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A B S T R A C T

Background and objectives: Human susceptibility to chronic non-communicable disease may be

explained, in part, by mismatches between our evolved biology and contemporary environmental

conditions. Disease-induced fatigue may function to reduce physical activity during acute infection,

thereby making more energy available to mount an effective immune response. However, fatigue in

the context of chronic disease may be maladaptive because long-term reductions in physical activity in-

crease risks of disease progression and the acquisition of additional morbidities. Here, we test whether

cumulative chronic morbidity is associated with subjective fatigue.

Methodology: We constructed a cumulative chronic morbidity score using self-reported diagnoses and

algorithm-based assessments, and a subjective fatigue score based on four questionnaire items using

cross-sectional survey data from the Study on global AGEing and adult health, which features large

samples of adults from six countries (China, Ghana, India, Mexico, Russia and South Africa).

Results: In a mixed-effects linear model with participants nested in countries (N¼ 32 455), greater cu-

mulative chronic morbidity is associated with greater subjective fatigue (b¼ 0.34, SE¼ 0.005,

P< 2e�16). This association replicates within each country and is robust to adjustment for key socio-

demographic and physical covariates (sex, age, household wealth, physical function score, habitual

physical activity, BMI and BMI2).
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Conclusions and implications: Fatigue is a common but perhaps maladaptive neuropsychological response to chronic morbidity.

Disease-induced fatigue may mediate a self-perpetuating cycle, in which chronic morbidity reduces physical activity, and less physical

activity increases cumulative chronic morbidity. Longitudinal research is needed to test whether chronic morbidity, fatigue and physical

activity form a cyclical feedback loop.

Lay Summary: Fatigue during acute illness may promote recovery, but persistent fatigue in the context of chronic disease may make

matters worse. We present evidence from six countries that more chronic disease is associated with more fatigue. This fatigue may re-

duce physical activity, which increases risks of acquiring additional chronic health problems.

K E Y W O R D S : chronic diseases; mental health; aging; epidemiology

BACKGROUND AND OBJECTIVES

Chronic non-communicable diseases (e.g. heart diseases, dia-

betes and cancer) now account for most of the global burden of

death and disability [1, 2]. Epidemics of chronic disease tend to

emerge in environments where extrinsic mortality rates are rela-

tively low and obesity rates are relatively high [3].

These chronic non-communicable diseases were likely rare

throughout the vast majority of our evolutionary history [4].

Obesity-related chronic disease risk factors are rare in contem-

porary hunter-gatherers and other minimally market-integrated

subsistence societies [5, 6]. Infectious diseases, on the other

hand, account for 20–85% of deaths in contemporary and

ethnographically known hunter-gatherer groups [7–12]. The rise

of agriculture (starting �10–15 000 BP) brought about new

sources of infectious disease risk, with dense population cen-

ters and proximity to domesticated animals [13].

Despite periodic pandemics (e.g. COVID-19, influenza and

HIV/AIDS), global infectious disease mortality rates have

declined in the past 100–200 years [14] and rates of obesity have

increased [15]. In many countries, obesity was once associated

with high socioeconomic status but is now prevalent across so-

cial strata and disproportionately impacts those of low socioe-

conomic status [16, 17].

Reductions in global infectious disease mortality have been

accompanied by an increase in life expectancy at birth, along with

a dramatic increase chronic non-communicable disease [1–3].

Along with changes in diet and reductions in subsistence-related

physical activity, longer average lifespans have led to a higher

prevalence of aging-related chronic conditions (e.g.

cardiometabolic diseases and cancers) [1–3]. Mortality from aging-

related diseases was relatively rare for most of human evolutionary

history, in part because fewer individuals lived long enough to die

of these aging-related diseases [3]. In contrast, infectious disease

has been a persistent cause of morbidity and mortality across the

lifespan for most of our evolutionary history [7–12]. Our somatic

maintenance systems may therefore be poorly adapted to prevent

the kinds of morbidity and mortality that are most common in

aging populations that consume highly processed, calorie-dense

diets and exhibit low levels of physical activity [4]. In populations

that have experienced evolutionarily novel increases in the average

life expectancy, there is considerable variability in healthy aging

[18]. Some individuals experience multiple decades of disability-

free life in older adulthood, while other individuals experience

rapid decline in functional status with age. Research is needed to

identify processes across the lifecourse that explain this variation

in healthy aging.

Given the rapid, recent rise of chronic non-communicable

diseases as a major source of morbidity and mortality, our

evolved brains and bodies may be poorly equipped to deal with

these diseases [19]. Much of our susceptibility to chronic dis-

ease may be explained by mismatches between our evolved

biology and contemporary environmental conditions [4].

