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We previously demonstrated that IL4, IL13, CLCA1, and CCL26 mRNA were significantly

upregulated in the lungs of pigs given a low dose of all trans-retinoic acid (ATRA)

and infected with Ascaris suum. We also demonstrated that in vitro ATRA induced a

state of partial alternative activation in porcine macrophages (Mϕs) and amplified certain

aspects of M2a activation induced by IL-4. Given these results, we tested the effect

of ATRA on IL-4 responses in two porcine intestinal epithelial cell lines, IPEC1 and

IPEC-J2 and observed that ATRA increased mRNA for the IL-4 receptor alpha chain.

ATRA also increased IL-4 induced phosphorylation of signal transducer and activator of

transcription 6 (STAT6) and mRNA expression of the chloride channel, calcium activated,

family member 1 (CLCA1), important for mucus formation, and chemokine (C-C motif)

ligand 26 (CCL26), a potent eosinophil chemoattractant. We extended these findings

to human Mϕ THP-1 cells and showed that ATRA synergistically increased IL-4–induced

CCL2, CCL13, and CCL26mRNA and protein levels. Transglutaminase 2mRNA, protein,

and enzyme activity were synergistically induced in THP-1 cells pretreated with ATRA

and then treated with IL-4, thus, ATRA increased signaling in response to IL-4 in

porcine epithelial cells and porcine and human Mϕs. Given the prevalence of allergic and

parasitic diseases worldwide and the close similarities in the porcine and human immune

responses, these findings have important implications for the nutritional regulation of

allergic inflammation at mucosal surfaces.

Keywords: macrophage, porcine, human, interleukin 4, all-trans-retinoic acid

INTRODUCTION

Vitamin A (VA) is required for T helper 2-associated responses that are shared by immune
responses to allergens and parasites (1–3). In mice, VA deficiency reduced (3) or increased
(4) pulmonary Th2 immune responses to experimental pulmonary allergy models. Similarly,
supplemental VA or ATRA increased (3, 5) or decreased (6) pulmonary Th2 responses. These
effects seem to be timing and dose dependent. In vivo allergic responses in pigs are increased by
ATRA in response to parasitic infections including increased lung eosinophilia and expression of
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Th2-associated cytokines, interleukin 4 (IL-4) and IL13,
eosinophil chemo-attractants (Chemokine (C-C motif) ligand
11 (CCL11), CCL22, CCL17, and CCL26) and the goblet cell
differentiation marker, chloride channel, calcium activated,
family member 1 (CLCA1) (7).

Macrophages are one likely target of VA in these models.
Polarized Mϕs are important for regulating distinct immune
responses in tissues. The most actively studied are classically
activated (M1) which mediate host defense leading to type I
inflammation or alternatively activated M2 which have been
divided into several subtypes. Alternatively activated Mϕs
(AAM) stimulated by interleukin 4 (IL-4) and IL-13 are
designated as M2a that can suppress inflammation and promote
wound healing and are dependent upon the transcription factors
signal transducer and activator of transcription 6 (STAT6) and
interferon regulatory factor 4 (IRF4) for their development (8–
11). Type-II AAMs, known as M2b, mediate immune complex
immunoregulation and Th2 activation, and M2c are stimulated
by IL-10 and glucocorticoids to primarily modulate tissue
remodeling (8, 10, 11).

M1, M2a, or M2b differentiation can be influenced by dietary
factors. ATRA, the active component of VA, generally inhibits
the development of M1 macrophage. Thus, ATRA inhibited LPS-
induced TNF, CCL3, and CCL4 mRNA and protein levels in
human primary Mϕs and THP-1 cells (12, 13); but had no effect
on IL1A or IL1B mRNA (13). The mechanisms behind these
phenomena are partially known. ATRA stimulated LPS-induced
production of the anti-inflammatory cytokine, IL-10 (12, 13).
In addition, ATRA-inhibited basal and LPS- or TNF-induced
NF-κB activation (14–16). Whether these mechanisms extend to
ATRA-induced differentiation of human M2a cells is unknown.

