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Automatic construction of Petri net
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Petri nets are commonly applied in modeling biological systems. However, construction of a Petri net
model for complex biological systems is often time consuming, and requires expertise in the research
area, limiting their application. To address this challenge, we developedGINtoSPN, anRpackage that
automates the conversion of multi-omics molecular interaction network extracted from the Global
Integrative Network (GIN) into Petri nets in GraphML format. TheseGraphML files can be directly used
for SignalingPetri Net (SPN) simulation. Todemonstrate the utility of this tool,webuilt aPetri netmodel
for neurofibromatosis type I. Simulation of NF1 gene knockout, compared to normal skin fibroblast
cells, revealed persistent accumulation of Ras-GTPs as expected. Additionally, we identified several
other genes substantially affected by the loss of NF1’s function, exhibiting individual-specific
variability. These results highlight the effectiveness of GINtoSPN in streamlining the modeling and
simulation of complex biological systems.

Petri nets (PN) are specially designed bipartite graphs, introduced by Carl
Adam Petri in 19621. Basic Petri nets consist of two types of nodes: places
and transitions, with arcs linking the places and transitions, and tokens
representing the states of the systems. In the context of intra-cellular
molecular interactions, “places” correspond to entities such as proteins,
RNAs, DNA regions, and chemicals, while “transitions” represent different
types of biochemical reactions, such as catalysis, transcription, translation,
and protein binding. Building on these fundamental concepts, Petri net
formalism has been extended formodeling biological systems. Related Petri
net formalism variants include colored Petri Net (CPN)2,3, fuzzy continuous
Petri Net (FCPN)4, stochastic Petri Nets (SPN)5 and signaling Petri Nets
(also called SPN)6.

With the development of Petri net formalism, these models have been
successfully applied to biological systems, particularly in the study of intra-
cellular molecular interactions. For example, Yu et al. combined CPN and
machine learning techniques to model depression, estimating the influence
of various hormones on the condition7. Gutowska et al. integrated Petri nets
with ordinary differential equations (ODEs) to model the ATM/p53/NF-
kappaB pathway8, leveraging the strength of both approaches. Pennisi et al.
constructed a CPN model for immune system response9, while Liu et al.
implemented an FCPN algorithm to simulate the heat shock response
system10. Petri net modeling provides a structured and systematic frame-
work for representing complex biological interactions, facilitating the

analysis of dynamic behaviors and the identification of key regulatory
components.

Although a database of pre-compiled Petri net model of biological
systems11 have been established, and tools to map from systems biology
markup language (SBML)12 to Petri net markup language (PNML) are
available13, there remains a need for de novo construction of Petri netmodels
for specific biological processes or diseases. Detailed protocols for building
Petri nets for biological pathways and performing simulations with estab-
lished tools have been described14–17, but manually constructing a Petri net
model, even with the guidance of professional knowledge, can be a time-
consuming process, taking hours or months depending on the network’s
complexity. Many efforts have focused on automating the construction of
reactionnetworkmodels, as summarized inTable 1. Thesemethods typically
fall into two categories. The first computes the likelihood of reactions based
on “first principles”, i.e., fundamental physical, chemical, or mathematical
laws governing chemical reactions. Examples include STEERINGWHEEL18,
RTMR19, Chemoton20, pReSt21, YARP22, AutoMeKin23, and RMG24. While
such methods are valuable for predicting new potential reactions without
relying on empirical data, they tend to performbetter for industrial chemical
reactions than for biochemical reactions in living cells, where the in vivo
environment is far more complex than in vitro chemical conditions.

The second type ofmethod focuses on automatically constructingPetri
net models for biological systems. One example is the work of Chase
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Cockrell, Scott Christley, and Gary An in 2022, where they introduced a
machine learning-based framework called MAGCC25. This framework
extracts reaction rules from the literature, selects the appropriatemodel type
(including Petri net), and generates executable code for the chosen model.
Its key feature is the use of AI to automate knowledge base creation and
simulationmodel construction.However, the accuracyof currentAImodels
in natural language processing (NLP) and logical reasoning, particularly in
scientific model construction, remains concerning. Another software,
VANESA15,26, was originally published by Brinkrolf et al. in 2014, as an
update to the semi-automatic approach MoVisPP11. VANESA automates
network construction by querying knowledge bases and converting the
resulting networks into Petri nets for simulation. While it can build custo-
mized networks for specific proteins or metabolites, VANESA relies on
different databases for different types of biological networks: metabolic
pathways are constructed from KEGG27,28, while protein interaction net-
works are drawn fromMint29, IntAct30, and HPRD31, leading to separation
between networks of different omics.

