes from the firing of

ffiffiffi
c
p

M1

inputs, namely
ffiffiffi
c
p

M1JE(t{tcorr). Here we have assumed that the

(baseline) expected instantaneous firing rate l is stationary and can

be approximated by nout, and that homogeneous weights equal to

J for all inputs from the correlated pool. Outside correlated events,

the input spikes come from a spike train with rate n0(1{
ffiffiffi
c
p

) and

the probability of spike-time difference is nout n0 (1{
ffiffiffi
c
p

) as in (13).

We take input spikes as references now to evaluate

Prftpre{tpostg. Either an input spike is isolated or it belongs to

a correlated event. Summing all contributions, we obtain

Prftpre{tpostg~noutn0(1{
ffiffiffi
c
p

)z

n0

ffiffiffi
c
p

noutzM1

ffiffiffi
c
p

J E(tpost{tpre)
� �

~n0noutzcM1n0J E(tpost{tpre) :

ð17Þ

These shortcut calculations are similar to our more general

framework that evaluates input-output spike-time covariances

[30]. Compared to uncorrelated inputs, the expression in (14) is

now augmented by the term involving E in (17). Because of

causality of the neuronal response, the extra term only contribute

to LTP. Focusing on the integration over u as in (14), this yields

ð0

{?
fz(J) exp {

juj
tz

� �
cM1n0J E({u) du~

~EE
1

tz

� �
cM1nout Jfz(J) ,

ð18Þ

where ~EE is the Laplace transform of the post-synaptic response

kernel E; we have used u~tpre{tpost. The Laplace transform

comes from our use of an decaying exponential function of u for

each side of the STDP learning window W (it would yield a

convolution with the corresponding function of u otherwise). Using

(16), the mean output firing rate for the Poisson neuron is given by

nout ~
X

i

Jin0^ ½(M{M1)J0zM1J�n0 : ð19Þ

We can thus rewrite the expressions for A and, likewise, B:

A(J)~gn0 tz fz(J)zt{ f{(J)½ � (M{M1) � J0zM1J½ �n0

"

z~EE
1

tz

� �
cM1 Jfz(J)

#

B(J)~g2 n0f
tz

2
½fz(J)�2 z

t{

2
½f{(J)�2

h i
(M{M1) � J0zM1J½ �n0

z~EE
2

tz

� �
cM1 J½fz(J)�2g 1zs2

� �
:

ð20Þ

In particular, the equilibrium weight J� for a single correlated

input group of size M1 embedded in a total of M inputs (e.g.,

Fig. 5D) is given by the zero of A(J), namely

0~ tz fz(J�)zt{ f{(J�)½ � (M{M1) � J0zM1J�½ �n0

z~EE
1

tz

� �
M1cJ�fz(J�) :

ð21Þ

Using the expressions in (20), Fig. S1 illustrates the effect of

input correlations on the weight distribution. This figure gives a

qualitative picture of the relationship between the curves of f+ (in

A) and the drift and noise terms (in B) on the one hand; and the

influence of correlations on the resulting weight distribution on the

other hand (red versus gray curves in C). The curves in Fig. 6A

represent the fixed point in (21) as a function of the correlation c
for the different models of STDP. Fig. S4 compares the theoretical

prediction in (21) with simulation results using the Poisson neuron

model. Last remark, in order to obtain a bimodal distribution for

add-STDP, the effect of single spikes on the output firing has to be

incorporated. In (20), this amounts to replacing M1c by 1=M.

‘Toy plasticity model’ given by lognormal solutions of the
Fokker-Planck equation

In order to get analytical insight about a suitable STDP model

that generates long-tail distribution of synaptic weights, we

consider the following functions:

A(J)~a1{a2 ln (a3J) , ð22Þ

B(J)~a4J ,

with a1w0, a2w0, a3w0 and a4w0. Using these functions as the

drift and noise terms in (10), the corresponding solution in (1)

becomes
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P(J)~
N
a4J

exp {
a2a3½a1{a2 ln (a3J)�2

a4

" #

~
1ffiffiffiffiffiffi

2p
p

sJ
exp {

½ln (J){m�2

2s2

" #
,

ð23Þ

where m and s absorb the parameters:

m~
a1

a2
{ ln (a3) , and s~

a4

a3
2a3

: ð24Þ

The rhs in (23) is actually the expression for a lognormal

distribution with parameters m and s, reproduced in (2) in the

main text. In particular, the parameter s, which controls the

spread of the distribution similar to the variance for a Gaussian

distribution, increases with a4 and decreases with a2 and a3.