Several recent reports suggested that ATRA can influence
M2a or M2b Mϕ development. Lee et al. demonstrated that
ATRA increased IL-4 induced arginase 1 (Arg1) mRNA, protein
expression, and enzymatic activity in mouse RAW264.7 Mϕs
(17). However, it had no effect on IL-4 induced mannose
receptor; C type 1 (Mrc1) or chitinase 3-like 3 (Chi3l3/Ym1)
mRNA expression. Two separate groups demonstrated that
ATRA increased Arg1 protein expression in mouse bone
marrow-derived Mϕs (18, 19), and Gundra et al. demonstrated
that VA was necessary for M2a development in Schistosoma
infected mice (20).

Transglutaminase 2 (TGM2), one of the few, trans-species
markers forM2aMϕs (21), can be induced in humanMϕs treated
with ATRA (22). We recently demonstrated that ATRA- induced
mRNA for CCL17 and CCL22 in pig primary alveolar Mϕs and
a pig alveolar Mϕ cell line, and synergized with IL-4 to induce
mRNA for all of the major eosinophil chemoattractants, CCL11,
CCL17, CCL22, and CCL26 (7). Similarly, ATRA synergistically
enhanced IL-4 up-regulation of TGM2 at the mRNA and protein
level (23). There are a limited number of studies showing the

Abbreviations: AM, Alveolar Macrophage; AAM, Alternatively activated Mϕs;

ATRA, All-trans-retinoic acid; CCL, Chemokine (C-C motif) ligand; IL1RN,

Interleukin 1 receptor antagonist; Mϕ, Macrophage; MDM, Monocyte-derived

Mϕ; PBS, Phosphate Buffered Saline; VDR, Vitamin D3 receptor; VD3, Vitamin

D (1,25- dihydroxyvitamin D3).

effect of ATRA on human M2b Mϕ polarization. Treatment
of human-derived THP-1 cells with the combination of ATRA
and 1,25 (OH)2 vitamin D3 (VD3) increased CD163 (an M2b
marker), ARG1 and IL10 TGFB1 mRNA and increased clusters
of differentiation 163 (CD163) and IL-10 protein expression (24).

Epithelial cells also participate in the immune response
to helminths. Intestinal epithelial tuft cells by virtue of their
secretion of IL-25, IL-33 and thymic stromal lymphopoietin
(TSLP) initiate type 2 mucosal immunity (25). These cytokines
result in IL-13 production by type 2 innate lymphoid cells
(ILC2). Nutritional or metabolic factors that influence this axis
include succinate (26), vitamin D (27) and vitamin A, via its
conversion to ATRA (27, 28). Il-4 and IL-13 have pleitropic
effects on epithelial cells including induction of CLCA1 (29),
eosinophil-attracting chemokines (CCL17 (30), CCL24 (31), and
CCL26 (31). Vitamin A is essential for normal epithelial cell
differentiation and function including goblet cell development,
fluid and mucus production (32, 33). The effects of ATRA on
epithelial cell responses to IL-4/IL-13 have not been extensively
studied. ATRA decreased CCL24 and increased CCL26 protein
production from IL-4 stimulated human primary bronchial
epithelial cells (31).

Nutritionally-based pig models have served as an important
translational bridge between research findings made in rodents
and humans. Recent comparative structural and functional
genomics-based analysis of the mouse, human and pig genomes
(34–37) reinforced this concept and extended it to inflammatory
and immune responses. One of our goals in the current series of
studies is to define the role of ATRA in mediating epithelial cell
responses in response to IL-4 and IL-13 in 2 non-transformed
porcine epithelial cell lines.

Herein, we demonstrate that ATRA induces IL-4 receptor
mRNA and that ATRA-treatment of IPEC-1 and IPEC-J2
porcine epithelial cells led to greater IL-4-induced STAT6
phosphorylation and CLCA1 mRNA was induced in a dose-
dependent fashion by ATRA, IL-4, or IL-13. Our data also
indicates that, like porcine Mϕs, porcine intestinal epithelial
cell responses to IL-4 are increased by exposure to ATRA.
ATRA synergistically increased IL-4–induced CCL2, CCL13, and
CCL26 mRNA and protein levels in human MϕTHP-1 cells.
Transglutaminase 2 mRNA, protein and enzyme activity were
synergistically induced in THP-1 cells pretreated with ATRA
and then treated with IL-4. Thus, in porcine epithelial cells and
porcine and human Mϕs, ATRA increased signaling in response
to IL-4 suggesting that ATRA treatment induces a conserved
response across cell types and species.