To enable the rapid and automated constructionof Petri netmodels for
molecular interaction networks, we utilized the topological information
fromGINversion 2 (GINv2)32 to build initial networks and then convert the
networks into Petri net models. GINv2 is a multi-omics network that we
previously built for humans by integrating data from 10 knowledge bases,
including KEGG, Reactome, PID etc.27,28,33–42. The databases that constitute
GINv2 cover phosphorylation reactions, signaling,metabolic pathways, and
integrate proteomic and metabolomic interactions, providing a compre-
hensive view of multi-omics intracellular molecular interaction networks.
The structure of GIN, which we refer to as the “meta-pathway”, closely

resembles that of a Petri net, making the conversion of meta-pathways to
Petri nets feasible.

To automate the construction of Petri net models from GINv2, we
developed an R package called GINtoSPN. This tool generates a topological
network based on user-defined genes and chemicals and converts it into a
markedPetri netmodel.We tested the tool by constructing aPetri netmodel
using a refined list of NF1-related genes and an RNA expression dataset
generated from 143 human normal skin fibroblast cells43. Simulations of the
Petri net model under both normal and NF1-mutated conditions showed
persistent accumulation ofRas proteins bond toGTP,while othermolecules
exhibited varying behaviors, suggesting that NF1 loss of function has
individual-specific effects.

Results
Conversion of meta-pathways to Petri nets
Wepreviously introduced the concept of themeta-pathway structure by the
construction of GIN, first from KEGG data for over 7000 species (the GIN
version 1) and later by integrating 10 human knowledge bases (the GIN
version 2)32,44. The key feature of the meta-pathway structure is the “inter-
mediate” nodes we introduced in the graph to link the substrates, enzymes,
and the products of biochemical reactions. Since the substrates and the
enzymes must come into spatial proximity for a reaction to occur, there is a
temporary state where all molecules involved form a transient “complex”.
This led to the creation of “intermediate” nodes, which standardize the
representationofboth signaling andmetabolic reactions (Fig. 1A, left).There
are notable similarities between the meta-pathway structure and Petri nets.
In a simple Petri net, “places” represent real entities or objects, which are

Table 1 | Recent advances in automatic construction of network models

Name Topic Petri Net First principle Year

STEERING WHEEL Chemical reaction networks No Yes 2024

RTMR Chemical reaction networks No Yes 2024

Chemoton Chemical reaction networks No Yes 2022

pReSt Chemical reaction networks No Yes 2021

YARP Chemical reaction networks No Yes 2021

AutoMeKin Chemical reaction networks No Yes 2021

RMG Chemical reaction networks No Yes 2016

MAGCC Biological networks Yes No 2022

VANESA Biological networks Yes No 2014, 2021

MoVisPP Biological networks Yes No 2011

MoVisPP was replaced by VANESA and no longer available.
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equivalent to the nodes ofmolecules in GIN; “transitions” represent actions,
corresponding toGIN’s intermediate nodes. However, becauseGINwas not
originally designed for biological systemsimulations, it lacks an equivalent to
Petri net “tokens”, which indicate the quantity ofmaterials or signals held by
places (Fig. 1A, right). Nevertheless, GIN contains extensive information on
intracellular molecular interactions, especially for the human species. Brid-
ging GIN and Petri nets will streamline the construction of Petri net models
and extend GIN’s utility for biological network simulations.

To enable automatic assembly of Petri net models from a given list of
genes and/or chemicals, we developed anRpackage namedGINtoSPN.The
tool utilizes the topology information from a pre-built igraph object of
GINv2, extracts the paths between the input genes/chemicals, predicts extra
nodes that participate in the interactions, and converts the resulting sub-
graph into aPetri net in themodifiedEdinburghPathwayNotation (mEPN)
style45–47 (Fig. 1B). Depending on the complexity of the graph derived from
the input gene/chemical list, the entire process takes just seconds tominutes.
ThemEPN-styled Petri netmodel can be exported inGraphML format and
directly loaded into Biolayout express3D48 for SPN simulations.

Construction of a Petri net model for neurofibroma
To demonstrate the application of our tool, GINtoSPN, for the automatic
construction of Petri netmodels, we builtmEPN-styled Petri netmodels for
neurofibroma and neurofibromatosis type I (NF-1). NF-1 is caused by the
mutation of the Neurofibromin 1 (NF1) gene, which accelerates the con-
version of the active form of Ras protein, Ras-GTP, to its inactive form, Ras-
GDP49,50. Mutations in theNF1 gene lead to abnormally high levels of active
Ras, which in turn activates downstreamAKT/mTOR, Raf/MEK/ERK, and
Rac1/Cdc42 signaling pathways, promoting cell survival, growth, and
proliferation51. NF-1 is associated with various manifestations such as
multiple café-au-lait macules (CALMs), skin-fold freckling, iris Lisch
nodules, and nervous system tumors. However, none of these features alone
is sufficient for the diagnosis ofNF152, and the phenotypes of theNF1 gene’s
mutation can vary even among relatives53. This suggests that the effects of
NF1 mutation on the intracellular molecular interaction networks may
differ significantly between individuals. To our knowledge, no Petri net
model has yet been built for NF-1, which could aid in analyzing the diverse
responses to NF1 mutations across individuals.