For example, humans have a propensity to generate large fat

reserves when it is nutritionally feasible [20]. In the environ-

ments typical of our evolutionary history, the capacity to form

large fat deposits provided a mechanism to maintain a stable

energy supply for funding the high metabolic costs of maintain-

ing our large brains, supporting multiple dependent offspring,

foraging and lactating during extended periods of negative en-

ergy balance [21, 22]. In contemporary environments character-

ized by calorie-dense foods and sedentary lifestyles, our

propensity for adiposity makes us vulnerable to obesity.

Along the same lines, human immune systems seem to be

mismatched with contemporary environments that are low in

microbial diversity and feature low rates of exposure to infec-

tious pathogens that were common for most of our evolutionary

history (e.g. parasitic worms) [23, 24]. This lack of exposure to

our long-time microbial and macroparasitic co-evolutionary

companions influences the development of our immune sys-

tems, making us vulnerable to allergies, autoimmune diseases

and inflammation-related disorders [24, 25].

In this article, we consider another feature of our evolved

biology that appears to be mismatched with contemporary

environments—disease-induced fatigue. Multiple lines of evi-

dence suggest that disease-induced fatigue evolved to pro-

mote host survival during acute infection. But like chronic

inflammation, fatigue may be counterproductive when it is

deployed chronically in response to chronic non-

communicable diseases.
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Like other vertebrates, humans exhibit a typical neuropsycho-

logical response to internal immunological cues of infection or

somatic damage [26, 27]. This response includes increased leth-

argy, social withdrawal, reduced appetite and increased pain

sensitivity [26]. Animal behaviorists and psychoneuroimmunol-

ogists refer to these changes as sickness behavior [26, 28].

These changes are hypothesized to be adaptive adjustments

that help organisms fight acute infection and recover from

acute somatic damage [26, 27].

Depending on various contextual cues, sickness behavior

includes: (i) increased fatigue to reduce physical activity, thereby

making more energy available for the immune system;

(ii) increased sensitivity to nausea and pain to reduce the risk of

acquiring additional infections or injuries that would compound

the immune system’s workload; (iii) changes in temperature per-

ception to promote thermoregulatory behaviors that reduce the

cost of maintaining or increasing body temperature; (iv) changes

in appetite to promote consumption behaviors (or lack thereof )

that support the fight against infection; and (v) detectable changes

in facial expressions, body language and social behavior that signal

to our social allies that we need help and support [29].

Acute infection, injury and chronic degenerative disease are all

associated with increases in pro-inflammatory immune activity [30,

31]. Studies with human participants and animal models demon-

strate that experimentally induced increases in pro-inflammatory

cytokine production can initiate the psychological and behavioral

changes characteristic of sickness behavior [26, 27].

During acute infection or injury, increased fatigue reduces

physical activity, thereby making more energy available to

mount an effective immune response [29, 32, 33]. During chron-

ic disease, however, physical inactivity is an important causal

factor driving disease progression and the acquisition of add-

itional morbidities [34, 35]. In some cases, physical exercise can

even reverse chronic non-communicable diseases, such as type

2 diabetes, though the doses of physical activity needed to re-

verse type 2 diabetes are much higher than the doses of physic-

al exercise typically prescribed [36].

During acute infection, systemic inflammation is one of the

main mechanistic cues that activates the neural mechanisms that

regulate sickness behavior [29]. Systemic inflammation is often

also elevated in people with chronic diseases, and some cases of

chronic disease appear to induce a chronic version of sickness be-

havior [37, 38]. Along the same lines, greater systemic inflamma-

tion has been linked to greater risks for chronic fatigue and

depression [39, 40]. Physical activity reduces inflammation through

the action of myokines produced by active skeletal muscle [41].

Thus, physical inactivity can further exacerbate inflammation stem-

ming from chronic diseases by failing to activate a major regula-

tory pathway that normally down-regulates inflammation. Thus,

chronic morbidity may initiate a vicious self-perpetuating cycle, in

which increased chronic morbidity triggers increased chronic

fatigue, and greater chronic fatigue leads to even greater chronic

morbidity by reducing levels of physical activity.

