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Abstract: Src family kinases (SFKs) are key regulators of cell proliferation, differentiation, and
survival. The expression of these non-receptor tyrosine kinases is strongly correlated with cancer
development and tumor progression. Thus, this family of proteins serves as an attractive drug target.
The activation of SFKs can occur via multiple signaling pathways, yet many of them are poorly
understood. Here, we summarize the current knowledge on G protein-coupled receptor (GPCR)-
mediated regulation of SFKs, which is of considerable interest because GPCRs are among the most
widely used pharmaceutical targets. This type of activation can occur through a direct interaction
between the two proteins or be allosterically regulated by arrestins and G proteins. We postulate
that a rearrangement of binding motifs within the active conformation of arrestin-3 mediates Src
regulation by comparison of available crystal structures. Therefore, we hypothesize a potentially
different activation mechanism compared to arrestin-2. Furthermore, we discuss the probable direct
regulation of SFK by GPCRs and investigate the intracellular domains of exemplary GPCRs with
conserved polyproline binding motifs that might serve as scaffolding domains to allow such a direct
interaction. Large intracellular domains in GPCRs are often understudied and, in general, not much
is known of their contribution to different signaling pathways. The suggested direct interaction
between a GPCR and a SFK could allow for a potential immediate allosteric regulation of SFKs
by GPCRs and thereby unravel a novel mechanism of SFK signaling. This overview will help to
identify new GPCR–SFK interactions, which could serve to explain biological functions or be used to
modulate downstream effectors.

Keywords: G protein-coupled receptors; GPCR; SFK; Src kinases; G proteins; arrestin; allosteric
regulation; biased signaling; non-receptor tyrosine kinases; SH3 domains; polyproline motifs; kinase
activation; signaling

1. Introduction

Src family kinases (SFKs) are non-receptor protein-tyrosine kinases that regulate
essential processes such as cell proliferation, differentiation, survival, migration, and
metabolism [1].

SFKs are upregulated in malignancies, and their expression levels as well as specific
activity are elevated in brain, breast, colon, lung, and pancreatic carcinomas [2–9]. For
acute myeloid leukemia and colorectal cancer, a direct correlation between expression level
of some SFK family members and patient survival was observed [10,11].

The human SFKs consist of eight typical family members (Src, Fyn, Yes, Fgr, Hck,
Blk, Lck, and Lyn) and three atypical family members (Brk, Frk, Srms) based on sequence
similarity. In some nomenclatures, atypical family members are considered a separate
family also called the Frk family [12,13]. Src, Fyn, and Yes are expressed ubiquitously, while
the other family members show tissue-specific expression [14]. Most of the SFKs, such as
Yes, Fgr, Blk, Hck, Lck, and Lyn have an important regulatory role in signaling pathways
of hematopoietic cells. A majority of SFKs are essential in immune response; whereas Fyn
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and Lck are activated immediately after T-cell receptor stimulation, expression of Fgr, Hck,
Lyn is induced in stimulated mature monocytes and macrophages [15].

SFKs represent drug targets with great therapeutic potential, especially in cancer
treatment, since SFKs are involved in cancer progression in various stages (reviewed
in [16,17]). Approved drugs for cancer treatment targeting Src family kinases, such as
Dasatinib, show a high level of toxicity [18] due to their unselective inhibition of SFKs in
cancer and healthy cells. In-depth structural, functional, and mechanistic knowledge of
each single SFK in combination with a detailed understanding of their expression regulation
can be the basis for a more specific therapeutic approach with limited side effects.