Webeganby constructing aPetri netmodel forneurofibromausing the
list of 19 genes related to the term “neurofibroma” in theHumanPhenotype
Ontology (HPO:HP:0001067). This term is associated with 24 diseases,

including NF1. We extracted topological information from GINv2 and
incorporated transcription factor (TF) to target relations from GTRD54,55.
The resulting topological graph contains 91 nodes in total, with 25 proteins,
5 chemicals, 8 complexes, 16 promoters (labeled as “.state” in the graph), 16
RNAs, and 21 intermediate nodes (Fig. 2A). Notably, 19 new nodes,
including proteins, chemicals and complexes, were introduced into the
graph (Supplementary Table S1). Among these, several are well-known
players in Ras signaling, such as TP53, RAC1, andARRB1, while others, like
KITLGandPDGFRB, act as ligands or receptors for theproteins in the input
gene list. These results demonstrate that GINtoSPN can predict relevant
associated nodes, supplementing potentially missing information from the
given gene/chemical list.

Next, we converted the topological sub-graph into an mEPN-styled
Petri net (Fig. 2B). To alignwith the definitions of a Petri net, new transition
nodes were introduced during the conversion process to connect TFs to
DNA, DNA to RNA, and RNA to protein, all following the mEPN style.
Since the term “neurofibroma” in HPO is a general term associated with 24
different diseases and is not specific to NF-1, we chose not to add tokens to
this Petri net model and proceeded to build an NF-1-specific model.

Construction of a Petri net model for neurofibromatosis type I
It is known that mutations of NF1 gene activate downstream signaling
pathways and increase the risk of NF-1. To construct a Petri net model for
NF-1,wefirst added the core genes of thedownstreamsignalingpathways to
the input gene list, including key genes from the PI3K/Akt and Ras/RAF/
ERK pathways (Supplementary Table S2). Additionally, we selected phe-
notypes classified “very frequent” inNF-1 (ORPHA:636) according toHPO.
Since each phenotype was linked to a list of genes, we performed an inter-
section analysis to identify shared gene modules associated with NF1
mutations (Fig. 3A). We identified two gene modules shared across six
phenotypes (Supplementary Tables S3 and S4), one of which, multiple cafe-
au-lait spots (HP:0007565), is a diagnostic criterion for NF-1 (Fig. 3A). The
genes shared by these phenotypeswere also added to the input gene list. The
final list consisted of 43 genes and 1 chemical, CHEBI:37045 (purine-GTP)
(Supplementary Table S5). Processing this input gene list by GINtoSPN
using both GINv2 and GTRD resulted in a Petri net with 1157 places, 5356
transitions, and 12,336 arcs (Fig. 3B). Notably, the places in this Petri net
model represent multiple types of molecules, including DNA (promoter
regions), RNA, proteins/complexes, and chemicals (Fig. 3C), making the
model compatible with multi-omics data.
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Simulationof normal andNF1-mutatedmodel using real RNAseq
dataset
To simulate the behavior of the NF-1 network before and after NF1 gene
mutation,we constructed anNF1-mutatedmodel bydeleting the transitions
catalyzed by NF1, specifically the conversion of Ras-GTP to Ras-GDP49,50

(Fig. 4A). Previous studies have shown that the elevated levels of the active
formofRas protein, Ras-GTP, are directly linked to the development ofNF-
150. To validate the NF-1 model, we used RNAseq data generated from 143
normal skinfibroblast cells fromGSE11395743, treating the gene expressions
as input tokens. To adhere to themEPNstyle, 606 extra transitionnodes and
arcs were generated. We performed SPN simulations using Biolayout
express3D for all 143 individuals’ gene expression profiles under both
normal and NF1-mutated conditions. As expected, the tokens held by the
nodes representing Ras-GTPs were elevated in the NF1-mutated condition
compared to the normal state (Fig. 4B andC), while the tokens of Ras-GDPs
showed no significant change in the NF1-mutated condition (Fig. 4B).

Besides Ras proteins, we explored other molecules that exhibited
substantial changes (Fig. 4C, Supplementary Data 1 and 2). Nodes were
selected based on a fold change (>1.2 or <0.8) in the average token levels
across 90-time blocks (excluding the first 10 time blocks, as the systemmay
not have reached a steady state) in theNF1-mutated condition compared to
the normal condition in at least one individual. P-values were calculated
usingStudent’s t-tests (n = 90 for eachof themutatedornormal conditions).
Unlike the persistently up-regulated Ras-GTP-related molecules, we
observed varied responses among different individuals to NF1 gene muta-
tions, highlighting the complexity of the NF-1 disease. Among these
molecules, PTEN, TP53, ESR1, RAC1, and CDC42 frequently appear as
components of the complexes. PTEN has been implicated in neurofibroma
development and malignant transformation56. Loss of function in PTEN
and TP53 can lead to the transformation of benign neurofibromas, such as
plexiformNFs, intomalignant forms likemalignant peripheral nerve sheath
tumors (MPNST)57,58.