Besides inflammation, there are other mechanisms that may

contribute to fatigue during chronic disease [37, 42]. For ex-

ample, disrupted insulin regulation in the context of diabetes

may interfere with one’s ability to mobilize metabolic resources,

thereby inducing fatigue. Reduced oxygen supply may contrib-

ute to fatigue in people with chronic lung disease. The higher

energy costs of movement may increase fatigue for people with

high levels of adiposity. Cardiovascular damage may increase

fatigue by limiting one’s ability to mount sufficient cardiac out-

put. The discomfort of movement may exacerbate fatigue in

arthritis. Recent research has demonstrated that total energy ex-

penditure progressively declines in humans after the age of 60

in contemporary populations, so some cases of apparent chron-

ic disease-related fatigue may simply reflect age-related declines

in total energy expenditure [43]. For most of our evolutionary

history, fatigue may have been an adaptive response when expe-

riencing physiological cues of infection, metabolic depletion,

tissue damage, hypoxia or prolonged pain [29]. In the context of

chronic aging-related diseases, fatigue may be a maladaptive re-

sponse that exacerbates the underlying chronic condition by

reducing physical activity.

This feedback loop connecting chronic disease, fatigue and

physical activity may play a role in generating the global pandemic

of chronic non-communicable disease. One prediction arising

from this model is that greater cumulative chronic morbidity is

associated with greater subjective fatigue. We test this prediction

using large cross-sectional samples of adults from six culturally

distinct countries.

METHODOLOGY

We used data from the World Health Organization’s (WHO)

Study on global AGEing and adult health (SAGE), Wave 1,

which collected cross-sectional data on aging-related health

among adults in six middle-income countries (China, Ghana,

India, Mexico, Russia and South Africa). In our analyses, we in-

clude all adults (ages 18þ) from the Wave 1 dataset who have

complete data for all variables included in our statistical mod-

els. Wave 1 data collection began in 2007 and concluded in

2010. Data collection protocols for SAGE are described in detail

elsewhere [44]. All SAGE study protocols were approved by

WHO’s Research Ethics Review Committee and by the ethical

review organization with jurisdiction in each country. Written

informed consent was obtained from all participants.

Cumulative chronic morbidity

We created a cumulative chronic morbidity variable by sum-

ming the number of chronic conditions reported by each
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participant. Data were available on seven chronic conditions:

arthritis, stroke, angina, diabetes, chronic lung disease, asthma

and hypertension. For arthritis, angina, chronic lung disease

and asthma, we followed previously published protocols for

coding each condition as either present or absent [45]. A partici-

pant was coded as having the condition if they reported having

been diagnosed with it, or if their responses to a symptom-

based diagnostic algorithm indicated that they had the condi-

tion (for angina and stroke). Participants were coded as having

hypertension if they reported ever having been diagnosed with

it or if their measured resting blood pressure (average of three

trials, except for the Mexico data, where an average of the two

available trials was used) was greater than systolic¼140 mmHg

or diastolic¼90 mmHg. Participants were coded as having dia-

betes if they reported having been diagnosed with it. Summing

the number of chronic conditions for each individual generated

a count variable ranging from 0 to 7.

Subjective fatigue

We calculated a subjective fatigue score by summing responses to

four questions. Question 1 asked, ‘Overall in the last 30 days, how

much difficulty did you have in vigorous activities (vigorous activ-

ities require hard physical effort and cause large increases in breath-

ing or heart rate)?’ Question 2 asked, ‘Overall in the last 30 days,

how much of a problem did you have due to not feeling rested or

refreshed during the day?’ Question 3 asked, ‘Do you have enough

energy for everyday life?’ Question 4 asked, ‘During the last

12 months, have you had a period lasting several days when you

have been feeling your energy decreased or that you are tired all the

time?’ Questions 1–3 were answered on a 5-point ordinal scale,

with higher values indicating greater subjective fatigue. Question 4

was a yes-or-no question, so we coded the response ‘no’ as 1 and

the response ‘yes’ as 5 so that this item would have an influence on

the subjective fatigue score equivalent to the other three items. The

resulting subjective fatigue score ranged from 4 to 20.

Covariates

Age was reported as chronological age in years. Sex was

reported as male or female. Household wealth was a composite

measure based on possession of durable goods, dwelling char-

acteristics and access to services [44]. Responses to 21 items

were coded as ‘1’ (denoting possession or access to the item)

or ‘0’ (denoting a lack of possession or access to the item). In a

reshaped dataset, each response item was then treated as a

separate observation for wealth in a pure random effects model,

which produced indicator-specific thresholds for a latent wealth

scale. Households were then arranged into a country-specific

asset ladder using an empirical Bayes postestimation method.

The value of this asset ladder was assigned to individuals as

their wealth score.

A physical function score was calculated by combining per-

formance on two different timed walk tasks and grip strength

for each hand. One timed walk task involved walking 4 m at a

normal pace. The other timed walk task involved walking 4 m as

quickly as possible. Grip strength was measured using a

dynamometer with two trials for each hand. We averaged the

two trials in each hand to create an average for the dominant

and non-dominant hands. If no dominant hand was reported,

the right hand was coded as dominant. Normal walk time and

rapid walk time were each standardized by stature separately

for men and women. Dominant grip strength and non-

dominant grip strength were each standardized by body weight

separately for men and women. These standardized scores

were combined to generate an overall physical function score.