2. Structural Hallmarks of SFKs

SFKs are composed of distinct domains (Figure 1A). The N-terminal region, also
called the SH4 domain, contains a myristoylation or palmitoylation site, which acts as a
membrane anchor and is a key element for the localization of SFKs [19,20]. The unique
domain, which is located after the SH4 domain, has a regulatory function for membrane
localization and can form a fuzzy intramolecular complex with the neighboring SH3
domain [21–23]. SH3 domains serve as binding elements and are known to interact with
a variety of polyproline motifs (reviewed in [24]). After a linker, SFKs contain the SH2
domain, known to interact with phosphorylated tyrosine residues, and following a longer
linker region, the kinase domain, containing an N-lobe and a C-lobe. This domain entails
two regulatory phosphorylation sites (Y-416 and Y-527 for Src as a representative example,
Figure 1B) [25,26]. The first regulatory site is the activating autophosphorylation site, and
the second one the negative regulatory site. The phosphorylation and dephosphorylation
of these tyrosine residues cause dramatic structural changes and affect the activity of the
kinase. In the inactive structure, Y-527 is phosphorylated by CSK (C-terminal Src kinase)
or CHK (CSK homologous kinase) [27,28], which results in an interaction of the kinase
domain with the SH2 domain [25,29,30]. This inactive conformation is further stabilized by
the binding of the SH3 domain with the polyproline motif in the linker region between SH2
domain and kinase domain [30,31]. A recent finding showed a possible involvement of
the SH4 domain, which binds in the inactive conformation to the kinase domain [32]. This
compact state results in a closed conformation of the N- and C-lobes in the kinase domain,
which results in a shielding of the Y-416 in the active site. In this closed conformation,
the binding of ATP and substrates is blocked. In the active conformation, the interactions
of SH2 and SH3 domains are displaced by other binding partners, which results in an
open conformation (Figure 1B). This grants accessibility of the active site and allows for
autophosphorylation of Y-416.
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Figure 1. Schematic of SFK domains and activation mechanism. (A) SFKs are organized in several 
domains: the SH4 domain (in yellow), a unique domain (in light orange), the SH3 domain (in green), 
the SH2 domain (in dark orange), the SH1 domain (in blue). At the N-terminal end, SFKs contain a 
lipid anchor, which is localizing the kinase at the membrane. The linker region between the SH2 
and SH1 domain is crucial for the activation mechanism. A further structural feature is the activation 
loop within the SH1 domain, which contains a tyrosine residue (for Src Y416) that is phosphorylated 
in the active state of the kinase. (B) Comparison of inactive and active states of SFK. In the inactive 
conformation, the tyrosine in the activation loop is not phosphorylated, while the tyrosine (Y527 for 
Src) at the C-terminus carries a phosphate residue as it binds to the SH2 domain. The closed confor-
mation is stabilized by the linker region binding to the SH1 and SH3 domains simultaneously. SH4 
and unique domain seem to be more flexible, and recent studies found binding of the SH4 domain 
to the SH1 domain [32] (two possible conformations are shown). The open conformation is induced 
by the binding of an activating protein, which can interact with the SH3, SH2, SH1 domains and the 
linker. This active conformation shows phosphorylation of the tyrosine (for Src Y416) in the activa-
tion loop and dephosphorylation of the tyrosine in the C-terminus (for Src 527). 
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2, vinculin and GRB2 have also been shown to induce the active conformation [36–41]. 
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of the mechanism is highly desirable due to the potential druggability of GPCRs and the 
crucial role of SFKs in cancer development and progression. 

  

Figure 1. Schematic of SFK domains and activation mechanism. (A) SFKs are organized in several
domains: the SH4 domain (in yellow), a unique domain (in light orange), the SH3 domain (in green),
the SH2 domain (in dark orange), the SH1 domain (in blue). At the N-terminal end, SFKs contain a
lipid anchor, which is localizing the kinase at the membrane. The linker region between the SH2 and
SH1 domain is crucial for the activation mechanism. A further structural feature is the activation
loop within the SH1 domain, which contains a tyrosine residue (for Src Y416) that is phosphorylated
in the active state of the kinase. (B) Comparison of inactive and active states of SFK. In the inactive
conformation, the tyrosine in the activation loop is not phosphorylated, while the tyrosine (Y527
for Src) at the C-terminus carries a phosphate residue as it binds to the SH2 domain. The closed
conformation is stabilized by the linker region binding to the SH1 and SH3 domains simultaneously.
SH4 and unique domain seem to be more flexible, and recent studies found binding of the SH4
domain to the SH1 domain [32] (two possible conformations are shown). The open conformation is
induced by the binding of an activating protein, which can interact with the SH3, SH2, SH1 domains
and the linker. This active conformation shows phosphorylation of the tyrosine (for Src Y416) in the
activation loop and dephosphorylation of the tyrosine in the C-terminus (for Src 527).

3. Modes of SFK Activation

In general, SFKs are activated by several different growth factor receptor tyrosine
kinases. For example, the SH2 domains interact with SHP-1 protein tyrosine phosphatase,
CRK-associated substrate, or protein tyrosine phosphatase-1B [33–35]. Proteins with typical
polyproline motifs such as cyclin-dependent kinase-5, KCNB1, p21-acitvated kinase-2,
vinculin and GRB2 have also been shown to induce the active conformation [36–41].