This toy model of ‘‘plasticity’’ inspired us to formulate the

weight dependence for log-STDP in (6). Despite the discrepancies

between the functions A and B in Fig. 2A, the distributions

generated by the toy model and the STDP model are in good

agreement, as illustrated in Fig. 2B. Therefore, the effect of the

parameters in log-STDP upon the spread of the weight

distribution can be inferred from the effects of a4, a2 and a3 on

s in (24). In function f{, a determines the degree of saturation of

A(J) in (5) as a3 does in (22): larger values imply more pronounced

log-like saturation. Likewise, a1 and a2 can be related to cztz and

c{t{=a, respectively, cf. (5). Altogether, a3
2a3*a{2, so larger

value for a is expected to spread the weight distribution. In (22),

B(J) corresponds to a noise whose amplitude is proportional toffiffiffiffiffiffiffiffi
a4J
p

. Such a sublinear noise is weaker than the multiplicative

noise used by van Rossum et al. [24] and implies smaller

variability for larger weights compared to weaker ones. From (3),

the noise f is scaled by amplitude of the noiseless update, which is

determined by f+. Because of our choice for weight dependence,

the resulting noise is weaker than in the toy model. Namely, B(J)
in (5) is *½ln (J)�2 to be compared with (22) for large values of J;

see also Fig. 2A. Both the noise variance s2 and the learning rate g
play a similar role to a4: larger values lead to a more spread weight

distribution.

Baseline parameters for log-STDP
The STDP model is detailed in the main text in (3), (4) and (6).

The baseline simulation uses g~0:1; s~0:6; cz~1; c{~0:5;

J0~0:25; tz~17 ms; t{~34 ms; a~5 and b~50. The time

constants t+ for W correspond to typical values [27]. For the

weight dependence, the scaling functions f+ in (6) are chosen such

that the equilibrium mean weight is roughly J0 in the absence of

noise and for slow learning. To do so, we require the drift A(J) to

have a stable fixed point J�^J0w0, as illustrated in Fig. 1. We

thus use parameters such that cztz~c{t{, together with b&1.

A previous study [29] has shown that a ‘‘fast’’ learning rate g
induces noise in the weight dynamics, which can spread the

distribution of plastic weights via strong shuffling, compared to

‘‘slow’’ learning. Our choice g~0:1 such that a typical weight

update is of the order jDJj*J=50 around the equilibrium value

for the mean weight. The Gaussian random variable f that models

the variability of the weight update has zero mean and variance

s2. Its standard deviation is chosen s~0:6, such that the vast

majority (95%) of spike pairs corresponding to tprewtpost

effectively induces depression. This contrasts with the study in

van Rossum et al. [24] where s*5c{, meaning that only around

60% of pairing cases supposedly leading to depression effectively

do (i.e., the high level of noise changes the sign of the weight

update). In their scheme, however, contributions to STDP were

restricted to the nearest presynaptic spike only, which implies

fewer updates hence weaker shuffling. In our model, the relatively

fast learning rate is also a important source of noise. (As was

pointed out to us, our noise scheme cannot be achieved using an

implementation of STDP based on cumulative exponential traces

[11, Fig 1], for which several weight updates are lumped together;

in other words, a noise term cannot be applied to the individual

contribution for each pair of spikes in that case.)

Alternative parametrization for LTD in log-STDP
Similar results were obtained with the following log-like LTD

scaling function f{ that has a simpler expression:

f{(J)~c{

ln 1z
J

J0
a

� �
ln 1zað Þ : ð25Þ

This rule is different from van Rossum et al.’s model [24] for small

weights, but it also leads to a fixed point close to J0, when LTP is

roughly constant (b&1).

Comparison with other models of STDP
In our analysis, we compare log-STDP with other previous

reference models, namely add-STDP [1,14], mlt-STDP [24] and

nlta-STDP [15]. This study focuses on the influence of weight

dependence on the synaptic dynamics. Therefore, all models

follow the equations (3) and (4); they only differ through the scaling

functions f+. Below, we give the parametrization of f+ for the

other models, to be compared with (6).

Add-STDP [1,14] is weight independent:

fz(J)~cz ,

f{(J)~c{ ,
ð26Þ

with cz tzvc{ t{ such that LTD overpowers LTP. The drift

due to random spiking activity thus causes the weights to be

depressed toward zero, which provides some stability for the

output firing rate. In numerical simulations, we use cz~1 and

c{~0:6, which gives a slightly more unbalanced ratio between

LTP and LTD than in Song et al. [1]; this follows because a fast

learning rate is used here, synonymous a high level of noise, and

more stability thus requires stronger depression.