ESR1,which is an estrogen receptor, has been shown to be repressed by
neurofibromin59, playing an important role in ER+ metastatic breast
cancer60. Additionally, the Rac1 and Cdc42 signaling pathway is negatively
regulated by NF161. Notably, we also observed significant changes in pro-
moter regions, RNA and protein levels of PF4 and GUCA1C. In normal
conditions, PF4 expression is very low among the 143 individuals
(mean = 0.02, median = 0), and GUCA1C was not expressed at all. The

changes in PF4 and GUCA1C were primarily driven by alterations in the
transcription factors regulating these two genes. PF4, a platelet-derived
chemokine (also known asCXCL4), has an unclear connection toNF-1, but
a recent study suggests that PF4 can attenuate age-related hippocampal
neuroinflammation and improve cognition in agedmice61.ConsideringNF-
1 is frequently accompanied by nervous system abnormalities, such as
specific learning disability (HP:0001328) and intellectual disability
(HP:0001256), PF4-based treatments may provide the potential for alle-
viating cognition-related symptoms in NF-1 patients.

ForGUCA1C's (guanylate cyclase activator 1C), its paralog,GUCA1A,
is involved in cone–rod dystrophy, a genetic eye disease characterized by
retinal pigment deposits, central scotomas, and chorioretinal atrophy. The
fluctuations in GUCA1Cmay be related to co-occurring symptoms such as
glaucoma (HP:0000501) and abnormality of retinal pigmentation
(HP:0007703).

Discussion
In this paper, we developed a fast and efficient tool, GINtoSPN, for auto-
matically inferring a directed topological graph of molecular interactions
from a given gene/chemical list, and converting it into GraphML format in
mEPN style, which can be easily loaded into Biolayout express3D for SPN
simulations. To demonstrate the application of GINtoSPN, we constructed
a list of genes related to NF-1, converted it into a topological graph, and
generated a Petri net model in mEPN style. To validate the NF-1model, we
created an NF1-mutated model, then performed SPN simulations on both
the normal and mutated models using RNA expression profiles generated
from 143 normal human skin fibroblast cells. The simulations successfully
captured the consistent upregulation of Ras-GTPs, along with substantial
fluctuations in other molecules across different individuals. These results
validate the biological relevance of the NF-1 model and highlight the indi-
vidual variability in the response to NF1 gene mutations, suggesting that
personalized precision treatments may be necessary for NF-1 patients.

The tool we developed in this work offers several key advantages: 1. It
minimizes the requirement of specialized knowledge when assembling a
newnetwork.Themolecular interactionswere automatically extracted from
GINv2, which is a multi-omics network integrating proteins and metabo-
lites interactions. TheTF-target relations can be retrieved fromGTRD.New
nodes are introduced by traversing the paths inGINv2 between the nodes in
the input list. Therefore, users are not required to provide a comprehensive
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list of genes or chemicals, as the toolfills inmissing nodes automatically. 2. It
reduces the significant amount of time for Petri net construction.The task of
inferring a topological network is paralleled, which is typically the most
time-consuming step. This process takes only seconds tominutes, while the
subsequent conversion step is completed within seconds. Compared to
manually constructing a new Petri net model, which can take hours to
months, this tool saves considerable time and labor, allowing for efficient
construction and adjustment of complex Petri net models. 3. GINtoSPN
supports various types of omics data for simulation, including tran-
scriptomics, proteomics, andmetabolomics. 4. This tool provides a seamless
pipeline from the input gene/chemical list to SPN simulation. It incorpo-
rates omics-data as input tokens when available, and the output format,
GraphML, is compatible with Biolayout express 3D for fast SPN simulation.

Our tool offers several distinct advantages compared to previous
approaches.Unlike tools designed for the automatic constructionof chemical
reaction networks, which are typically used for industrial chemical processes,
our method is specifically tailored to biochemical reactions within human
cells. Additionally, our tool generates Petri net models in the mEPN style,
making them compatible with SPN simulations, which are not supported by
the chemical reaction network methods. Compared to MAGCC, which
employsAI to construct knowledgebases andmodels for simulation, our tool
leverages data from 10 well-established, experimentally validated knowledge
bases, providing a higher level of confidence in model construction. Fur-
thermore, unlike VANESA, which builds Petri net models from separate
databases for metabolic and protein–protein interaction networks, our tool
creates integrated multi-omics Petri net models. In summary, our approach
uses a unique strategy that produces Petri netmodelswith greater confidence
and a more comprehensive, integrated view of molecular interactions.

