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Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important
for the survival of metazoans since it allows, among things, the removal of damaged cells
that interfere with normal function. Cell death due to PCD is observed in normal processes
such as aging and in a number of pathophysiologies including hypoxia (common causes
of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of
normal apoptotic responses is associated with the development of tumors. So far, lim-
ited success in preventing unwanted PCD has been reported with current therapeutic
approaches despite the fact that inhibitors of key apoptotic inducers such as caspases
have been developed. Alternative approaches have focused on mimicking anti-apoptotic
processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis
and pre-conditioning are commonly observed cellular strategies where sub-lethal levels
of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress.
Increased expression of anti-apoptotic sequences is a common mechanism mediating
these protective effects. The relevance of the latter observation is exemplified by the
observation that transgenic mice overexpressing anti-apoptotic genes show significant
reductions in tissue damage following ischemia.Thus strategies aimed at increasing the lev-
els of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins
are being evaluated as novel therapeutics to decrease cell death following acute periods
of cell death inducing stress. In spite of its functional and therapeutic importance, more is
known regarding the processes involved in apoptosis than anti-apoptosis. The genetically
tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study
multiple aspects of PCD including the mitochondrial mediated apoptosis observed in meta-
zoans. To increase our knowledge of the process of anti-apoptosis, we screened a human
heart cDNA expression library in yeast cells undergoing PCD due to the conditional expres-
sion of a mammalian pro-apoptotic Bax cDNA. Analysis of the multiple Bax suppressors
identified revealed several previously known as well as a large number of clones represent-
ing potential novel anti-apoptotic sequences.The focus of this review is to report on recent
achievements in the use of humanized yeast in genetic screens to identify novel stress-
induced PCD suppressors, supporting the use of yeast as a unicellular model organism to
elucidate anti-apoptotic and cell survival mechanisms.
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INTRODUCTION
Getting rid of unwanted or potentially damaging cells is critical
for the normal functioning of metazoans (Wyllie, 2010; Portt et al.,
2011; Ulukaya et al., 2011). More recently, genetically encoded
mechanisms have been discovered to be of equal importance in
regulating cell death and cell survival in all eukaryotes includ-
ing single cell microbes such as the yeast Saccharomyces cere-
visiae (Carmona-Gutierrez and Madeo, 2009; Shemarova, 2010;
Kaczanowski et al., 2011). This has led to dramatic changes in how
programmed cell death (PCD) is perceived and it has opened up

a number of important avenues of research that allows genetic
approaches to the study of death inducing and cell survival strate-
gies. It has long been established that the functional expression
of human genes in yeast has facilitated the study of individual
members of complex gene family in an isolated but functional cell
system. The use of humanized yeast cells for the study of apop-
tosis started many years ago when key regulators of mammalian
apoptosis were found to retain their pro- and anti-apoptotic func-
tions when expressed in yeast (Manon et al., 1997; Ligr et al.,
1998; Lisa-Santamaria et al., 2009). Today humanized yeast cells
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are commonly used as a means of identifying and characteriz-
ing novel apoptotic regulators and processes (Greenwood and
Ludovico, 2010; Silva et al., 2011a). As a prelude to a detailed
discussion of the use of humanized yeast, it is necessary to intro-
duce a few related topics. A general discussion will begin with the
fact that although a multitude of specialized sub-forms have been
described there are three main types of PCDs that receive the most
attention (Hotchkiss et al., 2009; Orrenius et al., 2011; Portt et al.,
2011; Galluzzi et al., 2012b).

Type I PCD or apoptosis has long been recognized as containing
two distinct types called the extrinsic and intrinsic forms (Kroe-
mer et al., 2009; Wyllie, 2010). The extrinsic form is largely due
to the activation of cell surface death receptors such as TNFα and
is more studied in the context of the immune cells. The intrinsic
form is centered on the mitochondria and is activated by a vari-
ety of stresses including a number of chemicals (pesticides, cancer
therapeutics), physical agents (high osmolarity, change in tem-
perature or pH), and intracellular stresses such as DNA damage
and accumulation of misfolded proteins especially in the endo-
plasmic reticulum (ER; Carmona-Gutierrez et al., 2010; Orrenius
et al., 2011). These stresses lead to the activation of intracellular
pathways and processes that cause alterations in mitochondrial
membrane permeability and the release of pro-apoptogenic fac-
tors including cytochrome c, AIF, and Endo G. The effects of
cytochrome c are mediated by its ability to form an active apop-
tosome complex with the Apoptosis Protease Activating Factor 1
(APAF-1) that serves to activate procaspase 9. This in turn leads to
cleavage mediated activation of executioner caspases such as cas-
pase 3. There are number of other interrelated pathways associated
with the intrinsic pathway which involves a large variety of pro-
apoptotic proteins. Many of these stresses can be shown to induce
cell death when overexpressed and to reduce stress mediated cell
death when their genes are knocked out or down regulated by
siRNA based strategies. The reader is referred to a number of recent
reviews for more detailed accounts of these processes (Orrenius
et al., 2011; Shamas-Din et al., 2011; Ulukaya et al., 2011; Galluzzi
et al., 2012b).

AUTOPHAGY
Type II PCD or autophagic cell death may not be more complex,
but at the moment, it certainly is a lot more confusing (Den-
ton et al., 2012; Galluzzi et al., 2012a,b; Shen et al., 2012). This is
because autophagy (Greek, self-eating) is in itself a cellular process
that serves to protect the cell from stress (Moreau et al., 2009).
Although there are multiple different forms, the most understood
form is called macro-autophagy (He and Klionsky, 2009). Here
the autophagic machinery is activated in response to nutritional
stress where it earmarks cellular constituents that are expendable
(i.e., material required for growth). These are then broken down
and serve as building blocks for the synthesis of molecules and
the expression of genes that can serve to prevent premature cell
death. The autophagic machinery gets activated in the absence of
nutrient by a well studied complex process involving a variety of
regulatory proteins including TOR (Loewith and Hall, 2011). The
ability to genetically identify a large number of autophagic (ATG)
genes in yeast was instrumental in developing our understanding
of autophagy (He and Klionsky, 2009). The availability of mutants

lacking ATG genes due to knock out or knock down have shown
that the process of autophagy is critical for cellular survival in
response to a variety of stresses including amino acid and glucose
starvation as well chemical inducers of apoptosis (Pan et al., 2009).
Other forms of autophagy that carry out specialized functions such
as the selective removal of certain cellular constituents including
the specific removal of damaged mitochondria by mitophagy may
also be critical for cellular survival under some conditions (Kissova
and Camougrand, 2010). On the other hand low level removal of
damaged cellular material by constitutive autophagy is thought to
have housekeeping functions that are required to maintain proper
order in a cell (Gottlieb et al., 2009; Marino et al., 2011).

In contrast to the large body of knowledge about the protective
effects and processes associated with the pro-survival functions
of autophagy (see also below) even the bare essential framework
for autophagic cell death is lacking (Chen and Klionsky, 2011).
Autophagic cell death was originally defined as a form of cell death
that is associated with autophagosomes that is likely non-apoptotic
(caspase, Bax independent; Marino et al., 2011; Meschini et al.,
2011). Autophagosomes are intracellular vesicles that are the site
of the autophagic cargo destined for degradation that consist of
the membrane engulfed cargo fused to lysosomes. The connec-
tion between autophagy and autophagic cell death still remains
obscure. In fact there is quite a strong and growing conviction
by many that autophagic cell death would be better labeled as
cell death associated with autophagosomes (Denton et al., 2012;
Shen et al., 2012). Thus autophagy is often labeled as an “inno-
cent bystander” in the process of an ongoing death (Rami, 2009).
It is argued that conditions that serve to initiate cell death, will
lead to stress mediated activation of autophagy as a sort of cel-
lular defense mechanism (Schleicher et al., 2010). The increased
autophagy is thus a way for the cell to try and mitigate and resist
undergoing inappropriate cell death (Meschini et al., 2011). The
up-regulation of such cellular survival processes have been iden-
tified in response to numerous stresses (Fulda et al., 2010; Portt
et al., 2011). The inability to prevent cell deaths that are thought to
be occurring by autophagy, by inhibiting the autophagic process is
regarded as strong evidence that autophagic cell death is likely over
diagnosed (Galluzzi et al., 2012b; Shen et al., 2012). Strong guide-
lines or recommendations by a number of leaders in the field have
been proposed to try and demystify the process (Galluzzi et al.,
2012b). It nevertheless remains technically challenging to identify
cell death by autophagy. This is partially due to the fact that small
chemical inhibitors of autophagy used are non-specific. The ability
to develop specific chemical inhibitors or genes encoding negative
regulators, as was recently done for necrosis, would be required
to clearly identify and characterize autophagic death (Wu et al.,
2012).