MATERIALS AND METHODS

Cell Culture
IPEC-1 cells were provided by Dr. Dennis Black, Department
of Pediatrics and the Department of Medicine, University of
Tennessee Health Science Center, Memphis, Tennessee. IPEC-
J2 cells were provided by Dr. Sean Bearson, NADC, Ames
Iowa. IPEC-1 and IPEC-J2 cells were incubated at 37◦C
in an atmosphere containing 5% CO2 in humidified air.
Undifferentiated IPEC-1 or IPEC-J2 cells were maintained in

Frontiers in Immunology | www.frontiersin.org 2 May 2020 | Volume 11 | Article 605

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Retinoic Acid and Macrophage Polarization

serial passage in plastic culture flasks (75 cm2, Corning, Corning,
NY) in Dulbecco’s Modified Eagle’s Medium (DMEM)/F12
medium (Gibco Invitrogen Corporation, Grand Island, NY)
supplemented with 5% fetal bovine serum (FBS) (Hyclone South
Logan, UT), 5µg/ml ITS Premix R© (insulin 5 ug/ml, transferrin
5 ug/ml, selenium 5 ng/ml, BD Biosciences, Bedford, MA),
5µg/ml epidermal growth factor (BD Biosciences), penicillin
(50µg/ml), and streptomycin (4µg/ml) (QBI, Gaithersburg,
MD) (growth medium). Adherent undifferentiated cells were
washed 2 times with PBS without Ca2+ or Mg2+ and harvested
by treatment with 5 mls of TrypLETM Select (Gibco Invitrogen)
enzymatic dissociation media and gentle scraping. Cells were
washed 2 times with PBS without Ca2+ or Mg2+ and re-
suspended at 1 X 106 cells/ml in growth media. Two mls
of this suspension was plated in each well of a 6 well plate
(Corning) for 12 h. Depending on the experiment, IPEC-
1 cells were treated with 0.5 to 50 ng/ml of recombinant
porcine IL-4 (Invitrogen, Camarillo, CA) or human IL-13
(Invitrogen) for 24 or 48 h to determine the half maximal
effective concentration (EC50). For experiments involving
ATRA, cells were treated with EtOH, or 0.1 to 1,000 nM
ATRA (Sigma) in EtOH. Cells were pre-treated with 10−7 M
ATRA 24 h before exposure to 5 ng/ml of IL-4 for another 24 h
where indicated.

THP-1 cells were obtained from ATCC (Manassas, VA)
and cultured in RPMI (Quality Biological, Gaithersburg, MD)
supplemented with 10% heat-inactivated fetal bovine serum
(Gibco, Gaithersburg, MD), 1% penicillin/streptomycin (Quality
Biological, Gaithersburg, MD), and 1% sodium bicarbonate
(Quality Biological, Gaithersburg, MD). Prior to treatments, cells
were seeded at 5 × 105 cells/ml and differentiated with 25 ng/ml
phorbol-12-myristate-13-acetate (PMA, EMD-Calbiochem, La
Jolla, CA) for 48 h. After differentiation, cells were treated
with EtOH or ATRA (100 nM), Sigma, St. Louis, MO) or
recombinant human IL-4 (10 ng/ml, Leinco Technologies, St.
Louis, MO) or ATRA + IL4 or LPS from Escherichia coli 0111:
B4 strain (10 ng /ml, InvivoGen, San Diego, CA). Supernatants
and cellular RNA and protein were harvested at 1, 2, 4, 8,
24, or 48 h. In some experiments VD3 (Sigma) in EtOH was
added at a final concentration of (10 nM), with or without
(100 nM) ATRA.