After conversion by GINtoSPN, the package outputs the Petri net
model in GraphML format, not in SBML, which is a widely used systems

biology format supported by many software. The major reason for using
GraphML format is that the software we use for the SPN simulations,
Biolayer Express3D, accepts mEPN-styled GraphML files but does not
support SBML format.

We prefer SPN simulation for several key reasons: Firstly, the global
integrative network (GIN), from which we derive molecular interaction
networks, does not include kinetic parameters for reactions. GIN consists of
nodes representing molecules or intermediates, and directed edges that
represent relationships between them. With given gene and chemical
symbols or IDs,we can efficiently infer a sub-network by searching for paths
between target nodes, though without reaction rates or other parameters.
Additionally, GIN is compatible with various molecular interaction types
beyond just signaling or biochemical networks. In our current study, we also
integrate gene regulatory networks (e.g., transcription factor binding) and
transcription/translation processes. Collecting kinetic parameters for each
process across such diversemolecular interactions would be highly valuable
for model construction but requires an enormous effort. Thus, for building
Petri net models of multi-omics molecular interaction networks, we had to
select a simulation method that does not depend on kinetic parameters or
rate constants.

Secondly, SPN does not require prior knowledge of reaction rates for
simulation,making it ideal for our approach to automatically construct Petri
net models. While this may limit SPN’s ability to estimate absolute quan-
tities of tokens, it can still effectively measure relative changes in tokens
under different conditions (e.g., mutants vs. wild types). This is particularly
useful in disease studies, where comparisons between healthy and diseased
states are crucial.

Given that SPN simulation does not rely on kinetic parameters, and
obtaining these parameters for all reactions in GINv2 is beyond current
capabilities, we chose GraphML as the output format for our tool.
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We acknowledge that GINtoSPN still has room for improvement.
First, the tool does not compute an optimal layout for the nodes; currently,
node coordinates are assigned randomly. While this does not affect the
simulation, users who require a properly arranged network can easily load
the output GraphML file into graph editors such as yED (yWorks, Tübin-
gen,Germany;www.yworks.com), anduse its layout computation functions
to achieve amore visually organizeddisplay. Second, the tool currently relies
on external data sources to include gene regulatory network interactions.
This limitation stems from the scope of GINv2, which does not incorporate
GRN data. As GIN continues to evolve and expand to include new data
types like GRN and epigenetics markers, we expect to enhance GINtoSPN
with additional functionalities that will accommodate these new data
sources.

Methods
Basic concepts of Petri nets
Petri nets are amathematical tool used tomodel and simulate the behaviors
of systems.Typical Petri nets consistedof places, transitions, and arcs. Places
are often presented as circles (Fig. 5a), which usually refer to entities that
participate in a process. Transitions are depicted as rectangles or bars (Fig.
5a), representing events or processes. Arcs are directed arrows that connect
places and transitions (Fig. 5a). Places often hold tokens, which are illu-
strated as dots, representing the states of the system or the amount of the
signals (Fig. 5a). Formally, a Petri net is defined as a four-tuple:

PN ¼ hP;T; I;Oi ð1Þ

where
P = {p1, p2,… pm} is a finite set of places.
T = {t1, t2,… tn} is a finite set of transitions.
I = {i1, i2,… ik} is a finite set of input arcs, whose starting and ending

nodes u and v follow: u2 P and v 2 T.

O = {o1, o2,…, ol} is a finite set of output arcs, where u 2 T and v 2 P.
Petri nets are bipartite graphs, meaning places must connect to tran-

sitions, and transitionsmust connect to places (Fig. 5B). The distribution of
tokens across places is referred to as the “marking”. Tokens can move
between places according to the rules of “firing” (Fig. 5B). The firing of a
transition represents the occurrence of an event, while the movement of
tokens represents state changes. For instance, in Fig. 5B, before firing, place
P1 holds two tokens while P2 has none. After firing, one token is removed
from P1 and transferred to P2 via transition T1. Using this simple logic, we
canmodel complex biological systems with Petri nets and simulate the flow
of tokens, representing quantities like molecule counts or signal intensities.

The mEPN style and signaling Petri net simulation
To perform an SPN simulation, we first need to construct a Petri net model
in Edinburgh Pathway Notation (mEPN) style. mEPN is a framework that
represents various molecular components (places) and their interactions
(transitions). Commonly used notations for places include DNA, RNA,
proteins, protein complexes, and metabolites, while transitions include
token input, binding, catalysis, transcription, and translation (Fig. 5C). For
example, Fig. 5C illustrates an mEPN-styled Petri net involving three genes
and two metabolites. “G1” represents gene 1, a transcription factor that
binds to the promoter regions of G2 andG3, promoting the transcription of
their mRNAs. After translation into proteins, the proteins fromG2 and G3
form a complex that catalyzes the conversion of Metabolite 1 into Meta-
bolite 2. It is important to note that token input is classified as a transition,
with the number of input tokens indicated as the weight of the arc con-
necting the token input transition to the G1.RNA node.