Additionally, for a number of G protein-coupled receptors (GPCRs), SFK activation
was shown (Table 1). However, the exact activation mechanism of this interaction is poorly
understood. It has been postulated that there are three ways of GPCR-mediated SFK
activation: through arrestins, G proteins, or direct binding. A detailed understanding of
the mechanism is highly desirable due to the potential druggability of GPCRs and the
crucial role of SFKs in cancer development and progression.
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Table 1. Overview of GPCRs that regulate or bind SFKs. Summarized are most of the GPCRs
known to activate SFKs in a G protein- or arrestin-dependent manner. Some studies showed a direct
interaction between the receptors and the SFKs, while in other studies, activation of the SFK was
observed, but a mechanism was not defined.

GPCR G-Protein Arrestin Direct Other References

α2AR Arrestin-2/3 [42]

β2AR Arrestin-2 [43,44]

β3AR 3rd ICL [44]

D1R Arresin-3 unknown [45,46]

D2R Arrestin-2 unknown [47,48]

D4R 3rd ICL [49]

V1bR unknown [50]

V2R Indication of direct [50]

GnRH-a Indication of
Gβγ protein [51,52]

M1R Indication of
Gαq protein [53]

M2R Arrestin-2 [43,54]

M3R Arrestin [55]

M4R unknown [54]

B1R Gαi unknown [56,57]

ETAR unknown [58]

ATR2 unknown [59,60]

Latrophilin-2 unknown [61]

GPR56
(ADGRG1) unknown [62]

4. Src Activation through a GPCR–Arrestin Complex

Until now, the best understood GPCR-mediated activation of SFK is arrestin-based.
As early as 1999, arrestin-2-mediated Src activation by beta-2 adrenergic receptor (β2AR)
stimulation was detected [63]. Later on, this was observed for multiple other receptors
(Table 1). Until recently, there was no evidence of how this interaction could take place.

Arrestins have two major functions in GPCR regulation. First, receptor desensitization
and internalization through recruitment of clathrin-coated pits [64,65] and second, the re-
cruitment and activation of effectors such as MAPK and SFKs ([63] and reviewed in [66,67]).
However, the concept of purely arrestin-based signaling has been recently challenged [68].
The active state of arrestins can be induced through their binding to the phosphorylated
C-terminus (‘tail’ conformation) or the hydrophobic intracellular pocket between the he-
lices of a GPCR (‘core’ conformation) [69,70] (Figure 2A). Activation by other regulatory
molecules such as IP6 or a C-tail phosphopeptide has also been described [71–73]. The
‘core’ conformation is essential for the desensitization of G-protein signaling, while arrestin
in the ‘tail’ conformation loses its desensitization ability [74]. Nevertheless, in the ‘tail’
conformation, arrestin internalization and signaling are still possible. The most dominant
conformational change during the activation of arrestin is the rotation of the N- and C-
domains towards each other. With this domain rotation, multiple small conformational
changes appear (also called switch regions for arrestin-3) [75]. It is predicted that at least
one of the previously described switch regions in arrestin-3 could be unique for this protein.
This regulatory element contains a polyproline motif, which is a classical binding motif for
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SH3 domains. The interaction of SFK SH3 domains with polyproline motifs in arrestin are
substantial for the activation of SFKs [76].

Yang et al showed that the receptor phospho-tail allosterically regulates the different
conformations within the polyproline motifs in arrestin-2, which subsequently allows for
the binding of the SFK SH3 domain. leading to the adoption of an open active conformation
of the kinase [76]. A further recent study verified that receptor-bound arrestin-2, but not
free arrestin-2, is able to activate Src [43]. Here, the binding of the receptor phospho-tail
to arrestin-2 was shown to be sufficient to activate arrestin-2 and therefore Src (Figure
2A). There are only a few activation studies for arrestin-3-mediated Src activation. For
example, in the case of the alpha 2 adrenergic receptor, arrestin-3 acts like a molecular
switch, resulting in Src-mediated ERK activation [42]. For dopamine D1 receptor, activation
of Src in the presence of arrestin-3 was shown [45].
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-3 have each three polyproline motifs, PXXP, that differ slightly (88PPAP, 121PNLP and 
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Figure 2. Binding motifs in arrestin-3 but not in arrestin-2 show structural rearrangement with activation.
(A) Cartoon of arrestin-mediated SFK activation in the ‘core’ (left) and the ‘tail’ conformation (right) of
arrestin. The activating receptor is shown in grey, arrestin is colored in dark blue with yellow polyproline
motifs, and SFK color scheme was described earlier. (B) Structure of basal arrestin-2 in green with
polyproline motifs in magenta (PDB file 1JSY [77]) and arrestin-3 with highlighted polyproline motifs
in blue that are surface-accessible in a receptor-bound state (PDB file 3P2D [78]). (C) The comparison
of polyproline motifs 1 and 2 in the basal (grey) and active (magenta) arrestin-3 conformations shows
a large structural rearrangement with a 180◦ rotation of the R96 (indicated by a yellow arrow). In the
basal state of arrestin-3, R96 forms electrostatic interactions with the backbone of the polyproline motif
1. (D) The comparison of polyproline motif 3 between basal (grey) and active (magenta) states shows
an 180◦ outward movement of E177 in the active state (indicated by yellow arrow). For comparison of
basal and active arrestin-3, PDB files 3P2D and 5TV1 were used [71,78].