Nevertheless, autophagic cell death has been acknowledged to
exist, even by the most ardent anti-autophagic death crowd, under
certain circumstances, and in some organisms (Shen et al., 2012).
For example apoptotic inducing stimuli leads to autophagic cell
death in mouse embryonic fibroblasts (MEFs) cells that are unable
to carry out apoptosis due to knock outs of both pro-apoptotic
Bcl-2 family members, Bax and Bak (Shimizu et al., 2004). Others
have argued that autophagic cell death may simply be a sort of
death of last resort that occurs after prolonged autophagy where
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the cell simply becomes exhausted and has no more resources
to combat prolonged stresses (Rami, 2009). This could occur by
a process of autophagosome lysis and subsequent death by the
released catalytically active enzymes in a process analogous to lyso-
somal rupture that occurs in some forms of ER stress or necrosis
(Orrenius et al., 2011). The application of proteomic approaches
to the study of autophagy may be useful in further delineating the
role of autophagy in cell death (Dengjel et al., 2012).

NECROSIS
Type III PCD is also known as necrosis. This cell death differs
from apoptosis in a number of readily detectable key features
including several biochemical, cellular, and morphological dif-
ferences (Berghe et al., 2010; Eisenberg et al., 2010; Fulda et al.,
2010; Galluzzi et al., 2012b). The early loss of membrane integrity
observed in necrotic cells coupled to the fact that membrane exter-
nalization occurs in apoptosis allows the use to use fluorescently
labeled nuclear vital dyes and differentially labeled protein capa-
ble of binding inner membranes (annexin V) to discriminate
between these forms of death. Also key among the differences
is the blebbing of apoptotic cells followed by the engulfment of
the debris by immune cells. Necrotic cells on other hand remain
within the tissue and lead to inflammation as they decay. Necro-
sis is the form of cell death that occurs in response to severe
catastrophic stress that leads to deleterious and irreversible cel-
lular injury. More recent studies suggest that there is a genetically
programmed form of necrosis, called necroptosis, which can be
triggered by severe stresses including some forms of DNA damage
(Weinlich et al., 2011; Wu et al., 2012). A biochemical pathway
involving the death type receptor (i.e., TNF-α) mediated forma-
tion of a necrosome type complex that leads to activation of
Receptor Interacting Protein Kinase 1 and 3 (RIPK-1 and 3) can
lead to both apoptotic and necrotic cell death (Green et al., 2011).
Compounds capable of inhibiting the RIPKs as well as poten-
tial intrinsically expressed proteins such as the prepro region of
cathepsin D have been identified as inhibitors of the process of
necroptosis (Carmona-Gutierrez et al., 2011a). These and other
studies suggest that clinical strategies aimed at preventing some
forms of necrosis may be possible (Christofferson and Yuan,
2010).

OTHER FORMS OF PCD
Alternative forms of apoptosis have been known for a long time
(Orrenius et al., 2011). There are non-traditional forms of PCD
that diverge due to a number of differences such as being caspase
or Bax independent (Kroemer et al., 2009). Other forms include
infections with organisms such as Salmonella that initiate a caspase
1 dependent cell death called pyroptosis. A caspase 12 dependent
process appears to be involved in certain forms of cell death such
as the pro-inflammatory condition that is seen in sepsis. Anoikis
refers to the PCD that occurs in response to cell detachment from
its neighbors. Increased resistance to this form of cell death may
lead to the ability to grow in an anchorage independent manner
that is often seen in cancer cells (Sakamoto and Kyprianou, 2010).
Many of these PCDs appear to have characteristics of apoptosis
such as similar morphological changes indicating that many may
simply represent variants on apoptosis. Thus despite differences in

triggering the many forms of PCDs, the mitochondria still plays a
central role in mediating many of these varied forms of cell death.
Even the PCD that occurs in aging, which shows a great deal of
dependence on glucose metabolism, appears to be dependent on
the mitochondria (Laun et al., 2008). Understanding how a cell
integrates all information to come up with the appropriate cell
death response will require more knowledge about the regulation
of cell death.

CROSS-TALK
All the different forms of PCD are not always stand-alone
processes. There is a great deal of reported cross-talk between
the different forms of cell death (Amelio et al., 2011; Giansanti
et al., 2011; Orrenius et al., 2011; Shen and Codogno, 2012). On
the large scale the three types of PCDs can be shown to influ-
ence one another such that the process of autophagy can serve to
inhibit apoptosis and necrosis while cells unable to undergo apop-
tosis will undergo autophagy or necrotic cell death (Zhivotovsky
and Orrenius, 2010; Shen and Codogno, 2012). The most highly
reported of such an example is the early experiment using MEFs
cultured from embryos having a double knock out (DKO) of the
two genes encoding the pro-apoptotic Bcl-2 proteins Bax and Bak
(Shimizu et al., 2004). The DKO embryos are lethal which likely
reflects the importance of these two proteins in regulating develop-
mental apoptosis. When challenged with apoptotic stimuli, DKO
MEFs appear to undergo a cell death that has the hallmarks not
of apoptosis but of autophagic cell death. On the other hand,
there are a number of other cases where the inhibition of caspase
can effectively prevent apoptotic cell death without sparring the
cell’s life since it induces necrosis (Rami et al., 2008). Alternatively
autophagy may be co-activated with apoptosis as a defense mech-
anism that can serve to prevent premature execution of apoptosis
or necrosis (Amelio et al., 2011; Shen and Codogno, 2012). These
and multiple other forms of cross-talk have been observed in a
number of different ways including the fact that many individ-
ual proteins play roles in more than one cell death modality. For
example, the BH3 containing Bcl-2 family member Beclin 1 is a
key regulator of autophagy that can be inhibited by Bcl-2 (Kang
et al., 2011). Thus Bcl-2 mediated inhibition of Beclin and of
Bax allows it to have direct roles in preventing autophagy and
apoptosis induction. On the other hand caspase mediated cleav-
age of Beclin can serve as a mechanism by which the activation of
apoptotic machinery can inhibit autophagy (Djavaheri-Mergny
et al., 2010). The regulation does not seem to be reciprocal since
the overexpression does not appear to inhibit the anti-apoptotic
effects of Bcl-2 (Kang et al., 2011). Other well-known examples
of proteins with dual functions include FLIP and the autophagic
specific gene ATG5 (Giansanti et al., 2011). FLIP is a well-known
inhibitor of the extrinsic apoptotic pathway that can also interact
with ATG3 and serve as a negative regulator of autophagy (Lee
et al., 2009). Less is known about possible cross-talk in unicel-
lular eukaryotes such as yeast. So although the three functional
PCDs exist in yeast, there will be a number of strategic differences
by which cross-talk between the pathways is used. For example,
the ATG6 gene serves the same autophagic regulatory function as
Beclin 1 but the yeast ortholog does not appear to have a BH3
domain.
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REGULATION OF PROGRAMMED CELL DEATH
INDUCTION
The most commonly examined form of cell death is the intrinsic
form of apoptosis that, as mentioned above, involves the stress
mediated release of pro-apoptogenic factors from the mitochon-
dria. This pathway mediates the effects of many of the stresses a
cell encounters including a wide range of chemicals and physical
agents as well as a myriad of others including intracellular stresses
such as DNA damage, ER stress as well as the stimuli that occurs in
a large number of pathophysiological conditions (see below). The
proportion of cells that undergo apoptosis in a given population
of cells is directly related to the intensity of the stress encountered
(Figure 1; Orrenius et al., 2011; Qi et al., 2012). The intensity of
the stress is directly related to a combination of both the dose
encountered and the time of exposure to any given stress. For
example, keeping the time of exposure constant, we can decrease
the percentage of viable cells in a population by increasing the