After constructing a Petri net model in mEPN style, we can export the
model in GraphML format and perform SPN simulation in Biolayout
Express3D. A key feature of SPN is that it does not require the construction
of equations or the specification of rate constants for model parameteriza-
tion; instead, it relies primarily on the structure of the network.

A B
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Arc

Token
Before firing After firing

Fire

P1

P2

P1
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T1 T1

C

B
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TR

TL

TL

B CG1.Protein

TL

G2.Protein

G3.Protein

G1.RNA
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G3.RNA
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B C TR TL
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Protein complex
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Intermediate node

D

G1.RNA

G1.Protein

G2.DNA

G3.DNA

G2.RNA

G3.RNA

G2.Protein

G3.Protein

G2;G3 G2_G3

Metabolite1
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RNA
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B

C

TR

TL
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Catalysis

Transcription

Translation

E

Degenerate

Fig. 5 | Introductions to Petri nets, mEPN, and GINtoSPN conversion. A Basic
components of a Petri net. B A simple demonstration of how firing a transition
affects token distribution in a marked Petri net. C Components of mEPN notations
and an example network. The example illustrates an integrated network of tran-
scription factor bindings, RNA transcriptions, protein translations, protein complex
formations, and metabolite reactions. D The conversion of GIN components to
mEPN. Intermediate nodes of GIN may be converted to transition nodes of
“Binding” or “Catalysis”, depending on the products of the reactions. Arrows with

dashed lines indicate new transition nodes introduced into the network by the types
of upstream and downstream nodes. For instance, a “Transcription” node is gen-
erated if the edge connects a “DNA region” and an “RNA” node. E The example
network corresponding to B in GIN style. The network shows the translation of
transcription factor G1’s RNA into protein, which binds to the DNA regions of G2
and G3, promoting the transcription of their RNAs. The proteins translated from
these RNAs form a G2_G3 complex that catalyzes the conversion of Metabolite 1
into Metabolite 2.
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Parameterization is achieved through the distribution of tokens across the
entity nodes.A single runof anSPNmodel consists of a series of timeblocks,
during which each transition is fired exactly once in a random order. In this
work, we executed the simulation for 500 runs, averaging the results of a
single entitynodeacross these runs for each timeblock.A formaldescription
of SPN simulation can be found in Ruths et al. 6.

Construction of a Petri net model in mEPN style using user-
defined gene/chemical list
There are two major steps in constructing an mEPN-style Petri net model
using GINtoSPN. The first step involves extracting molecular interactions
from GINv2 and building a directed topological sub-graph. Because most
genes and chemicals are separated by “intermediate” nodes in GIN, the
input genes and chemicals are used as “seeds” for expanding the node
collection to create a proper topological structure. The strategies for col-
lecting nodes are different between signaling pathways and metabolic
pathways. For signaling pathways, kinases are both enzymes and substrates/
products of reactions, so genes are separated solely by intermediate nodes. A
valid path is then constructed from the following nodes:

n0; n0 2 input
� � ð2Þ

n1
� � ¼ Nout n0

� �
and n1 2 n;

� �
ð3Þ

n2
� � ¼ Nout n1

� �
and n2 2 input

� �
ð4Þ

where n0 is a starting node present in the input list,Nout is the function that
retrieves all downstream nodes, n; denotes an intermediate node (indicated
by the presence of ‘;’ in their names), and {input} is the set of input
node names.

In contrast, in metabolic reactions, proteins typically serve as enzymes
that catalyze the reactions. Consequently, genes are separated by both
intermediate nodes and metabolite nodes. Therefore, metabolic paths are
constructed from the following nodes:

n0; n0 2 input
� � ð5Þ

n1
� � ¼ Nout n0

� �
; and n1 2 n;

� �
ð6Þ

n2
� � ¼ Nout n1

� �
; and n2 2 protein

� � ð7Þ

n3
� � ¼ Nout n2

� �
; and n3 2 n;

� �
and n3 2 n1

� �
ð8Þ

ns
� � ¼ N in n1

� �
; and ns 2 protein

� � ð9Þ

where protein
� �

is the set of nodes that are not proteins nor intermediates
(hence metabolites), Nin is the function that retrieves all incoming nodes,
and ns represents a node that serves as the substrate of the reaction. The
method for extracting molecular interactions from GINv2 has been com-
piled in the function “generate_node_collection” within our tool GIN-
toSPN. Specifically, the edgelist of GIN was loaded into R and was used to
generate an igraph object. After extracting the nodes, a sub-graph was
created using the igraph function ‘induced_subgraph’, which was then
converted back into an edgelist.