Mlt-STDP has a linear weight dependence for LTD and

constant LTP [24] that was inspired by experimental data [27]:

fz(J)~cz ,

f{(J)~c{ J ;
ð27Þ

the equilibrium mean weight is then given by J�av~cz tz

=(c{ t{). We have cz~1 and c{~0:5=J0~2 in Fig. 3 such

that mlt-STDP and log-STDP coincide for JƒJ0. However,

simulations in Figs. 5, 8 and 9 were performed using

c{~0:4125=J0~1:65, meaning slightly weaker depression than

in Fig. 3. This calibration corresponds to a similar neuronal output

firing rate to that for log-STDP in the case of uncorrelated inputs.

Nlta-STDP [15] uses a parameter m to scale between add-STDP

(m~0) and multiplicative STDP proposed by Rubin et al. [25]

(m~1):

Stability vs Neuronal Specialization for STDP

PLoS ONE | www.plosone.org 16 October 2011 | Volume 6 | Issue 10 | e25339



fz(J)~cz 1{
J

Jmax

� �m

,

f{(J)~c{

J

Jmax

� �m

:

ð28Þ

In numerical simulations, the ‘‘soft’’ upper bound is Jmax~10, the

cz~1 and c{~0:6. We also set m~0:05 to obtain an almost-

additive version of nlta-STDP, such that it leads to strong

competition.

Integrate-and-fire neuron model
The simulation results presented in this paper use the usual

leaky integrate-and-fire neuron model with conductance-based

synapses. The evolution of the membrane potential V follows the

differential equation:

dV

dt
~

V0{Vz VE{Vð Þ
P

i gi

tm
,

gi~gr
i {gd

i ,

dgx
i

dt
~{

gx
i

tx
z dPi with x~r,d :

ð29Þ

The resetting and resting potential is V0~{70 mV, the

membrane time constant tm~20 ms, and the reversal potential

VE~0 mV. The synaptic influx dPi for synapse i corresponds to a

jump (delta function) at each incoming spike after an axonal delay

of di~4+2 ms; the size of the jump for the conductance strength

gi is determined by the synaptic weight Ji in this paper. The rise

and decay time constants for the conductance are tr~1 ms and

td~5 ms. When the threshold Vth~{50 mV is reached, the

neuron fires an output spike and V is reset to V0 for a refractory

period of 1 ms, before evolving again due to the presynaptic

activity.

Supporting Information

Figure S1 Comparison of the weight dependence
schemes and resulting weight distributions for different
models of STDP. Each row corresponds to the model whose

name is written on the left: log-STDP for our novel model; mlt-

STDP [24]; Gütig et al.’s model [15]; Hennequin et al.’s model

[22]; and Morrison et al.’s power-law model [26]. Column A: fz
and f{ functions that determine the weight dependence (top and

bottom, respectively), similar to Fig. 1B. Column B: The drift A
and B are represented by the solid and dashed curves, respectively

(similar to Fig. 2A). The gray curves correspond to the expressions

for uncorrelated inputs in Eq 5 in the main text. The red curves

represent the drift A for homogeneously correlated inputs with

c~0:2 and 0:4 in Eq 20 (from lighter to darker red, respectively);

other parameters are J0~0:25; M~1000; and M1~100. The

curves for B are not shown as they actually are superimposed with

the grey dashed curves. Column C: Resulting weight distribution

(same color coding as B) with linear axes (similar to Fig. 3A). Note

that the parameters have not been jointly tuned to obtain, e.g., the

same mean weight.

(EPS)

Figure S2 Simulated weight distribution obtained for
various choices of parameters for log-STDP. Similar plots

to Fig. 4D in the main text where one of the parameters (indicated

above each subplot) differs from those used in the baseline

simulation: weaker saturation for LTD with a~2; stronger

saturation with a~10; slower learning with g~0:05; and faster

learning with g~0:2. The baseline simulation (thin blue dashed

curve) corresponds to Fig. 4D in the main text. The discrepancies

between the simulated curve (purple solid line) and the theoretical

prediction (black solid line) concerning the range of very small

weights relates to the finite size of the weight update. For the range

of medium and large weights, on which we focus, the prediction is

satisfactory except for the cases of weak saturation (a~2) and slow

learning (g~0:05). These two simulations actually exhibited a low

output firing rate for the neuron, which induced a weak shuffling

of the whole distribution of weights; therefore, the solution of the

Fokker-Planck equation becomes less accurate.