FIGURE 1 | Stress is a dose dependent mediator of cell death. A
theoretical and graphical depiction of the effects of increasing the intensity
of stress on cellular viability. In a stress free environment cellular viability is
maintained close to 100% with only a basal level of cell death. In the normal
state (depicted in black), the percentage of cell viability begins to decreases
when a specific threshold of stress intensity is encountered. Intensity of
stress reflects a combination of time of exposure to the stress and to its
intensity. Cell death inducing stresses include a variety of different physical
or chemical agents or pathophysiological stresses as discussed in the text.
Once the threshold level of stress is encountered, the % viability further
decreases in dose dependent manner with respect to the increase in the
intensity of stress. In an apoptotic sensitive state (depicted in red), the
minimal threshold of the intensity of stress that is required in order to
observe a decrease in viability is reduced. Such an apoptotic sensitive state
can be observed in cells that are lacking mechanism that are involved in
apoptotic resistance such as the loss of an anti-apoptotic resistant gene or
a mutation leading to defects in the induction of autophagy. Alternatively,
overexpression of a pro-apoptotic gene can lead to a similar phenotype. The
opposite phenotype, that is the state of apoptotic resistance (depicted in
green), occurs in cells that are lacking some pro-apoptotic genes, that are
overexpressing an anti-apoptotic gene or that have increased activation of
other pro-survival processes such as autophagy. The net effect of altering a
cell’s sensitivity to apoptosis can be observed in the different intensity of
stress that is required to give rise to half maximal viability (50% viability,
depicted by dashed lines). Thus the threshold of sensitivity to death
inducing stress is variable and is established by complex regulatory
processes that involve both pro- and anti-apoptotic processes. It should be
noted that the processes that trigger apoptosis and that serve to induce
cell death are not altered by the apoptotic resistant or sensitive states.

concentration of the stress inducing agent. Thus the average cell
population under normal type conditions will respond in a dose
dependent manner to a stress and give a standard profile of inten-
sity of stress vs. percentage viability that can be experimentally
determined (Figure 1). This profile can shifted to the right or to
left by respectively increasing or reducing the expression of a num-
ber of pro-apoptotic genes (Figure 1). Thus the normal response
to a given stress can be changed by altering the apoptotic machin-
ery. If the stress is too intense, accidental death will occur since the
cells will undergo necrosis.

The mechanism by which stress leads to the activation of apop-
totic response involves the increases in the levels of two well
characterized intermediates, activated Bax, and Reactive Oxygen
Species (ROS). Stress also results in an increases in the levels of a
number of other pro-apoptotic second messengers including cal-
cium, cAMP, the nucleotide dUTP, and the sphingolipid ceramide
(Ozbayraktar and Ulgen, 2009; Vertessy and Toth, 2009; Circu and
Aw, 2010; Ganesan and Colombini, 2010; Pourova et al., 2010;
Insel et al., 2011; Li et al., 2011; Orrenius et al., 2011; Wilson et al.,
2012). Increases in the level of these pro-apoptotic second messen-
gers appear to be tightly coordinated and to be synergistic in their
effects (Portt et al., 2011; Ray et al., 2012). For example, increasing
activated Bax leads to increased ROS and ceramide while increases
in ROS and ceramide can serve to activate Bax (Kumar and Jug-
dutt, 2003; Lecour et al., 2006; Ganesan et al., 2010). Functionally,
one can manipulate a decrease in the levels of ROS or ceramide and
this can serve to prevent Bax mediated cell death (see also below;
Moon et al., 2002; Yang et al., 2006; Separovic et al., 2007). This
suggests that stress mediated cell death involves the cooperative
response of numerous cellular pathways and that this cross-talk
may serve as redundant, additive, or even synergistic processes to
induce cell death (Portt et al., 2011). Specific recent examples of
additive effects include Bax mediated permeabilization of the outer
mitochondrial membrane serving to increase the release of ROS
from the mitochondria. Increased levels of sphingolipids such as
ceramide in the mitochondrial membrane may in turn serve to
facilitate the insertion of Bax into the mitochondria (Ganesan
et al., 2010; Chipuk et al., 2012).

NEGATIVE REGULATORS OF PCD
In order to avoid triggering inappropriate PCD, cells have devel-
oped a large repertoire of pro-survival tools and strategies that play
critical roles in the balance between life and death (Owsianowski
et al., 2008; Busca et al., 2009; Fulda et al., 2010; Ashida et al., 2011;
Portt et al., 2011; Rodrigues et al., 2012). Anti-apoptotic responses
are not simply the inverse of apoptosis instead it is more like a
regulatory network that serves to prevent cell death when it is not
warranted. As we shall describe in the following few sections, this
network also includes and cross-talks extensively with the pro-
survival component of autophagy. Of further importance is the
fact that this network may be pre-activated in order to create a state
of increased resistance to future death inducing stimuli. Examples
of the importance of the modulatory nature of apoptotic responses
are well illustrated by a recent paper by Shlezinger et al. (2011).
They examined the role that apoptosis and anti-apoptosis may
play in the ability of the necrotrophic fungus Botrytis cinerea to
infect plants. Using genetically altered organisms, they were able
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to show that plants send out signals to try and induce apoptosis in
the invader while an increase in the expression of anti-apoptotic
sequences in the fungus increased its ability to infect the plant.
Thus the ability to modulate responses to apoptotic stimuli can
be a useful tool in organisms with complex life cycles (Rodrigues
et al., 2012). Here we will focus on the major regulatory processes
that serve to negatively regulate PCD.

ANTI-APOPTOTIC GENES
Anti-apoptotic genes can be defined as sequences that confer an
apoptotic resistant state to a cell while its knock out or a knock
down of its normal expression levels leads to a apoptotic sensi-
tive state (Figure 1). Exceptions may exist especially if the anti-
apoptotic gene functions in a parallel pathway to another similar
genes or processes. The most common anti-apoptotic gene, Bcl-2,
functions at least in part by antagonizing the pro-apoptotic Bcl-2
protein Bax (Khoury and Greenwood, 2008). Other very well char-
acterized anti-apoptotic proteins include the IAPs (Inhibitors of
Apoptosis), HSPs (Heat Shock Proteins), and ROS scavengers. IAPs
function to inhibit caspase activation; HSPs act as chaperones that
help in stabilizing protein structure while ROS scavengers serve in
inactivating damage inducing ROS (Beere, 2004; Busca et al., 2009;
Circu and Aw, 2010). The functional analysis of new anti-apoptotic
genes often serves to reinforce the importance of some apoptotic
pathways or they may serve to uncover novel ones. Thus the impor-
tance of ROS and misfolded/denatured proteins in the induction
of apoptosis from multiple stresses is reinforced by the classical
observation that overexpression of genes encoding ROS scavengers
and chaperonin type HSPs serve to decrease cell death (Garrido
et al., 2003; Kim et al., 2006; Guaragnella et al., 2008). Uncovering
unexpected cell survival sequences such as the Metalloprotease 15
(MMP15) suggests a novel role for extracellular matrix or alter-
native functions to well-known proteins (Abraham et al., 2005).
The ability to increase cell survival by increasing the expression of
the gene encoding dUTPase supports the emerging consensus that
nucleotides such as dUTP serve as stress-induced pro-apoptotic
second messengers (Williams et al., 2011; Wilson et al., 2012). On
the other hand, the cytoprotective effects of the ceramide utiliz-
ing enzyme sphingomyelin synthase is consistent with the long
standing role of ceramide as a stress-induced pro-apoptotic sec-
ond messenger (Yang et al., 2006; Separovic et al., 2007, 2008). The
diversity in the function of anti-apoptotic sequences exemplifies
the diverse roles played by these sequences.