NFκB-Reporter Assay
The THP1-XBlueTM cell line and QUANTI-Blue reagent were
obtained from InvivoGen (San Diego, CA). The NF-κB/AP-
1 reporter assay was carried out following the manufacture’s
protocol. The THP1-X Blue cells were seeded at 1 × 106 cells/ml
(180 µL per well) in a 96 well plate and cultured at 37◦C
in 5% CO2. Cells were differentiated and then pretreated with
EtOH or ATRA, as described above. Cells were then treated
with IL4 or LPS for 24 h as described above. Mock-transfected
THP-1 cells were used as controls. The supernatants from these
cell culture samples were then mixed with the QUANTI-Blue
solution (as described by the manufacture’s product data sheet)
for 4 h. Secreted embryonic alkaline phosphatase (SEAP) levels
were determined by a spectrophotometer at 620–655 nm.

Real-Time PCR
For IPEC cells, supernatants were discarded, and cells were
washed two times with 1X PBS without Ca2+ or Mg2+.
Adherent cells were then homogenized in 2ml of TRIzol
(Invitrogen, Carlsbad, CA) for RNA extraction or processed for
analysis by flow cytometry. RNA extraction, cDNA synthesis and
real-time PCR analysis was essentially as described (8). For each
message, the fluorescence signals measured during amplification
were processed post-amplification and the value (Ct) calculated
when the fluorescence intensity was 20-fold greater than the
standard deviation of the baseline fluorescence. All mRNA levels
were normalized to PPIA by subtracting its Ct value from
the Ct value for each message. This value was defined as the
adjusted (Adj) Ct. The means of the Adj Ct were compared to
the means of the control and fold changes were calculated to
be 2AdjCt. For THP-1 cells, all mRNA levels were normalized
to PPIA and compared to untreated or EtOH-treated controls
where indicated. RNA extraction, cDNA synthesis and real-time
PCR analysis was essentially as described [(23) #4380]. All gene
sequence information including primer and probe sequences can
be found in the Porcine Translational Research Database (http://
www.ars.usda.gov/Services/docs.htm?docid=6065).

ELISA Analysis of Cytokines
Human CCL2 (R & D Systems # DCP00), CCL13 (Thermo
Scientific #), CCL17 (Thermo Scientific # EHCCL17), CCL18
(R & D Systems), CCL21 (R & D Systems # DY366), CCL22
(Thermo Scientific #), CCL26 (Raybiotech # ELH-Eotaxin3),
IL1B (Invitrogen # KHC00012), IL1RN (R & D Systems
# DRA00B), and TNF (R & D Systems # DTA00D) were
measured in cell culture supernatants by ELISA, according to
the manufacturer’s instructions. Results were obtained using a
Spectramax 96 well Spectrophotometer.

Western Blot Analysis of IRF4 and IL-4
Receptor Proteins
Cells were obtained and cultured in 6-well plates as described
above. Cells were treated with ATRA (100 nM) for 24 h and
then IL-4 (5 ng /mL). After 24 h, wells were washed 2 X with
PBS (w/o Ca2+ and Mg2+) and treated with 0.8mL of MPER
reagent (Thermo-Fisher Scientific). Protein measurements on
lysates were made using the Pierce BCA Protein Assay Kit
(Thermo-Fisher Scientific).

For IRF4 determination, samples (10 µg) or control IRF4
(LSBio # G76848-20) lysate were subjected to reducing Tris-
Glycine SDS-gel electrophoresis on 10–20% polyacrylamide gels
(Novex, Invitrogen, Carlsbad, CA). The gels were electroblotted
onto nitrocellulose using a Tris/Glycine transfer buffer (Novex)
with 20% methanol added. For IL-4 receptor detection, gels
were run under non-reducing conditions using IL-4R transfected
cells control lysates (LSBio # G76916-20). The resulting blots
were blocked with Odyssey Blocking buffer (LI-Cor Biosciences,
Lincoln, NE) at room temperature for 1 h and then incubated
with anti-human IRF4 polyclonal antibody [Santa Cruz (SC-
48338), 1:200)] anti-human IL-4R monoclonal antibody 25463
(R & D Systems # MAB230100 2 1:500) and rabbit anti-GAPDH
(Cell Signaling # 21185, 1:1000-1:2000) overnight at 4◦C. Blots
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were then washed with PBS/0.1% Tween-20 and incubated with
Li-Cor IRDye 800CW labeled Goat anti-rabbit IgG (Catalog #
926-32211) for 2 h at room temperature, washed with PBS/0.1%
Tween-20 and imaged using the Odyssey CLx Imaging System
(LI-Cor Biosciences, Lincoln, NE). Bands were quantitated using
the Li-Cor Image Studio Software. The ratio of IRF4 or IL-4R
signal to GAPDH signal was calculated.