Interestingly, for PAR-1 (protease-activated receptor-1), arrestin-3 showed opposite
effects compared to arrestin-2 [79]. While arrestin-3 appeared to mediate the degradation
of Src with the activation of PAR-1, arrestin-2 was crucial for Src activation. Arrestin-2
and -3 have each three polyproline motifs, PXXP, that differ slightly (88PPAP, 121PNLP
and 178PERP for arrestin-2 and 89PPVP, 94PPRPPTR, 175PEKP for arrestin-3, Figure 2B).
Most the polyproline motifs do not contain a positively charged arginine, which could
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contribute to high-affinity binding of SFKs [80–82]. The exemptions are R180 in arrestin-2
and R96 and R100 in arrestin-3. By comparing the active and basal crystal structures of
arrestin-3 (PDB 3P2D for basal and 5TV1 for active arrestin-3) [71,78], we found that in
the basal structure of arrestin-3, R96 stabilizes the polyproline loop in a potential inactive
conformation through electrostatic interactions with the backbone of the amid bond of
P92 and N93 (Figure 2C). Polyproline motif 3 indicated a similar stabilization of the basal
conformation by an electrostatic interaction between K206 and the highly conserved E177
(Figure 2D). By comparison with the active arrestin-3 structure, we found that the side
chains of R96 (Figure 2C) and E177 (Figure 2D) are rotated 180◦ outward, which could
allow the rearrangement of the polyproline motif. This structural reorganization of the
polyproline binding motif of arrestin-3 might potentially have a regulatory effect on the
SH3 domain interaction of SFKs with arrestin-3. Even though arrestin-2 harbors an arginine
in motif 3 (R180), no electrostatic interactions were found by comparing crystal structures of
basal and active arrestin-2 (PDB 1JSY for basal arrestin-2, 6UP7 and 6U1N for active arrestin-
2) [77,83,84], which could significantly alter the polyproline motif conformation within the
different activation stages. This could result in different affinities for SH3 domains and,
therefore, explain the observed different roles of arrestin-2 and -3 in PAR1 activation.

5. Src Activation by G Proteins

G proteins (heterotrimeric guanine nucleotide-binding regulatory proteins) contain α,
ß, and γ subunits. The α subunits can be classified into four families based upon sequence
similarity: Gαs, Gαi, Gαq, and Gα12 [85]. The ß and γ subunits form a signaling complex
due to their strong interaction. Agonist-bound GPCRs activate G proteins by facilitating
the exchange of GDP to GTP at the α subunit. This active state causes the dissociation
of the Gα subunit from the membrane-anchored ßγ subunit. Activation of SFKs by G
proteins can be achieved through either the α subunit or the ßγ subunit. The interaction
with the α subunit was shown by in vitro studies using Y-530-phosphorylated Src, with
Gαs or Gαi resulting in the activation of Src. The interaction is believed to be mediated
through the kinase domain of the SFK and the switch II region of the Gα subunit [86].
The described two switch regions in G proteins are defined regions crucial for binding of
effectors such as Ras protein or adenylyl cyclase [87–89]. The activation of Src through the
ßγ subunit was found for the CRF1 receptor by using a ßγ subunit inhibitor which caused
downregulation of Src activation [90]. For carvedilol-stimulated β1 adrenergic receptor,
Src-dependent ERK activation was shown [91]. Here, it was suggested that the activation
of Src also involved the Gßγ subunits of the G protein, whereas this complex formation
was arrestin-dependent [92].