Sequences capable of specifically preventing other forms of
PCD without effecting apoptotic cell death have been reported.
This is especially true for the ability of genes capable of preventing
necrotic cell death (Weinlich et al., 2011). For example death recep-
tor mediated activation of receptor interacting protein kinases-1
and 3 (RIPK-1 and 3) is one of the early steps in the activation
of necroptosis. Proteins like FLIP are capable of inhibiting RIPKs
and preventing necroptosis and are thus functionally similar to
anti-apoptotic sequences (Green et al., 2011). Other examples of
such necroptotic regulators, is the ability of Pep4 (encoding the
yeast ortholog of the mammalian cathepsin D) to decrease aging
induced necrotic death (Carmona-Gutierrez et al., 2011a).

On the other hand there are a number of genes that can be con-
sidered as conditional anti-apoptotic genes. For example, there

are genes that serve to repair DNA damage in response to stresses
like UV light and thus can prevent cell death in response to DNA
damage. Most of these sequences are unable to prevent PCD in
response to most other stresses. So these are pro-survival genes that
represent stimulus dependent pro-survival anti-apoptotic genes.
Finally, there are a large number of genes that have been identified
that can prevent autophagy (Kroemer et al., 2009; Galluzzi et al.,
2012b). These genes are essential for autophagy and they func-
tion in the process of inducing autophagy, so their removal does
not in fact prevent autophagic cell death (He and Klionsky, 2009).
The ability to prevent autophagic cell death is limited to a number
of non-specific pharmacological agents that mostly serve to pre-
vent acidification of lysosomes. These are thought to function by
preventing similar processes in autophagolysosomes.

AUTOPHAGY AND OTHER PROTECTIVE PROCESSES
As mentioned above, basal autophagy serves as a housekeeping
process that can get rid of damaged cellular constituents that accu-
mulate while running the basic processes of cellular life. When
activated in response to stress, it can increase the removal of
damaged material and serve as a mechanism to prevent prema-
ture or inappropriate cell death (Shen and Codogno, 2012). Thus
the removal of damaged mitochondria can decrease stress medi-
ated increases in ROS levels while the removal of ER clogged
with denatured proteins can prevent unwanted ER stress medi-
ated PCD (Gottlieb et al., 2009). Thus a number of other more
specialized sub-forms of autophagy such as mitophagy may also be
operational in preventing PCD (Kissova and Camougrand, 2010;
Marino et al., 2011).

Other cellular processes, analogous to autophagy, can also have
specific pro-survival functions in response to specific types of
stresses and are thus not always considered in general discussions
of cellular survival (Schonthal, 2009; Taylor and Rutter, 2011). A
common example is the ER stress response (Schonthal, 2009). This
pathway is activated in response to stresses such as the accumula-
tion of misfolded proteins in the ER. Thus defects in this pathway
may account for pathological situations like Parkinson’s disease
(Nagley et al., 2010). Activating the ER stress response can serve
to prevent PCD is response to ER stress but it will be unable to
prevent general forms of PCD. Similar to ERAD, a stress inducible
mitochondrial quality control system (Mitochondrial-associated
degradation, MAD) has recently been described (Heo et al., 2010).
This process involves Cdc48p and a newly identified Cdc48p inter-
acting protein called VSM1. This process is thought to be able to
clean up damaged mitochondria and prevent cell death (Taylor
and Rutter, 2011).

PRO-SURVIVAL INTRACELLULAR SECOND MESSENGERS
Just as the regulation of cell death is a balance between pro- and
anti-apoptotic machineries, it is of interest that cells produce both
anti- and pro- survival intracellular second messengers. ROS rep-
resents the classical second messenger regulator of apoptosis since
it can switch from being anti- to pro- apoptotic depending on
its levels (Ray et al., 2012). Similarly, cAMP also has the ability
to be both pro- and anti-apoptotic but that may be more depen-
dent on cell type (Insel et al., 2011). One of the most interesting
but less studied intracellular secondary messenger is spermidine.
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Spermidine along with putrescine and spermine make up a fam-
ily of polyamine compounds that are ubiquitous and present in
high amounts in cells from bacteria, plants, and other eukaryotes
including man and yeast (Igarashi and Kashiwagi, 2010; Minois
et al., 2011). Although their exact function remains largely enig-
matic they are involved in a number of different cellular processes
including apoptosis (Igarashi and Kashiwagi, 2010; Minois et al.,
2011). In spite of the existence of a few reports demonstrat-
ing a pro-apoptotic effect of polyamines, their ability to serve as
anti-apoptotic agents appears to be more common (Igarashi and
Kashiwagi, 2010; Gill and Tuteja, 2011). The potential importance
of spermidine as a pro-survival and protective effector has been
increased by the recent report showing that it has protective effects
in a number of different aging models including yeast, worm, fly,
and mouse (Eisenberg et al., 2009). Of interest, the effects of sper-
midine appear to function by activating autophagy. The ability
to activate the protective effects of autophagy has been reported
for a number of compounds such as the anti-aging compound
resveratrol. This is widely attributed to be the anti-aging mediator
that is responsible for the reported beneficial effects of red wine
(Rockenfeller and Madeo, 2010). This up-regulating of autophagy
may be a common phenomenon as it is seen in the apoptotic resis-
tance associated with many pathophysiological conditions such as
cancer (see also below) and may also account for the pro-survival
effects of a wide range of other conditions (Periyasamy-Thandavan
et al., 2009; Wilkinson and Ryan, 2010). Clues as to the mecha-
nisms involved in regulating the levels of protective spermidine
come from further studies of Madeo’s group who show the ability
of cathepsin D to prevent aging mediated necroptosis is associated
with an increase in polyamines (Carmona-Gutierrez et al., 2011a).

HORMESIS AND PRE-CONDITIONING: ACTIVATION OF THE INTRINSIC
ANTI-APOPTOTIC PROGRAMS
Adaptation to stresses that do not lead to cell death induces a tran-
sient condition where the cell shows an enhanced resistance to later
exposure of otherwise lethal stresses (Balakumar et al., 2008; Le
Bourg, 2009; Lehotsky et al., 2009; Calabrese et al., 2011a). A series
of experiments using yeast cells reported by Davies et al. (1995)
represent a simple but elegant demonstration of the processes of
pre-conditioning. They were able to show that a 2-h exposure to
3.2 mM H2O2 was sufficient to kill greater than 99.9% of yeast
cells. Cells that were pre-treated with a sub-lethal dose of H2O2,
say 0.1 mM H2O2 for 45 min, showed enhanced viability with 5%
of cells surviving in response to a later exposure 2 h exposure to
3.2 mM H2O2. This response was dose dependent with increasing
concentration of H2O2 used as pretreatment with 0.4 mM lead-
ing to a greater than 30% viability following the 2-h exposure to
3.2 mM H2O2. This and numerous other studies have shown that
there is a window of opportunity in which the protection occurs
and that the protection that is elicited in response to a sub-lethal
stress may lead to cross-protection and confer resistance to the
lethal effects of a different stress (Berry and Gasch, 2008; Calabrese
et al., 2011a). A similar process is seen in all cell types including
mammalian and bacterial cells. The diagram in Figure 1 illustrates
in a simple schematic form, the differences that exist between the
responses of a cell in a “Normal State” compared to an adapted cell
that now has entered an “Apoptotic Resistant State.” The adapted

cell shows an enhanced resistance to the cell death inducing effects
of stress and this is demonstrated by the observation that they
require a greater dose of stress in order to kill off 50% of the pop-
ulation of cells (Figure 1). This process of adaptation induced by
mild stress that serves to increase resistance to stronger stress is
often referred to as a form of hormesis. As we will discuss later on,
hormesis is also likely to play an important role in our evolving
concept of the role ROS stress plays in the cell death that occurs in
processes such as aging.