To remove implausible values and extreme outliers, we dropped

cases for which the physical performance score was more than

four standard deviations from the mean.

Following the Global Physical Activity Questionnaire analysis

guide [46], we calculated a habitual physical activity variable

that multiplies the minutes per week spent in each category of

activity by the metabolic equivalent (MET) for that activity (the

estimated ratio of total energy expenditure required to perform

the task to the energy expenditure required for just resting). The

resulting MET-minutes variable integrates both the quantity

and intensity of an individual’s physical activity levels in a typ-

ical week.

Body mass index (BMI, kg/m2) was calculated from stature

and weight measured using standard protocols.

Statistical analysis

In analyses with all countries combined, we specified mixed-

effects linear models with participants nested in countries (i.e.

with a random effect for country) in the R package ‘lme4’ (ver-

sion 1.1-19). In analyses that considered each country separate-

ly, we specified ordinary least squares multiple regression

models in base R (version 3.5.0). We created plots using the R

package ‘ggplot2’ (version 3.1.0).

In the first set of models, only cumulative chronic morbidity

and an intercept term were included as predictors of subjective

fatigue. In the second set of models, the sociodemographic

covariates (age, sex and wealth) were included, in addition to

the terms in the first set of models. In the third set of models,

the physical covariates (physical function score, physical activity

level, BMI and BMI2) were included, in addition to the terms in

the second set of models.

Models with physical covariates included terms for both BMI

and BMI2 because we expected BMI to have both linear effects

(greater body mass represents greater energetic reserves and,
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therefore, less subjective fatigue) and curvilinear effects (those

in the underweight and obese extremes of BMI are expected to

have greater subjective fatigue).

All variables except age, sex and cumulative chronic condi-

tions were standardized prior to analysis (mean¼0, SD¼ 1).

Physical activity levels (MET-minutes) and subjective fatigue

scores were positively skewed and were natural log-transformed

prior to standardization.

RESULTS

The distribution of age, sex and cumulative chronic morbidity

by country is presented in Table 1.

All countries combined

Model 1 included fixed effects for cumulative chronic morbidity,

a random effect for country, and the model intercept as predic-

tors of subjective fatigue. Greater cumulative chronic morbidity

was associated with greater subjective fatigue (b¼ 0.34,

SE¼ 0.005, P< 2e-16). Model 2 contained all the terms in

Model 1 as well as fixed effects for age, sex and wealth. Greater

cumulative chronic morbidity was also associated with greater

subjective fatigue in Model 2 (b¼ 0.25, SE¼ 0.005, P< 2e-16).

Model 3 contained all the terms in Model 2, as well as fixed

effects for physical function score, physical activity levels, BMI

and BMI2. Greater cumulative chronic morbidity was also asso-

ciated with greater subjective fatigue in Model 3 (b¼ 0.25,

SE¼ 0.005, P< 2e-16).

In the mixed models combining data from all countries, the

fully adjusted model (Model 3) exhibited the highest quality as

indexed by both Akaike information criterion (AIC) and Bayes

information criterion (BIC).

Within-country analyses

Analyses stratified by country included the same set fixed effect

terms as the pooled analyses with all countries combined. In

Model 1, greater cumulative chronic morbidity was associated

with greater subjective fatigue in all countries: China (b¼ 0.29,

SE¼ 0.007, P< 2e-16), Ghana (b¼ 0.315, SE¼ 0.017, P< 2e-

16), India (b¼ 0.392, SE¼ 0.01, P< 2e-16), Mexico (b¼ 0.323,

SE¼ 0.021, P< 2e-16), Russia (b¼ 0.394, SE¼ 0.014, P< 2e-

16) and South Africa (b¼ 0.0.345, SE¼ 0.016, P< 2e-16).

In Model 2, greater cumulative chronic morbidity was also

associated with greater subjective fatigue in all countries: China

(b¼ 0.222, SE¼ 0.007, P< 2e-16), Ghana (b¼ 0.217,

SE¼ 0.015, P< 2e�16), India (b¼ 0.262, SE¼ 0.009,

P< 2e�16), Mexico (b¼ 0.27, SE¼ 0.021, P< 2e�16), Russia

(b¼ 0.323, SE¼ 0.014, P< 2e�16) and South Africa (b¼ 0.315,

SE¼ 0.016, P< 2e�16).