To integrate the interactions from the gene regulatory network, we
downloaded the TF-target relations from GTRD54,55, and searched for
interactions between any TFs and target genes present in the node collec-
tions. The results were formatted into an edgelist and imported into R to be
combined with the edgelist generated from the sub-graph induced from
GIN. Subsequently, a new sub-graph was generated using the igraph
function ‘graph_from_edgelist’. The sub-graph was adjusted for the nodes’
color and size using the function ‘adjustNode_color_size’ built-in GIN-
toSPN for representation (i.e. Fig. 2A).

The second step involves converting the igraph object of the sub-graph
into mEPN style. The main conversion processes are encapsulated in a
single function, “convert_graph_to_graphml”. This function requires three
inputs: an igraph object extracted from GIN, a coding gene list, and a
matching table of initial tokens and places.

The conversion begins by initializing a list with a standard GraphML
header. The function then generates a vector of nodes and an edge list based
on the igraph object. The nodes in the vector are converted to GraphML
format according to the following rules:

Nodes included in the coding gene list are converted to places labeled
“Protein” in mEPN style.

Nodes containing “;” in their names, indicating that they are inter-
mediate nodes, are converted to transitions labeled “Catalysis” (for bio-
chemical reactions) or “Binding” (for the formation of protein complexes)
in mEPN style.

Nodes that are neither proteins nor intermediate nodes are converted
to places labeled “Metabolite” in mEPN style (see Fig. 5D).

If DNA regions and RNAs are involved, they are converted to the
corresponding components in mEPN style. Additionally, specific types of
transition nodes, such as “Transcription” and “Translation,” are introduced
if the tool detects edges betweenDNA,RNA, andproteinnodes (seeFig. 5D).
An example of a network in GIN style corresponding to the network in
mEPNstyle shown in Fig. 5C is presented in Fig. 5E.Overall, this conversion
step transforms networks like Fig. 5E into the format illustrated in Fig. 5C.

Additionally, if a list of input tokens is provided to the function, the
nodes that intersect with both the input token list and the node list of the
subgraph will be assigned two extra nodes: a ‘Token Input’ transition node
and a ‘Degenerate’ node. The ‘Degenerate’ nodes are introduced to prevent
the excessive accumulation of tokens of the molecules, as tokens are con-
tinuously generated from the ‘Token Input’ nodes. To avoid additional
computation, the coordinatesof thenodesare assigned randomvalues, since
the layout does not influence the results of the SPN simulation.

Following these rules, the conversion of the subgraph intomEPN style
involves the following steps:

Generate a header for the new GraphML file.
Create an edge list of the biochemical reaction network, then loop

through each edge with the following actions:
Check the types of the starting and endingnodesof the edge. If a node’s

name is included in a precompiled protein list, it is classified as a protein
node; if the name contains “;”, it is considered an intermediate node; if it
includes “.DNA”or “.RNA”, it is categorizedas aDNAregion orRNAnode,
respectively. If the node does not fit any of these criteria, it is classified as a
metabolite.

Convert nodes to places or transitions. Based on the types of the two
nodes, create new node entities in GraphML format following mEPN nota-
tions (see Fig. 5D). The mEPN paradigm specifies settings for different types
of places and transitions, including shape, width, height, color, and display
text, all of which are recognized by Biolayout Express3D for SPN simulation.

Convert edges to arcs. During the conversion process, arcs can be of
two types: ordinary arcs and inhibitory arcs. Similar to the node conversion,
create new arc entities in GraphML format according to the specific design
for both types of arcs in the mEPN paradigm.

Check for a list of input tokens. If provided, generate a token input
transition node for each entity node (place) in the list, along with a
degenerate node. Then, generate arcs to connect the token input node to the
entity node with weights representing the number of input tokens. Also, it
generates arcs connecting the entity node to the degenerate node. This is the
only required parameterization step for SPN simulation.

Finalize the GraphML file by generating an ending.
Load the GraphML file into yEd and compute the layout using the

“Layout”→ “Hierarchical” option with default parameters.

Construction of a Petri net model for neurofibroma
The construction of an mEPN-style Petri net model for neurofibroma
involves the following steps (in R environment):
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Collect the genes associated with neurofibroma. The gene list was
extracted from theRobject ofMSigDB62,63C5 collectionofHPOtermsusing
the “read.GMT” function from the R package ‘ActivePathways’64.

Generate a collection of nodes based on GINv2 topology and the
neurofibroma gene list. We utilized the generate_node_collection function
from our tool GINtoSPN, specifying the neurofibroma gene list, the igraph
object of GINv2, and a list of all coding genes inGINv2 to create a collection
of nodes. This collectionwas then refinedusing the rm_unrelatedNodes and
add_parentNodes functions to remove unrelatednodes and incorporate the
parent nodes of intermediate nodes.