ROLES FOR ROS, ANTI-APOPTOTIC GENES, AND AUTOPHAGY
An increase in the levels of ROS, albeit not as intense as observed
for cells undergoing apoptosis, plays a role in inducing the process
by which cellular adaptation occurs in response to mild stress seen
in hormesis and pre-conditioning (Martins et al., 2011; Ristow
and Schmeisser, 2011; Ristow and Zarse, 2011). As in apoptosis,
the mitochondria appear to be the major source of ROS for horme-
sis (Pan, 2011). In contrast when ROS is present at physiologically
relevant levels such as observed during normal or mildly stressed
conditions, ROS functions as an intracellular second messenger
(Ray et al., 2012). The moderate increase in ROS levels can have
a number of effects on proteins for example, it can react with
cysteine residues and alter structure and the function of several
proteins (Ray et al., 2012). Thus ROS has been shown to be able
to alter a number of cellular responses by affecting a variety of
different pathways such as MAP and PI3 kinase cascades. The role
of ROS in mediating hormetic effects have been reported in all
organisms including bacteria. For example, the hormetic effect of
sub-lethal low levels of bactericidal antibiotic has been reported
to be mediated by increased levels of ROS (Belenky and Collins,
2011).

The free radical theory of aging is a long standing hypothesis
that has been used to explain aging (Harman, 1956). At its simplest,
the theory posits that free radicals accumulate during the aging
process and this accounts for the increased damage that accumu-
lates at the cellular, tissue, and organismal level (Ristow and Zarse,
2011). First proposed in the 1950s the hypothesis gained a lot of
momentum as it made a lot of inherent sense and it was con-
sistent with many observations. It is so widely accepted, even by
the general public, that anti-oxidants such as vitamin C and E are
commonly accepted anti-aging components of most anti-aging
creams. The theory of increased free radicals was also commonly
adopted as a mechanism to explain the damage that occurs in
response to numerous pathophysiological stresses including many
that lead to cell death (Kumar et al., 2002; Misra et al., 2009).
Thus anti-oxidants were examined for their potential to prevent
cellular death in multiple diseases including numerous forms of
cardiomyopathies. Numerous discrepancies uncovered over the
years have served to question the validity of the model. Of impor-
tance to this skepticism was the effect of calorie restriction (CR)
on aging. CR, without malnutrition, had been widely reported
to slow down aging and lead to increased longevity in all species
examined including yeast, flies, worms, and mammals (Ristow and
Zarse, 2011). An excess production of ROS has not been able to
fully explain the effects of CR. Instead, CR appears to act like a mild
stress leading to moderate increases in ROS levels and subsequent
anti-aging effects that are mediated by hormesis (Martins et al.,
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2011; Ristow and Schmeisser, 2011; Ristow and Zarse, 2011). The
similarities between CR and hormesis include up-regulating the
same pro-survival strategies including increases in the expression
of anti-apoptotic sequences and activation of autophagy (Cal-
abrese et al., 2011a; Martins et al., 2011). In support of this, are the
widespread observations that the anti-aging effects mediated by
other processes such as the removal of specific genes and the effects
of compounds like resveratrol and spermidine function, at least in
part, by increasing stress response and autophagy (Calabrese et al.,
2011a). For example the loss of the CTA1 catalase encoding gene
in yeast serves to extend chronological lifespan by increasing the
levels of ROS in a manner analogous to CR (Mesquita et al., 2010).

Other stress inducible pro-apoptotic second messengers such
as ceramide may also have dual functions in regulating cell death
responses (Lecour et al., 2005). Of interest, sub-lethal increases in
ROS may also account for the increased autophagy that is observed
in many scenarios involving mildly stressed cells. This suggests
that there is a mechanism for the direct cross-talk between dif-
ferent forms of pro-survival processes. Other evidence for such
cross-talk comes from the recent observations that some anti-
apoptotic genes may function by activating autophagy (Gurusamy
et al., 2009; Qian et al., 2009). An alternative scenario to explain
the later observation is based on the fact that the overexpression
of a number of genes is mildly toxic and they serve to stress the
cell (Liu et al., 1992). For example, it is well-known that cells
used in the biotechnology industry that are forced by genetic
manipulations to overexpress different gene products are often
stressed to the point where they undergo apoptotic like cell death
(Krampe and Al-Rubeai, 2010; Mokdad-Gargouri et al., 2012).
It could thus be envisioned that some anti-apoptotic genes pre-
vent cell death due the fact that their overexpression leads to mild
stress and subsequent induction of the pro-survival machinery
including activation of autophagy and hormesis. Other scenar-
ios that serve to induce a protective pre-condition or hormetic
phenotype include the loss by knockout of some genes as well as
number of different compounds including many toxic chemicals
administered at sub-lethal levels (Kharade et al., 2005; Wang et al.,
2009; Mesquita et al., 2010; Martins et al., 2011; Orrenius et al.,
2011). This indicates that there are multitudes of ways of elicit-
ing a protective phenotype. This serves to increase the repertoire
of strategies that can be clinically used to combat unwanted cell
death (Fleming et al., 2011).

ONE GENE CAN RECAPITULATE THE ENTIRE PROCESS OF HORMESIS
Analysis of the expression of numerous genes, and more recently
the analysis of global gene expression profiles, reveal that cellu-
lar adaptation (pre-conditioning and hormesis) is associated with
alterations in the expression of many genes including the increased
expression of a number of anti-apoptotic genes (Wu et al., 2004;
Coles et al., 2005; Balakumar et al., 2008; Fulda, 2009b). In spite
of the fact that that the expression of so many different genes are
observed, a stress resistant phenotype can be recapitulated by the
simple overexpression of a multitude of different but individual
anti-apoptotic genes (Gil-Gómez and Brady, 1998; Yenari et al.,
2005; Khan et al., 2006; Nakka et al., 2008). The fact that a single
gene is sufficient for this phenotype suggests that there is a strong
redundancy in the numerous anti-apoptotic processes that are

invoked in the process of adaptation. Increased autophagy, proba-
bly macro-autophagy, is also a response to mild stress. Similarly to
what is observed with the increased expression of anti-apoptotic
genes, increased autophagy on its own is capable of increasing pro-
survival phenotypes. This can be demonstrated by using specific
macro-autophagy activating drugs like rapamycin (Galluzzi et al.,
2012a). Such cells show increased resistance to numerous stresses
including many that would be sufficient to induce apoptosis. One
of the questions that remain is why there is so much apparent
redundancy and co-activation of anti-apoptotic and pro-survival
responses.

In eukaryotic microbes, pre-conditioning is a process that has
numerous similarities to hormesis. Classical pre-conditioning can
be demonstrated by temporally decreasing blood supply to a tis-
sue leading to mild ischemia like conditions (Balakumar et al.,
2008; Porter et al., 2012). As in hormesis, the mildly stressed tis-
sue can be subsequently shown to have acquired an increased
resistance to more intense levels of stress including longer peri-
ods of ischemia. The normal form of pre-conditioning called
late onset pre-conditioning involves an increase in the expres-
sion of anti-apoptotic genes and is likely to be similar if not
identical to what occurs during hormesis (as described above).
There is also an early form of cellular protection that occurs soon
after the pre-conditioning stimuli. This process is much quicker
than the late onset form of pre-conditioning and usually involves
post-translational mechanisms that serve to activate pro-survival
proteins and cascades such as MAP kinases (Hausenloy et al., 2005;
Balakumar et al., 2008). The question as to whether such an early
form of hormesis exists in yeast has not been fully addressed.