The same was true in Model 3: China (b¼ 0.228, SE¼ 0.007,

P< 2e�16), Ghana (b¼ 0.207, SE¼ 0.015, P< 2e�16), India

(b¼ 0.262, SE¼ 0.009, P< 2e�16), Mexico (b¼ 0.271,

SE¼ 0.021, P< 2e�16), Russia (b¼ 0.31, SE¼ 0.015,

P< 2e�16) and South Africa (b¼ 0.299, SE¼ 0.016,

P< 2e�16).

In within-country models, the fully adjusted model (Model 3)

exhibited the highest quality in all countries as indexed by AIC.

In all countries except the Russian Federation, the fully adjusted

model (Model 3) exhibited the highest quality as indexed by

BIC. In the Russian Federation, the model with only the inter-

cept, cumulative chronic morbidity and sociodemographic

covariates (Model 2) exhibited the highest quality as indexed by

BIC.

In Table 2, we present coefficients, standard errors and P-val-

ues for all models. In Fig. 1, we use violin plots and plotted

lines representing marginal effects to visualize the relationship

between cumulative chronic morbidity and subjective fatigue by

country.

DISCUSSION

We find that greater cumulative chronic morbidity is consistent-

ly associated with greater subjective fatigue. In the multilevel

model including all participants, having four additional chronic

conditions is associated with a full standard deviation increase

in levels of subjective fatigue. This pattern is remarkably con-

sistent across samples from six countries that are culturally and

geographically distinct. Adding key physical variables to the

model (physical function score, habitual physical activity, BMI

and BMI2) does not substantially diminish the association be-

tween cumulative chronic morbidity and subjective fatigue in

any model, which suggests that this association is not mediated

by declines in physical capacity. Plotting subjective fatigue by

number of chronic conditions reveals a dose–response pat-

tern—each additional chronic condition is associated with a

higher level of subjective fatigue. This pattern suggests that

subjective fatigue is actually associated with cumulative chronic

morbidity, not just with one or two of the chronic conditions

aggregated in the variable.

In within-country analyses, the mean adjusted r2 in models

with only cumulative chronic disease burden as the independ-

ent variable was 0.15 (range: 0.08–0.26), indicating that cumula-

tive chronic disease burden alone explained about 15% of the

variation in subjective fatigue scores. The mean adjusted r2 in

the full model was 0.27 (range: 0.18–0.34). Cumulative chronic

disease burden, along with other variables in the model,

explained a substantial proportion of the variation in subjective

fatigue scores. But there is also considerable remaining vari-

ation that remains unexplained in these models, reflecting the

complex etiology of subjective fatigue.
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Table 2. Linear models with subjective

fatigue scores as the dependent variable

All countries (N¼ 32 455)

Model 1 Model 2 Model 3

Intercept

B �0.36 �1.62 �1.47

SE 0.11 0.17 0.15

P 0.0225 0.0002 0.0001

Chronic conditions

B 0.34 0.25 0.25

SE 0.005 0.005 0.005

P <2e�16 <2e�16 <2e�16

Sex

B 0.23 0.23

SE 0.009 0.009

P <2e�16 <2e�16

Age

B 0.021 0.019

SE 0.0004 0.0004

P <2e�16 <2e�16

Wealth

B �0.204 �0.186

SE 0.006 0.006

P <2e�16 <2e�16

Physical function

B �0.083

SE 0.005

P <2e�16

Physical activity

B �0.018

SE 0.005

P 0.0003

BMI

B �0.09

SE 0.006

P <2e�16

BMI2

B 0.061

SE 0.006

P <2e�16

Country (random effect)

Intercept

Variance 0.07493 0.1616 0.1234

SD 0.2737 0.402 0.3513

Residual

Variance 0.80514 0.6893 0.6791

SD 0.8973 0.8302 0.8241

BIC 85 155.86 80 177.15 79 763.3

(continued)

Table 2. Continued

All countries (N¼ 32 455)

Model 1 Model 2 Model 3

AIC 85 122.31 80 118.43 79 671.04

Log likelihood �42 557.2 �40 052.2 �39 824.5

China (n¼ 12 319)

Model 1 Model 2 Model 3

Intercept

b �0.617 �1.70 �1.53

SE 0.012 0.039 0.042

P <2e�16 <2e�16 <2e�16

Chronic conditions

b 0.29 0.222 0.228

SE 0.007 0.007 0.007

P <2e�16 <2e�16 <2e�16

Sex

b 0.181 0.181

SE 0.014 0.014

P <2e�16 <2e�16

Age

b 0.015 0.013

SE 0.0007 0.0007

P <2e�16 <2e�16

Wealth

b �0.288 �0.278

SE 0.009 0.009

P <2e�16 <2e�16

Physical function

b �0.076

SE 0.009

P <2e�16

Physical activity

b �0.012

SE 0.007

P 0.103

BMI

b �0.106

SE 0.012

P <2e�16

BMI2

b 0.056

SE 0.013

P 0.00001

BIC 31 112.68 29 312.67 29 194.04

AIC 31 090.42 29 268.16 29 119.85

(continued)
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Table 2. Continued