(EPS)

Figure S3 Simulation with a single neuron similar to
Fig. 5 in the main text with two correlated input pools. A:
Schematic diagram of the neuron (top blue filled circle) stimulated

an uncorrelated pool (bottom open circles) and two correlated

pools (bottom red filled circles). Darker gray indicates a stronger

correlation strength. B: Evolution of the synaptic weights for the

configuration in A. The correlation strengths are c1~0:15 (traces

and histogram in lighter red, mean in thick dashed line) and

c2~0:25 (in darker red, mean in thick solid line), respectively. The

plot is similar to Fig. 5B. Our STDP model selects the input

pathway with the strongest correlations, but more mildly

potentiates the weights coming from that with weaker correlations.

C: Evolution of the neuronal output firing rate for the

configurations: Fig. 5B in dashed-dotted curve; Fig. 5D in dashed

curve; and Fig. S2B in solid curve. The emergence of the strong

weights results in a significant rise of the neuronal output firing

rate, here around 15 Hz to be compared to 5 Hz for uncorrelated

inputs in Fig. 4B.

(EPS)

Figure S4 Weigth potentiation and firing rate as a
function of the input correlation with the Poisson
neuron. A: The single Poisson neuron is stimulated by 1000

inputs of which 100 have correlations (strength on x-axis). The

simulated weights from the correlated pool (circles) are taken from

10 simulations of duration 500 s and their mean is indicated by the

thick black curve (with error bars for the standard deviation). The

predicted equilibrium weights using Eq 21 in the main text is

represented by the blue curve. The predictions neglect the noise in

the STDP update, as well as the synaptic delays, but it is

satisfactory up to correlation strengths equal to 0.6. Discrepancies

come from neglecting the noise, which become non-negligible for

large weights. B Similar to A with the output firing rate.

(EPS)

Figure S5 Time histogram of the neuronal spiking
response to correlated events for a Poisson neuron.
Comparison between log-STDP (red) and mlt-STDP (purple). The

parameters given in Sec ‘Parameters used in numerical simulation

with the Poisson neuron model’ above. Similar to Fig. 6C and D in

the main text, darker colors correspond to stronger input

correlations with c~0:5, c~0:25 and c~0:15. Among the 500
input spike trains, 80 are correlated; all input firing rates are equal

to 5 Hz. The difference between log-STDP and mlt-STDP is more

pronounced for the Poisson neuron because the output firing

probability increases linearly with respect to the input weights. In

comparison, the LIF neuron in Fig. 6C and D is in a regime where

the sensitivity to correlated inputs is higher; consequently, even the

small increase of the weights for mlt-STDP still leads to a

significant drive of the neuronal output firing.

(EPS)

Stability vs Neuronal Specialization for STDP

PLoS ONE | www.plosone.org 17 October 2011 | Volume 6 | Issue 10 | e25339



Figure S6 Weight emerged structure in a network
stimulated by two independent correlated pools. A:
Schematic representation of the network before (left) and after

(right) the learning epoch. The recurrent network of 500 neurons

was stimulated by a pool of 2800 uncorrelated input spike trains

(not shown) and two identical correlated pools of 100 spike trains

each (bottom red circles), which exhibited delta correlations

(c~0:5). The connectivity probability was 0:3 for all input

connections and 0:1 for recurrent connections. All input firing

rates are equal to 10 Hz. The equilibrium value J0 in our STDP

model was chosen equal to 0:3 and 0:15 for input and recurrent

weights, respectively; the same learning rate was used for both

weight sets. Initially, both sets of weights were homogeneous (with

10% randomness). At the end of the learning epoch, the network

has specialized with 290 neurons sensitive to the first correlated

pool and the 210 remaining neurons sensitive to the second

correlated pool B,C: Connectivity matrices for the B input and C
recurrent weights (only 100 of each group are represented for

clarity purpose) at the end of the learning epoch, where darker

pixels indicate stronger weights. Among recurrent connections, the

within-group connections were potentiated while the between-

group connections remained weak.

(EPS)

Figure S7 Distribution of the firing rates for the
network neurons corresponding to Fig. 9 in the main
text. The same color coding applies: solid curve for log-STDP

and dashed for mlt-STDP; red for correlated inputs and purple for

uncorrelated inputs.

(EPS)
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