DISEASES ASSOCIATED WITH ALTERED PCD
CONDITIONS WITH INCREASED RESISTANCE TO APOPTOSIS
There a plethora of diseases and pathophysiologies that are associ-
ated with defective apoptotic responses (Krakstad and Chekenya,
2010; Whelan et al., 2010; Zhivotovsky and Orrenius, 2010; Ashida
et al., 2011; Lavu et al., 2011; Liu et al., 2011; Orrenius et al., 2011;
Strasser et al., 2011; Ulukaya et al., 2011; Oerlemans et al., 2012;
Porter et al., 2012). Some such as cancer and some virally infected
cells have decreased apoptotic responses that lead to the accumula-
tion of unwanted cells. These conditionally apoptotic resistant cells
have been useful in identifying genes whose up-regulation can con-
fer anti-apoptotic phenotypes (Busca et al., 2009; Fulda, 2009b).
In effect, the most common anti-apoptotic gene, Bcl-2, was first
identified as a gene that is up-regulated in cancer cells (Vaux et al.,
1988). Altered Bcl-2 levels are now known to occur in a large pro-
portion of cancers. Developing combinational chemotherapeutic
strategies aimed at killing cancer cells combined with inhibitors of
anti-apoptotic genes or of their protein product are being devel-
oped as useful clinical processes (Strasser et al., 2011). Cancer
cells develop in stressful micro-environments that can include low
nutrient and oxygen levels (Fulda, 2010). Strategies aimed at pre-
venting new blood vessel formation (angiogenesis) are based on
preventing the establishment of these tumor cells (Galluzzi et al.,
2010b). These types of stresses faced by cancer cells is thought
to lead to pre-condition or hormesis like responses that serve to
increase apoptotic resistance (Fulda, 2009b; Fulda et al., 2010).
Thus there is also an increase in other cell survival strategies in
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these cells including an increase in autophagy that accounts for
some of the anti-apoptotic responses (Liu et al., 2011; Meschini
et al., 2011). These observations have led to the current interest in
the development of autophagy inhibitors to be used as chemother-
apeutic adjuvants (Wilkinson and Ryan, 2010; Meschini et al.,
2011).

CONDITIONS SHOWING ENHANCED APOPTOSIS
On the other hand, there are a large number of other pathophys-
iological conditions where an increase in cell death occurs (Fulda
et al., 2010; Whelan et al., 2010; Ulukaya et al., 2011). These are
seen in response to stresses such as ischemia/reperfusion that occur
due to heart attacks and strokes, in autoimmune diseases like Mul-
tiple Sclerosis (MS), and in diseases associated with defects of
protein folding and quality control leading to the accumulation
of misfolded proteins such as occurs in Alzheimer’s disease. In
unicellular eukaryotes such as yeast, exposure to excess mating
pheromone in the absence of an appropriate mating partner or
the heterologous expression of disease causing human genes like
α-synuclein can be seen as analogous to pathological situations
that lead to premature death (Buttner et al., 2006; Franssens et al.,
2010; Khurana and Lindquist, 2010). In more practical situations,
inappropriate, or unwanted cell death occurs in industrially used
cells including yeast and cultured mammalian cells that undergo
apoptosis due to the stresses imposed by the forced overproduc-
tion of biotechnologically important compounds and therapeutics
(Krampe and Al-Rubeai, 2010; Mokdad-Gargouri et al., 2012).
In many pathologies, there are very limited therapies given that
the underlying causes of many of these diseases are not known.
Increased apoptosis is not usually the cause since it occurs as a
result of the stress a cell encounters due to the pathophysiologi-
cal condition. Nevertheless, the ability to prevent PCD following
the onset of the disease process could be of tremendous clini-
cal value. This is apparent for the PCD that occurs after acute
conditions like a heart attack following an ischemic/reperfusion
event (Oerlemans et al., 2012). The most common form of a heart
attack involves a blockage of a blood vessel leading to ischemic
event that leads to nutrients and oxygen deprivation stress of the
cells downstream of the obstruction (Ong and Gustafsson, 2012;
Figure 2). The first priority is to unblock the blood vessel and
allow tissue reperfusion (Porter et al., 2012). The level of stress is
graded with the most severe stress occurring in the cells that are
most deprived of blood (Figure 2). In addition, there is a great
deal of stress that occurs in the cells due to the effects of reper-
fusion (Ong and Gustafsson, 2012). Necrosis is likely to occur
in the part of the tissue that is severely deprived, while apopto-
sis is triggered in some other areas having less stress (Ong and
Gustafsson, 2012). Thus there is a zone of necrotic death that
likely occurs soon after a heart attack and these cells are likely
beyond therapeutic rescue (Figure 2). Conversely, cell death due
to PCD (apoptotic and possibly autophagic death), will occur over
the next few days (Ong and Gustafsson, 2012). Thus there is a
therapeutic window in which the prevention of PCD would be a
great benefit in limiting the infarct size, increasing survivability
and decreasing morbidity, following ischemia/reperfusion events.
Thus the process of post-conditioning can be used to prevent
some of the post-infarct induced PCD (Balakumar et al., 2008;

Lehotsky et al., 2009). Post-conditioning refers to the ability to
stimulate a hormetic like response in cells using chemical agents
that can induce pre-conditioning even after the apoptosis inducing
event has occurred (Balakumar et al., 2008; Lehotsky et al., 2009).
Further, there is a great deal of evidence that serves to convince
that therapeutic interference in the process of PCD post-infarct
would serve to limit cellular demise (Oerlemans et al., 2012).
Of importance here is the observation that transgenic animals
that overexpress anti-apoptotic genes in a cardiac or brain spe-
cific manner, have significantly decreased zones of death following
ischemic events (Figure 2; Yenari et al., 2005; Khan et al., 2006;
Nakka et al., 2008). These effects are widespread since they are
observed with a number of different anti-apoptotic genes and it
demonstrates the potential clinical usefulness of anti-apoptosis
(Rami et al., 2008; Fulda, 2009a; Krakstad and Chekenya, 2010;
Dietz, 2011; Lavu et al., 2011).

CLINICAL APPROACHES AND DEVELOPMENT OF APOPTOTIC
REGULATING THEARAPEUTICS
Numerous strategies have been developed in order to try and over-
come the apoptotic resistance encountered in cancer cells (Strasser
et al., 2011; Porter et al., 2012). Most chemotherapeutics as well
as radiation therapies appear to function by targeting the rapidly
dividing phenotype associated with these cells in order to induce
a specific apoptotic response. As mentioned above, strategies such
as the inhibition of autophagy, are being developed to render can-
cer cells more sensitive to apoptotic inducing stimuli. In the case
of cells that are more resistant to apoptosis due to an infection
by an infective agent, investigations are underway to understand
the life cycle of these organisms to target the factors that increase
apoptotic resistance (Galluzzi et al., 2010a; Ashida et al., 2011;
Rodrigues et al., 2012).

On the other hand, given the success achieved by overexpress-
ing anti-apoptotic genes in transgenic animals to prevent ischemic
damage, there is intense investigation to try and develop strategies
that can serve to inhibit apoptosis (Rami et al., 2008; Yacoubian
and Standaert, 2009; Dietz, 2011; Oerlemans et al., 2012). Thus
the development of small molecule inhibitors of proteins involved
in mediating apoptotic death was examined by many (Oerlemans
et al., 2012). Given their central role in apoptosis, caspases were
identified as ideal targets given that their inhibition is predicted to
serve to prevent at least some forms of PCD. Caspase inhibitors
with a good deal of specificity and effectiveness were developed
and shown to be effective in vitro cell cultures (Oerlemans et al.,
2012). Many of the inhibitors were indeed effective at blocking
caspase and caspase mediated cell death. In contrast these were of
limited effectiveness at preventing cell death in vivo (Oerlemans
et al., 2012). It appears that cells that are stimulated with appropri-
ate stress will undergo alternate modes of PCD if their apoptotic
machinery is impaired. This situation is commonly observed and
is reminiscent of the autophagic cell death that occurs in apoptot-
ically stimulated cells that are unable to undergo apoptosis due to
a double KO of the pro-apoptotic Bcl-2 family members Bax and
Bak (Shimizu et al., 2004).