China (n¼ 12 319)

Model 1 Model 2 Model 3

Log likelihood �15 542.2 �14 628.1 �14 549.9

Adjusted r2 0.11 0.24 0.25

Ghana (n¼ 3792)

Model 1 Model 2 Model 3

Model 1 Model 2 Model 3

Intercept

b �0.084 �1.78 �1.68

SE 0.022 0.056 0.603

P 0.0002 <2e�16 <2e�16

Chronic conditions

b 0.315 0.217 0.207

SE 0.017 0.015 0.015

P <2e�16 <2e�16 <2e�16

Sex

b 0.286 0.323

SE 0.026 0.026

P <2e�16 <2e�16

Age

b 0.029 0.026

SE 0.0009 0.001

P <2e�16 <2e�16

Wealth

b �0.148 �0.123

SE 0.016 0.017

P <2e�16 1.38e�13

Physical function

b �0.093

SE 0.013

P 8.86e�13

Physical activity

b 0.035

SE 0.014

P 0.012

BMI

b �0.073

SE 0.017

P 0.00001

BMI2

b 0.045

SE 0.018

P 0.0133

(continued)

Table 2. Continued

Ghana (n¼ 3792)

Model 1 Model 2 Model 3

BIC 9983.667 8945.119 8904.073

AIC 9964.946 8907.675 8841.666

Log likelihood �4979.47 �4447.84 �4410.83

Adjusted r2 0.08 0.31 0.32

India (n¼ 9271)

Model 1 Model 2 Model 3

Intercept

b �0.063 �1.32 �1.27

SE 0.013 0.035 0.04

P 0.000001 <2e�16 <2e�16

Chronic conditions

b 0.392 0.262 0.262

SE 0.01 0.009 0.009

P <2e�16 <2e�16 <2e�16

Sex

b 0.337 0.326

SE 0.019 0.019

P <2e�16 <2e�16

Age

b 0.028 0.025

SE 0.0006 0.0007

P <2e�16 <2e�16

Wealth

b �0.226 �0.196

SE 0.01 0.011

P <2e�16 <2e�16

Physical function

b �0.117

SE 0.015

P 5.90e�15

Physical activity

b �0.006

SE 0.011

P 0.58

BMI

b �0.081

SE 0.012

P 3.08e�11

BMI2

b 0.063

SE 0.015

P 0.00001

(continued)
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Table 2. Continued

India (n¼ 9271)

Model 1 Model 2 Model 3

BIC 25 515.64 23 328.67 23 231.41

AIC 25 494.24 23 285.86 23 160.07

Log likelihood �12 744.1 �11 636.9 �11 570.03

Adjusted r2 0.16 0.33 0.34

Mexico (n¼ 1888)

Model 1 Model 2 Model 3

Intercept

b �0.396 �1.23 �0.987

SE 0.033 0.1 0.113

P <2e�16 <2e�16 <2e�16

Chronic conditions

b 0.323 0.27 0.271

SE 0.021 0.021 0.021

P <2e�16 <2e�16 <2e�16

Sex

b 0.337 0.319

SE 0.043 0.044

P 8.67e�15 3.72e�13

Age

b 0.011 0.006

SE 0.002 0.002

P 2.06e�11 0.0004

Wealth

b �0.081 �0.072

SE 0.029 0.029

P 0.005 0.014

Physical function

b �0.114

SE 0.033

P 0.0006

Physical activity

b �0.08

SE 0.019

P 0.00004

BMI

b �0.051

SE 0.039

P 0.198

BMI2

b 0.014

SE 0.03

P 0.649

(continued)

Table 2. Continued

Mexico (n¼ 1888)

Model 1 Model 2 Model 3

BIC 5095.952 5008.227 5004.198

AIC 5079.322 4974.967 4948.765

Log likelihood �2536.66 �2481.49 �2464.38

Adjusted r2 0.12 0.17 0.18

Russian Federation (n¼ 2387)