Construct an igraph object of the sub-graph. We employed the indu-
ced_subgraph and igraph::simplify functions from the igraph package to
construct the igraph object for the neurofibroma network. For Fig. 2A, we
adjusted the layout using the adjustNode_color_size function from GIN-
toSPN and the layout_with_fr function from the igraph package.

Convert the igraph object of the neurofibroma molecular interaction
network into a Petri net in mEPN style. Using the igraph object of the neu-
rofibroma network and the coding gene list, we converted the igraph object
into a list containing the header, nodes, edges, and ending of a GraphML file.
This list was then transformed into plain text and output to a file.

Compute the layout. We loaded the GraphML file into yEd, and
computed the layout by using the “Layout”→ “Hierarchical” option with
default parameters.

This Petri net model was not marked and, therefore, was not used for
SPN simulation.

Construction of Petri net models for neurofibromatosis type I
To build Petri netmodels for the SPN simulation of neurofibromatosis type
I (NF-1), we specifically collected and refined a gene list associatedwithNF-
1. This gene list was utilized to construct an igraph object in R, representing
the molecular interaction networks of NF-1. We then converted the igraph
object into marked Petri nets based on an RNA-seq dataset. The process
details are as follows:

Build a gene list for NF-1. Core genes from downstream signaling
pathways, specifically the PI3K/Akt and RAS/RAF/ERK pathways (see
SupplementaryTable S2),were added to theneurofibromagene list to create
a newNF-1 gene list. Phenotypes that “very frequently” co-occur withNF-1
(ORPHA636, https://hpo.jax.org/browse/disease/ORPHA:636) according
toHPO,were selected, and gene lists associated with these phenotypes were
used for intersection analysis. This analysis was performed using the R
package “UpsetR”. Eight shared genes from the two modules were further
incorporated into theNF-1gene list, alongwithone chemical,CHEBI37045,
which is purine-GTP.

Generate a collection of nodes based on GINv2 and the NF-1 gene list.
First, we used the function “generate_node_collection” from GINtoSPN to
generate a collection of nodes. Then we refine the node collection by the
function “rm_unrelatedNodes” and “add_parentNodes” to remove unre-
lated nodes and add the parent nodes of the intermediate nodes.

Construct an igraph object of the sub-graph. We used the functions
“induced_subgraph” and “igraph::simplify” from package “igraph” to
construct an igraph object for the network of NF-1. We then added the
formation paths for protein complex and new gene regulatory paths by the
function “add_prcFormation_and_GRN” from GINtoSPN.

Convert the igraphobject ofNF-1’smolecular interactionnetwork into
marked Petri nets in mEPN style. The RNA-seq results generated by
GSE113957 were used as the token input when building the marked Petri
nets. The RNA-seq results were parsed into a matrix, where rows are genes
and columns are human individuals. We first built the Petri net model for
normal human cells by generating a list object containing the header, nodes,
edges, and ending of a GraphML file. This mEPN-styled Petri net was
further parameterized by incorporating the gene expression profiles. For
each column of the gene expression matrix, each of the RNA nodes whose
names are included in the RNA expression profiles are connected to a token
input transition node and a degenerate transition node. 143 marked Petri
nets inmEPN style were generated in the formof list objects by the function

“convert_graph_to_graphml” from GINtoSPN. To simulate the loss of
function effects of the NF1 gene, we deleted the transition nodes that were
catalyzed by NF1 and all the related arcs. Similar to the normal human skin
fibroblast cells, we generated 143 list objects of marked Petri nets in mEPN
style for NF1 mutated conditions. All these lists were further converted to
pure texts and output to a total of 286 GraphML files.

Signaling Petri net simulation by Biolayout express3D
The GraphML files were loaded into Biolayout express3D version 3.4 for
SPN simulation. Upon loading, the software automatically recognized the
mEPN-styled Petri net model and prompted for SPN simulation. The
simulation parameters were as follows: Number of time blocks: 100;
Number of runs: 500; SPN stochastic distribution: standard normal dis-
tribution; SPN transition type: consumptive transitions. The simulation
resultswere then imported intoR for furtheranalysis.Nodes selected forFig.
4C were based on a fold change (>1.2 or <0.8) of the average tokens across
the 90 time blocks in the NF1-mutated condition compared to the normal
condition, in at least one individual.

Data availability
The RNA-seq datasets analyzed in this paper can be accessed from GEO
under accession number GSE113957. The original simulation results gen-
erated in this paper, the R package GINtoSPN, and the manual of the
package can be found on github: https://github.com/BIGchixu/GINtoSPN.

Code availability
Theunderlying code for this study is available on github and canbe accessed
via this link https://github.com/BIGchixu/GINtoSPN.
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