The limited effectiveness encountered with these caspase
inhibitors suggests that targeting a single protein may not be able
to inhibit apoptosis. Thus a great deal of effort is being made
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FIGURE 2 | Schematic depiction of the stress generated and

subsequent cell death mediated by cardiac stress events. Zones of
cardiac cell death can be induced experimentally including the generation
of myocardial infarction (MI) by ligation of left descending artery or by
direct cardiac ischemia reperfusion (Tarnavski et al., 2004). In the normal
state (left side), a gradient of stress intensity occurs in the deprived tissue
where the most severely deprived cells undergo necrosis while other

stressed cells undergo cell death that appears to include apoptosis and
possibly autophagic death. Loss of viability is more pronounced as we
move closer to the site of the most intense stress. Transgenic animals that
overexpress an anti-apoptotic gene in a cardiac specific manner represent
an apoptotic resistant state (right side). Identical levels of stress generated
in the hearts of these animals leads to significant reduction in the zone of
dead cells.

into understanding the processes that occur during apoptosis and
anti-apoptosis in order to develop strategies aimed at tapping into
the natural anti-apoptotic network (Balakumar et al., 2008; Lehot-
sky et al., 2009; Lochner et al., 2009; Yacoubian and Standaert,
2009; Boll et al., 2011). This concept is in line with the fact that

agents causing up-regulation of endogenous defense mechanisms
by hormesis or by pre-conditioning are effective at preventing or
decreasing cell death (Balakumar et al., 2008; Rami et al., 2008;
Calabrese et al., 2011b; Martins et al., 2011; Porter et al., 2012).
Thus, anti-apoptotic genes, which are part of the in vivo regulatory
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responses to counteract stress mediated cell death, are readily effec-
tive when overexpressed in vivo (via transgenics; Gil-Gómez and
Brady, 1998; Yenari et al., 2005; Khan et al., 2006). Strategies are
currently being developed to increase the levels of anti-apoptotic
genes in tissues. Approaches include delivery of expressible gene
constructs by gene therapy or the use of lipophilically modified
recombinant proteins that could diffuse into apoptotically chal-
lenged cells (Dietz, 2011; Lavu et al., 2011). Such approaches could
only serve to give rise to a short term increase in the levels of anti-
apoptotic proteins, but this may be sufficient to prevent cell death
in the short term after an ischemic/reperfusion event in tissues like
the heart.

YEAST AS A MODEL TO STUDY PCD
In addition to its long history in the food and biotechnology
industries, the yeast S. cerevisiae may be the most widely used
model organism (Botstein and Fink, 2011). As a eukaryotic cell
system it has numerous advantages over other model cell types
including the ability to use genetic approaches. In addition, its
basic cellular processes, such as cell cycle control, DNA replica-
tion and repair, mitochondrial based respiration, and autophagy
are carried out by simplified cellular process that are virtually
interchangeable with the same but more complex processes of
metazoan eukaryotes including humans (Perocchi et al., 2008).
Thus it comes as no surprise that the description of a PCD in
S. cerevisiae in 1997 has led to an explosion of research into the
study of these processes in yeast (Madeo et al., 1997; Carmona-
Gutierrez et al., 2010). Although the utility of a PCD process in
unicellular eukaryotes was at first difficult to imagine, it is now
widely accepted and has in fact been extensively documented to
occur in a wide variety of different unicellular eukaryotes (She-
marova, 2010). Over the last few years, a large variety of studies
have been instrumental in documenting many of the processes
and in identifying many of the proteins involved in mediating
yeast PCD (Frohlich et al., 2007; Carmona-Gutierrez et al., 2010).
Although there are some differences, it would appear that yeast
PCD is very similar to the mitochondrial or intrinsic apoptosis
seen in metazoans (Eisenberg et al., 2007; Pereira et al., 2008).
The complexity is decreased compared to mammalian apoptosis
which is exemplified by the fact that most apoptotic regulators are
encoded by multiple copies in humans but by single copy genes in
yeast. So, yeast has single functional counterparts to many mam-
malian apoptotic regulators including a caspase (YCA1), a BH3
containing Bcl-2 family like protein (yBH3), an AIF (AIF), an
OMI serine protease (NMA111), and an Endonuclease G (NUC1;
Madeo et al., 2002; Fahrenkrog et al., 2004; Wissing et al., 2004;
Buttner et al., 2007, 2011). As in mammalian cells, yeast will
undergo apoptosis in response to a variety of different stresses
including many chemicals, physical process such as altered osmo-
larity and pH, as well as the overexpression of genes encoding
pro-apoptotic proteins including mammalian Bax and caspases
(Manon et al., 1997; Lisa-Santamaria et al., 2009; Sharon et al.,
2009; Carmona-Gutierrez et al., 2010; Orrenius et al., 2011). The
intracellular events mediating yeast PCD also show a great deal of
similarity with a number of other processes such as an increase
in mitochondrial outer membrane permeability, increase in pro-
apoptotic second messengers like ROS and ceramide, the release of

apoptogenic factors including cytochrome c, DNA fragmentation
as well as the externalization of phosphatidylserine (Manon et al.,
1997; Ligr et al., 1998; Madeo et al., 1999; Yang et al., 2006; Ganesan
et al., 2010; Carmona-Gutierrez et al., 2011b). In addition, natu-
rally occurring physiological processes including ER stress and
chronological aging will lead to mitochondrial and necrotic like
cell death as it does in mammalian cells (Burhans et al., 2003; Fab-
rizio and Longo, 2008; Winderickx et al., 2008; Eisenberg et al.,
2010; Madeo et al., 2010; Pan, 2011). On the other hand, ER medi-
ated cell death in yeast is reminiscent of what occurs in a number
of diseases that involves the accumulation of misfolded proteins
such as Parkinson’s and Huntington’s (Winderickx et al., 2008;
Khurana and Lindquist, 2010).

Of importance to our interests is the fact that regulated cell
death, including PCD and necrosis, in yeast is also under neg-
ative regulation (Owsianowski et al., 2008; Carmona-Gutierrez
et al., 2011a; Zdralevic et al., 2012). In fact many of the proteins
that are known to prevent cell death in mammalian cells, such
as free radical scavengers, chaperonin type proteins like HSPs,
the yeast IAP (Inhibitor of Apoptosis Protein) protein (Bir1p)
as well as numerous heterologous mammalian proteins such as
Bcl-2 also prevent cell death (Manon et al., 1997; Moon et al.,
2002; Flower et al., 2005; Walter et al., 2006). Yeast also has a
well-defined stress activated autophagic process that has long been
known to promote cellular longevity in response to stresses such
as amino acid or glucose starvation and aging (Eisenberg et al.,
2009; He and Klionsky, 2009). In spite of this, there have been
very relatively few studies directed toward examining the possible
role of autophagic cell death in yeast (Camougrand et al., 2003;
Kissova et al., 2006; Thevissen et al., 2010; Sampaio-Marques et al.,
2011).

Observed differences between yeast and mammalian cells are
also of interest. For example, in a screen for yeast mutants showing
increased resistance to the heterologous expression of the pro-
apoptotic Bax, the UTH1 gene was identified (Camougrand et al.,
2004). Although the exact function of Uth1p has yet to be defined,
deletion of this gene leads to a number of interesting pleiotropic
effects including increasing replicative lifespan, increasing resis-
tance to the autophagic inducing drug rapamycin and ER inducing
stresses (Kissova and Camougrand, 2010; Ritch et al., 2010). Sur-
prisingly, a direct mammalian ortholog of UTH1 has yet to be
found but it would be of interest to set up a suicide screen of
UTH1Δ cells in order to identify potential functional homologs.
Such screens have proven useful in the past for the identification
and characterization of a number different human orthologs that
can functionally complement phenotypes of a variety of differ-
ent yeast mutants (Perier et al., 1994; Sato et al., 2006; Osborn
and Miller, 2007). The study of yeast specific apoptotic regu-
lators open up possibilities of increasing our understanding of
the basic ancestral processes involved in regulating PCD. More
recent developments including systems biology and other global
approaches are being applied to understanding the processes of
PCD in yeast (Munoz et al., 2012). For example a global search
for yeast genes that are potential regulators of PCD was carried
out by evaluating all yeast gene knockout strains for increased
susceptibility to stress mediated cell death (Teng et al., 2011).
Over 800 of the 6000 or so yeast genes were thus identified as
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FIGURE 3 | Schematic depiction of a yeast based functional strategy to