Model 1 Model 2 Model 3

Intercept

b �0.387 �1.33 �1.1

SE 2.95E�02 8.93E�02 1.01E�01

P <2e�16 <2e�16 <2e�16

Chronic conditions

b 0.394 0.323 0.31

SE 0.014 0.014 0.015

P <2e�16 <2e�16 <2e�16

Sex

b 0.282 0.259

SE 0.038 0.038

P 8.12e�14 1.18e�11

Age

b 0.014 0.011

SE 0.002 0.002

P <2e�16 1.26e�10

Wealth

b �0.106 �0.088

SE 0.027 0.027

P 0.00008 0.001

Physical function

b �0.089

SE 0.018

P 0.000001

Physical activity

b �0.016

SE 0.023

P 0.502

BMI

b �0.017

SE 0.031

P 0.584

BMI2

b 0.03

SE 0.022

P 0.177

(continued)
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Our findings suggest that subjective fatigue may be useful as

a low-cost, non-invasive marker of cumulative pathology across

a variety of physiological systems. Our findings dovetail with a

previous study of the general UK population, which found that

greater fatigue predicted higher hazards of all-cause and cardio-

vascular disease-related mortality, even after adjusting for a var-

iety of potential confounders [47]. Along the same lines, a study

of older US adults found that a single-item measure of fatigue

at baseline (‘do you feel tired most of the time?’) predicted mor-

tality rates 10 years later [48].

In this study, we utilize relatively low-resolution measures of

cumulative chronic morbidity and subjective fatigue. Even so,

we find that greater cumulative chronic disease burden exhibits

consistent associations with greater subjective fatigue. Using

measures that capture a wider range and finer grain of variation

in these variables might yield even stronger associations be-

tween cumulative chronic morbidity and fatigue.

A limitation of this study is its reliance on self-report meas-

ures of physical activity and subjective fatigue. The limitations

of self-reported physical activity are well documented—there

is imprecise correspondence with objective measures and par-

ticipants generally overestimate physical activity [49]. The limi-

tations of self-reported fatigue are not precisely analogous to

those of self-reported physical activity. For retrospectively self-

reported physical activity, participants must attempt to recall

and mentally aggregate behaviors across a specified time-

frame. For subjective fatigue, the perception of fatigue is itself

the target construct. Nonetheless, there are other ways of con-

ceptualizing and measuring fatigue or fatigability, such as

measuring the rate of decline in performance on standardized

tasks [42]. Further research is needed to test whether our

results replicate when using objective measures of physical ac-

tivity and fatigue.

Another limitation of this study is that our measures of physical

function were not comprehensive. Future studies should test

whether our results replicate when controlling for more compre-

hensive indices of physical function, including measures of cardio-

respiratory fitness, such as maximal oxygen consumption.

A third limitation of this article is that it does not identify the

mechanisms linking chronic morbidity and fatigue. Given the

analogous role of acute inflammation in generating fatigue

Table 2. Continued

Russian Federation (n¼ 2387)

Model 1 Model 2 Model 3

BIC 6315.323 6168.611 6170.37

AIC 6297.99 6133.945 6112.592

Log likelihood �3146 �3060.97 �3046.3

Adjusted r2 0.26 0.31 0.32

South Africa (n¼ 2798)

Model 1 Model 2 Model 3

Intercept

b �0.669 �1.5 �1.28

SE 0.026 0.078 0.079

P <2e�16 <2e�16 <2e�16

Chronic conditions

b 0.345 0.315 0.299

SE 0.016 0.016 0.016

P <2e�16 <2e�16 <2e�16

Sex

b 0.127 0.153

SE 0.031 0.031

P 0.0004 8.07�7

Age

b 0.014 0.011

SE 0.001 0.001

P <2e�16 <2e�16

Wealth

b �0.094 �0.086

SE 0.016 0.016

P 1.20e�08 1.28e�07

Physical function

b �0.087

SE 0.009

P <2e�16

Physical activity

b �0.075

SE 0.012

P 4.60e�10

BMI

b �0.097

SE 0.021

P 2.51e�06

BMI2

b 0.05

SE 0.013

P 0.0001

BIC 6929.116 6780.346 6657.881

(continued)

Table 2. Continued

South Africa (n¼ 2798)

Model 1 Model 2 Model 3

AIC 6911.306 6744.726 6598.514

Log likelihood �3452.65 �3366.36 �3289.26

Adjusted r2 0.14 0.19 0.23
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during acute infection, inflammation is one possible mechan-

ism linking chronic disease and fatigue [32]. However, fatigue in

the context of chronic non-communicable diseases may have

different mechanistic origins than fatigue during acute infection

[42]. There are other possible physiological cues that could in-

duce fatigue in the context of chronic non-communicable dis-

eases, including reduced energy accessibility due to metabolic

dysregulation, reduced oxygen availability, inability to mount

Figure 1. Cumulative chronic morbidity and subjective fatigue scores by country. The boxplot within each violin plot represents the interquartile range of sub-

jective fatigue scores for each value of the chronic disease count, with the thick horizontal line in the middle of the boxplot indicating the median value of sub-

jective fatigue scores for that category. The smoothed kernel density plot that surrounds each boxplot represents the distribution of subjective fatigue scores

for each value of the chronic disease count. Wider regions of the smoothed kernel density plot indicate greater frequencies. In the dataset with all countries

combined, each additional chronic condition is associated with an increase in subjective fatigue score. These patterns are broadly similar across countries.