Src, contrastingly, is able to phosphorylate Gα subunits in vitro, whereas the highest
efficiency is shown for the GDP-bound inactive subunit. The two sites of phosphorylation
are Y37 and Y377 [93,94], and both promote GTP hydrolysis. The different regulatory
mechanisms by G protein phosphorylation are reviewed elsewhere [95]. In transducin,
an additional phosphorylation site, Y142, was found [96]. Furthermore, Gßγ subunits are
possibly phosphorylated, but it is not known if SFKs are involved. Overall, an arrestin-
independent G protein-mediated activation of Src is still not fully understood and requires
further investigation.

6. Src Family Kinases as Direct Effectors of GPCRs

The existence of protein binding motifs within the intracellular structures of GPCRs
is well known; however, the impact on GPCR signaling remains poorly understood. A
variety of binding motifs are located in the intracellular loops and C-termini for, e.g., PDZ
proteins as well as SH2 or SH3 binding motifs [97]. Seventy-two out of 825 human GPCRs
contain the classical polyproline SH3 domain-binding motif [76]. Most of these GPCRs
have polyproline motifs within the third intracellular loop or the C-terminus (Figure 3),
and for some of these receptors, an interaction with Src SH3 domains is predicted and was
shown. For example, the beta-3 adrenergic receptor (β3AR) has typical SH3 binding sites
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in the third intracellular loop (Table 2), while it neither contains any GRK phosphorylation
sites nor does it bind to arrestin [44]. β3AR mutations in Src binding sites inhibited the
activation of Src or MAPKs. Nevertheless, β3AR Src activation is also Gαi-dependent.
Further, the purinergic P2Y2 receptor entails polyproline motifs in the C-terminus, and Src
binding, as well as its activation, was verified (Table 2) [98]. In most of these studies, the
impact of arrestin was not taken into consideration.

Next to the typical interaction with polyproline motifs, another or an additional
possibility is the interaction with phosphorylated tyrosine residues through the SH2 domain
of SFKs. This could be shown for β2AR through mutation of residue Y350 in the C-
terminal tail, which resulted in the decrease of Src phosphorylation and also impaired the
desensitization of the receptor [99].

Dopamine receptors are a classical receptor family in which many family members
contain polyproline motifs (Table 2). Multiple studies have confirmed the binding of SH3
domains to dopamine D2, D3, and D4 receptor [49,100,101]. However, it is unclear if there
are additional adaptor or scaffold proteins involved in the activation mechanism. For
dopamine D4 receptor, it could be shown that it directly activates the Src/SHC/Ras/ERK
pathway [102]. The inhibition of Src by PP2 blocked ERK phosphorylation, which indicates
signaling through Src for D2 and D4 receptors [103]. Recently, it was found that Fyn
interacts with serotonin 5-HT6 receptor (5-HT6R) (Table 2) directly as well as in an arrestin-
dependent manner to activate ERK1/2 [104].
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Table 2. Comparison of SFK binding motifs in the 3rd intracellular loop and C-tail of GPCRs. Shown are the amino acid
Scheme 2. Y2 receptor, serotonin receptor type 6, and the subfamily of dopamine receptors, with highlighted polyproline
motifs for SFKs in red and for other kinases in blue. Using a software to predict SH3 domain interactions, different SFK
family members appeared to likely interact with individual domains [105].

3ICL C-Terminus Predicted SFK SH3
Domain Interactions

b1AR REAQKQVKKIDSCERRFLGGPARPPSPSPSPVPAP
APPPGPPRPAAAAATAPLANGRAGKRRPSRLVALRE

CRSPDFRKAFQRLLCCARRAARRRHATHGDRPRASG
CLARPGPPPSPGAASDDDDDDVVGATPPARLLEPWA

GCNGGAAADSDSSLDEPCRPGFASESKV
FGR, LYN

b2AR RVFQEAKRQLQKIDKSEGRFHVQNLSQVEQDGRTG
HGLRRSSKFCLKEHKALKT

PDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSG
YHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDS

QGRNCSTNDSLL
-

b3AR RVFVVATRQLRLLRGELGRFPPEESPPAPSRSLAP
APVGTCAPPEGVPACGRRPARLLPLREHRALC

RSPDFRSAFRRLLCRCGRRLPPEPCAAARPALFPSG
VPAARSSPAQPRLCQRLDGASWGVS

SRC, FGR, LYN, HCK,
LCK, FYN

P2Y2 MARRLLKPAYGTSGGLPRAKRKSVRT
GQRLVRFARDAKPPTGPSPATPARRRLGLRRSDRTD
MQRIEDVLGSSEDSRRTESTPAGSENTKDIRL

FGR

5HT6 CRILLAARKQAVQVASLTTGMASQASETLQVPRTP
RPGVESADSRRLATKHSRKALK

PLFMRDFKRALGRFLPCPRCPRERQASLASPSLRTS
HSGPRPGLSLQQVLPLPLPPDSDSDSDAGSGGSSGL
RLTAQLLLPGEATQDPPLPTRAAAAVNFFNIDPAEP

ELRPHPLGIPTN

LYN

D1R RIAQKQIRRIAALERAAVHAKNCQTTTGNGKPVEC
SQPESSFKMSFKRETKVLK

RKAFSTLLGCYRLCPATNNAIETVSINNNGAAMFS
SHHEPRGSISKECNLVYLIPHAVGSSEDLKKEEAAG
IARPLEKLSPALSVILDYDTDVSLEKIQPITQNGQH

PT

-

D2R

IVLRRRRKRVNTKRSSRAFRAHLRAPLKGNCTHPE
DMKLCTVIMKSNGSFPVNRRRVEAARRAQELEMEM
LSSTSPPERTRYSPIPPSHHQLTLPDPSHHGLHSTP
DSPAKPEKNGHAKDHPKIAKIFEIQTMPNGKTRTSL

KTMSRRKLSQQKEKKATQ

EFRKAFLKILHC -

D3R

RIYVVLKQRRRKRILTRQNSQCNSVRPGFPQQTLS
PDPAHLELKRYYSICQDTALGGPGFQERGGELKREE
KTRNSLSPTIAPKLSLEVRKLSNGRLSTSLKLGPL

QPRGVPLREKKATQ

NIEFRKAFLKILSC LYN

D4R

ATFRGLQRWEVARRAKLHGRAPRRPSGPGPPSP
TPPAPRLPQDPCGPDCAPPAPGLPRGPCGPDCAP
AAPSLPQDPCGPDCAPPAPGLPPDPCGSNCAPPDA
VRAAALPPQTPPQTRRRRRAKITGRERKAMR

NAEFRNVFRKALRACC SRC, FGR, HCK, LYN,

D5R RIYRIAQVQIRRISSLERAAEHAQSCRSSAACAPDT
SLRASIKKETKVLK

FNADFQKVFAQLLGCSHFCSRTPVETVNISNELI
SYNQDIVFHKEIAAAYIHMMPNAVTPGNREVDNDE
EEGPFDRMFQIYQTSPDGDPVAESVWELDCEGEIS

LDKITPFTPNGFH

-

7. GPCR-Mediated Src Signaling with Undefined Mediators

For several GPCRs, activation of an SFK was shown, but the exact regulation mech-
anism of the SFK is unknown. Some examples are the muscarinic M4 receptor (M4R),
bradykinin receptor B1 (B1R), angiotensin type 2 receptor (ATR2), and A-type endothelin
receptor (ETAR) (Table 1) [54,56–60]. For the V1b vasopressin receptor (V1bR), Src activation
was shown, and a potential interaction of the SH2 domain with intracellular domains
of the receptor as well as an arrestin-mediated activation of Src was discussed [50]. Src
activation was also shown for two adhesion GPCRs, Latrophilin-2 (ADGRL2) and GPR56
(ADGRG1) [61,62]. For Latrophilin-2, Src activation was observed, which could be either
independent of or dependent on CDK5 [61]. For GPR56, overexpression of the receptor in
295T cells resulted in Src–Fak activation, which is RhoA-independent [62]. The C-terminus
of Latrophilin-2 is exceptionally long, with 375 amino acids, which suggests that it could act
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as an adaptor for downstream effectors. GPR56, on the other hand, displays a rather short
C-terminus, with only 35 amino acids. However, this C-terminus entails several potential
phosphorylation sites, which hints at an arrestin-mediated activation of the Src-kinase.

In general, not many studies are available that address the direct interaction of GPCRs
with SFKs and subsequent SFK activation. For a more detailed understanding, additional
studies are needed to shed light on the multiple ways in which SFKs transduce GPCR-
mediated signals. Similar to arrestin SFKs can provide an additional signaling option
through a GPCR that contributes to the physiological roles of this receptor. Deciphering the
pathways that are mediated specifically through the SFKs will add to our understanding of
the physiological functions of even known and established GPCRs. Being able to attribute
intercellular signals and subsequent cellular functions specifically to the SFK opens the
opportunity for a so far untapped biased signaling approach that could be exploited by
pharmaceutical interventions.
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