screen for and identify cardiac specific sequences capable of preventing

Bax mediated cell death. Poly A+ RNA isolated from human cardiac tissue
was used to generate a cDNA library in the URA3 selectable marker yeast
expression plasmid pYES-DEST52 (Sato et al., 2006). This places the
expression of the human cardiac cDNAs under the control of the galactose
inducible GAL1 promoter. Plasmid pGILDA-Bax was used to express an
activated mouse Bax in yeast under the control of galactose inducible GAL1
promoter. Yeast cells harboring pGILDA-Bax alone show normal growth when

grown on glucose media but undergo cell death due to the expression of Bax
when grown on galactose media. Close to 106 yeast transformants harboring
both pGILDA-Bax as well as different cDNAs from the pYES-DEST52 cardiac
cDNA library were grown on galactose media. A total of 72 different colonies
containing over 60 different putative Bax suppressors were identified when
the pYES-DEST52 cardiac cDNAs were isolated and their nucleotide sequence
determined (Yang et al., 2006). Similar apoptotic resistant phenotypes can be
achieved in the heart by subjecting the tissue to a period of mild stress in
order to induce pre-conditioning. Glu, glucose; GAL, galactose.

potential pro-apoptotic genes. This suggests that many more genes
are involved in the process of PCD than we know of now and
these types of approaches in yeast may actually serve to identify

all players in the process of PCD. Other such global strategies are
now being combined with the power of yeast genetics to char-
acterize other processes involved in PCD such as identifying the
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metabolic products (metabolome) that accumulate in different
process associated with different forms of PCD (Ring et al., 2012).

HUMANIZED YEAST
Humanized yeast has been extensively used to study the structure
and function of human genes in an uncluttered cellular envi-
ronment (Osborn and Miller, 2007; Greenwood and Ludovico,
2010; Silva et al., 2011a). For example, all mammalian cells
express a multitude of G-Protein Coupled Receptors (GPCRs)
and studies focused on individual members of this large gene
family are further encumbered by the fact that different mem-
bers of the same family are capable of functionally interact-
ing with each other (Panetta and Greenwood, 2008). Thus the
ability to functionally replace the yeast sex pheromone GPCRs
and their regulatory proteins with human orthologs allows the
study of individual human genes uncluttered by the presence
of other members (Kong et al., 2002; Ladds et al., 2005). Given
the similarity between the processes of metazoan mitochondri-
ally induced apoptosis and yeast apoptosis (Cheng et al., 2008)
it is not surprising that humanized yeast have been successfully
used in the pursuit of knowledge regarding the genes involved and
the processes regulating PCD (Greenwood and Ludovico, 2010;
Khurana and Lindquist, 2010; Silva et al., 2011a; Zdralevic et al.,
2012).

Early studies by a number of yeast researchers lead to the discov-
ery that mammalian regulators of apoptosis including various Bcl-
2 family members including pro-apoptotic Bax and anti-apoptotic
Bcl-2 could be functionally expressed in yeast (Greenhalf et al.,
1996; Manon et al., 1997; Tao et al., 1997). Thus Bax mediated
PCD in yeast was extensively studied and all indications sug-
gested it induced apoptosis, at least in some cells, since it lead to
apoptotic hallmark events similar to what was observed in mam-
malian cells (Priault et al., 2003; Khoury et al., 2008). Bcl-2 was
also able to prevent Bax as well as other forms of stress medi-
ated PCD in yeast. Some of these early studies had noticed that
Bax expression not only lead to typical apoptotic phenotypes but
it also lead to the activation of autophagy (Camougrand et al.,
2003; Kissova et al., 2006). This is indicative of some form of
cross-talk and is suggestive of some of the useful avenues of knowl-
edge that are uncovered using humanized yeast in the study of
PCD. Not surprisingly other pro-apoptotic human proteins such
as caspases can trigger the same types of effects in yeast (Lisa-
Santamaria et al., 2009). The functional expression of Bax and
of other mammalian apoptotic regulators continues to serve to
uncover insights into PCD (Greenwood and Ludovico, 2010).
In the case of Bax, recent work has been useful in characteriz-
ing the roles of a variety of different proteins including protein
kinase C and the mitochondrial receptor Tom22 in the functional
activation of Bax (Renault et al., 2011; Silva et al., 2011b). Up
until recently it was thought that the yeast genome did not code
for any BH3 containing proteins, so the effects of heterologously
expressed Bcl-2 proteins was thought to reflect intrinsic activi-
ties of these proteins or it was thought that yeast must contain a
functional that is a not structural homolog of human Bax (Priault
et al., 2003; Khoury et al., 2008). More recently, an endogenously
encoded BH3 domain containing protein, called yBH3p, was iden-
tified as a pro-apoptotic protein in yeast (Buttner et al., 2011).

Whether it has all the functions of mammalian Bax remains to be
determined.

Bax mediated lethality in yeast was exploited in other ways.
Notably, yeast cells conditionally expressing Bax, most often under
a galactose inducible promoter, were used in numerous suicide
screens (Figure 3; Liu et al., 1992; Sato et al., 2006; Osborn
and Miller, 2007; Greenwood and Ludovico, 2010). Copy DNA
(cDNA) libraries obtained from a range of different species includ-
ing bacteria, plants, and different tissues were screened in order
to identify sequences that permitted yeast to grow in the pres-
ence of Bax (Greenwood and Ludovico, 2010; Laloux et al., 2010).
Many of the Bax suppressors identified corresponded to obvi-
ous anti-apoptotic sequences including numerous free radical
scavenging proteins (Kampranis et al., 2000; Moon et al., 2002;
Camougrand et al., 2004). This is consistent with the notion that
Bax is indeed inducing a PCD that has similarities to apopto-
sis. Other proteins identified represent a challenge since they are
clearly able to prevent PCD from a number of different stresses in
yeast, but the mechanism by which they carry out this function
remains unknown. This class of protein includes some with well-
known functions such as Vacuolar Protein Sorting 24 (VPS24)
and the small GTP binding protein Ran as well as proteins that are
essentially functional orphans including TMEM85 and TMEM14
(Khoury et al., 2007; Ring et al., 2008; Woo et al., 2008, 2011). Other
Bax suppressors identified include the dUTP hydrolyzing enzyme
dUTPase and the ceramide utilizing enzyme sphingomyelin syn-
thase (Yang et al., 2006; Williams et al., 2011). This suggests that
stress mediated cell death in yeast, like observed in mammalian
cells, involves an up-regulation of the levels of apoptosis induc-
ing second messengers including ROS, ceramide, and dUTP (Portt
et al., 2011; Wilson et al., 2012). Many of the screens have reported
the identification of multiple Bax suppressors but the identity of
many of these have yet to be reported. For example screening of
a human T cell library lead to the identification or 24 Bax sup-
pressors but the group has only reported a detailed analysis of
four of these (Eun et al., 2008; Woo et al., 2008, 2009, 2011). Sim-
ilarly, we have isolated over 60 different Bax suppressors from a
screen of a human cardiac library and we have since published a
detailed characterization of five of these (Yang et al., 2006; Khoury
et al., 2007, 2008; Ring et al., 2008; Williams et al., 2011). Paral-
lel or subsequent analysis of a number of these Bax suppressors
reveal that they are bone-fide cell survival genes since they also
function as anti-apoptotic genes in mammalian cells (Fiol et al.,
2007; Separovic et al., 2007; Eun et al., 2008; Woo et al., 2008, 2009,
2011; Greenwood and Ludovico, 2010; Williams et al., 2011; Wil-
son et al., 2012). Taken together these screens suggests that there is
a lot more that remains to be discovered on the anti-apoptotic and
cell survival mechanisms used by a cell and that yeast is an ideal
system for this task.
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