The plotted line represents the marginal effects from a fully adjusted regression model. Subjective fatigue scores were natural log-transformed and standar-

dized (mean¼0, SD¼ 1) prior to plotting
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sufficient cardiac output, tissue damage and increased discom-

fort when moving. Further research is needed to identify mecha-

nisms linking chronic morbidity and fatigue.

Our model proposes a cyclical relationship between chronic

morbidity and fatigue—greater morbidity induces greater fa-

tigue, and greater fatigue increases risks for additional morbid-

ity by reducing long-term levels of physical activity (Fig. 2). A

limitation of this study is that our cross-sectional study design

cannot determine the temporal order of cumulative chronic

morbidity and subjective fatigue. The cross-sectional associa-

tions, we observed in this study could be explained by chronic

morbidity causing fatigue, fatigue causing chronic morbidity

through reduced physical activity, or some combination of

both. Longitudinal research is needed to determine whether

increases in cumulative chronic morbidity predict subsequent

increases in subjective fatigue. Clinical research is also needed

to test whether interventions that reduce chronic disease-

related fatigue are also successful in reducing subsequent mor-

bidity and mortality.

There are specific features of many contemporary environments

that may contribute to chronic disease-induced fatigue. Low micro-

bial diversity, low rates of exposure to ancestrally common patho-

gens and obesity are all thought to play a role in the etiology of

chronic inflammation [23, 25]. Experimental studies have demon-

strated that inflammatory processes play a key mechanistic role in

inducing disease-related changes in behavior and psychology,

including increased fatigue [30]. Thus, chronic inflammation may

initiate the self-reinforcing feedback cycle of declining physical ac-

tivity and increasing chronic morbidity, even before the appear-

ance of clinically identifiable chronic disease.

In contemporary medicine, individuals diagnosed with chron-

ic non-communicable diseases are often prescribed exercise

(discretionary physical activity undertaken for the sake of health

and fitness) [22]. The literature has demonstrated that adher-

ence to prescribed exercise is often low in people with chronic

non-communicable diseases. Another potential issue is that fa-

tigue may lead people with chronic diseases to inadvertently

‘compensate’ for bouts of exercise by reducing physical activity

in other domains of life (e.g. work and recreation). Research is

needed to evaluate the role of chronic disease-related fatigue in

shaping adherence to prescribed exercise.

It is worth noting that we chose not to include depressive

symptoms or self-reported diagnosis with a depressive disorder

as a covariate in our statistical models because depression is

likely a collider variable for cumulative chronic disease and per-

sistent fatigue. Chronic physical disease predicts greater risks

for depression [38], and persistent fatigue is a symptom that

can contribute to classification as having a depressive disorder

[31]. Thus, depression diagnoses may be causally ‘downstream’

from both cumulative chronic disease and persistent fatigue.

Controlling for variables that are causally downstream from the

independent and dependent variables introduces collider bias,

which can produce misleading results [50]. Future studies

aimed at investigating the interplay between cumulative chronic

disease, fatigue and other symptoms of depression should util-

ize statistical approaches designed for simultaneously examin-

ing multiple outcome variables (e.g. regularized partial

correlation networks and structural equation modeling).

CONCLUSIONS AND IMPLICATIONS

In this article, we show that greater cumulative chronic morbidity

is associated with greater subjective fatigue in six culturally diverse

countries. Prior research has demonstrated that some parts of our

evolved biology, such as our propensity for adiposity and our im-

mune systems, are mismatched with contemporary environments

where diets are calorie-dense, occupations are sedentary, microbial

diversity is low and ancestrally common pathogens are rare.

During acute infection, disease-induced fatigue may improve host

survival by reducing physical activity, thereby making more energy

available to mount an immune response. In the context of chronic

non-communicable diseases, fatigue and reduced physical activity

may increase risks of disease progression and acquisition of add-

itional morbidities. Disease-induced fatigue may be another ex-

ample of an evolved mechanism that is mismatched with many of

the environments that humans currently inhabit.
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