Transglutaminase 2 ELISA and Enzymatic
Assay
Protein lysates were prepared as described above and 20 µL
of lysate was used per well. TGM2 protein was quantitated
by an ELISA kit (Sigma # RAB1741). Transglutaminase
enzymatic activity was quantitated by a colorimetric assay (Novus
Biologicals # NBP1-37008). Absorbance was measured using a
Spectramax Microplate Reader (Molecular Devices, LLC, San
Jose, CA) using a wavelength of 450 nm. Transglutaminase
activity was expressed as mU/ug protein.

Statistics
All statistical analysis was performed using JMP (v12.0 SAS
Institute Inc., Cary NC). Data were analyzed for equality of
variance using Fisher’s F test. Messenger RNA expression (1Ct
values), protein levels and STAT6 fluorescence values were
evaluated by a Student t-test and/or a one-way ANOVA where
indicated. The Fisher’s Least Squares Difference post-hoc test was
applied to assess differences between treatment groups. For all
analyses, p-values < 0.05 were considered significant.

RESULTS

Previously we observed that IL4, IL13, CLCA1, and CCL26
mRNA were significantly up regulated in the lungs of A. suum-
infected pigs given low dose of ATRA (7), indicating that ATRA
enhanced the parasite-induced Th2 response. However, lung
tissue is composed of multiple cell types including Mϕs and
epithelial cells. We wished to know whether lung epithelial cells
contributed to the enhanced accumulation of eosinophils in the
lungs of the animals infected with Ascaris and given ATRA. As
there are no porcine lung epithelial cell lines available and Ascaris
also induced a Th2 response in the ileum of infected animals
(38), we examined the effect of ATRA on IL-4 induced gene
expression in two porcine, non-transformed, small intestinal
epithelial cell lines, IPEC-1 and IPEC-J2. Because of potential
expression differences between cell lines, we first determined
whether a panel of genes including, CLCA1 or CCL26 were IL-
4 and IL-13 responsive in porcine epithelial cells. Our results
(Table 1) showed that both genes were induced in IPEC-1 cells by
IL-4 and IL-13 in a dose dependent manner with a half maximal
effective concentration (EC50) estimated to be 5–10 ng/mL.

We next wanted to determine whether these genes responded
to ATRA in a dose-and time (1, 2, 4, 8, 24, 48, and 72 h) dependent
fashion. Cytochrome P450, family 26, subfamily A, polypeptide 1
(CYP26A), a retinoic acid-inducible gene, was used as a control.
Only CYP26A and CLCA1 mRNA were induced by ATRA in

TABLE 1 | IL-4 and IL-13 increases IPEC-1 cell CLCA1 and CCL26 mRNA

expression in a dose-dependent fashion.

Mean Adj.

CT ± SD

Fold change

vs. control

Significance

(A) IL-4

CLCA1 Control 16.5 ± 0.0 – –

0.5 ng/ml 16.9 ± 0.2 1.3 –

1.0 ng/ml 17.2 ± 0.3 1.6 0.07

5.0 ng/ml 18.1 ± 0.2 3 0.007

10 ng/ml 18.4 ± 0.6 3.7 0.002

50 ng/ml 18.3 ± 0.5 3.5 0.002

CCL26 Control 0.0 ± 0.0 – –

0.5 ng/ml 0.4 ± 0.5 1.3 –

1.0 ng/ml 1.4 ± 0.7 2.6 0.02

5.0 ng/ml 3.5 ± 0.9 11.3 <0.0001

10 ng/ml 4.5 ± 0.4 22.4 <0.0001

50 ng/ml 4.2 ± 1.1 17.1 <0.0001

(B) IL-13

CLCA1 Control 16.5 ± 0.2 – –

0.5 ng/ml 17.9 ± 0.6 2.6 0.002

1.0 ng/ml 18.1 ± 0.5 3.2 0.0007

5.0 ng/ml 18.8 ± 0.4 4.9 <0.0001

10 ng/ml 20.0 ± 0.6 11.3 <0.0001

50 ng/ml 20.5 ± 0.1 17.1 <0.0001

CCL26 Control 0.8 ± 0.6 – –

0.5 ng/ml 2.9 ± 0.9 4.3 0.008

1.0 ng/ml 3.6 ± 0.9 7.0 0.001

5.0 ng/ml 4.0 ± 0.6 9.2 0.0005

10 ng/ml 5.3 ± 1.1 22.6 <0.0001

50 ng/ml 6.7 ± 1.0 59.7 <0.0001

The swine intestinal epithelial cell line IPEC-1 was treated with the indicated doses of

porcine IL-4 or human IL-13 for 24 h. Messenger RNA of CLCA1 was analyzed as

indicated in materials and Methods using RPL32 as an internal housekeeping gene. Data

were compared by ANOVA. [2 technical replicates, (n = 4 per group)].

a dose and time-dependent fashion (data not shown) with a
maximum effective concentration of ATRA of 10−7 M. The
optimal incubation time period was 24 h.

Because we previously observed increased IL-4 receptor (IL-
4R) gene expression in porcine alveolar Mϕs treated with
ATRA, we sought to determine if porcine epithelial cells
responded similarly. Treatment of IPEC1 and IPEC-J2 cells
with ATRA upregulated IL-4R mRNA by 5.1 and 6.5-fold,
respectively (Figure 1). Since STAT6 mediates the majority of
IL-4R signaling, we tested the effect of ATRA pretreatment of
IPEC1 and IPEC-J2 cells on IL-4 induced phosphorylation of
STAT6.We found that IL-4-induced STAT6 phosphorylation was
increased by pretreatment with ATRA in both IPEC1 and IPEC-
J2 cells (Figure 2). In addition, 100 nM ATRA pretreatment
synergistically increased IL-4 induced CLCA1 and CCL26
expression in IPEC-J2 cells that had been pre-treated with
(Figure 3).

We next wanted to determine if the synergistic effect of ATRA
and IL-4 treatment on porcine Mϕs extended to human Mϕs by
conducting a series of experiments with the human Mϕ cell line,
THP-1. Initially we determined whether IL-4R or IRF4 mRNA or
proteins were induced by ATRA alone as we observed in porcine
Mϕs or in the case of IL-4R, porcine epithelial cells. We saw no
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FIGURE 1 | ATRA Upregulates IL4 Receptor RNA in IPEC1 and IPEC-J2 Cells. IPEC1 or IPEC-J2 cell lines were treated with ± EtOH or 100 nM ATRA for 18 h.

CLCA1 mRNA was analyzed as indicated in Materials and Methods using RPL32 as an internal housekeeping gene. Data were compared by student t-test. Means

with non-matching superscripts are significantly different at p < 0.005 [(n = 4 per group), 1 technical replicate].

FIGURE 2 | ATRA Increases IL-4 Induced STAT6 Phosphorylation in IPEC1 and IPEC-J2 Cells. IPEC1 or IPEC-J2 cell lines were treated with ± EtOH or 100 nM ATRA

for 18 h and then treated with 5.0 ng/ml of porcine IL-4 for 10min. Phosphorylation was determined by a cell-based ELISA (R and D Systems). Data were compared

by ANOVA and are expressed as arbitrary fluorescent units. Means with non-matching superscripts are significantly different at p < 0.05 [(n = 3 per group), 1 technical

replicate].

increase in IL4R mRNA or protein at 1, 2, 4 8, 24, and 48 h.
We saw no expression of IRF4 by IL-4 at the mRNA or protein
level, despite ample expression of IRF4 in our control IRF4 lysate

and GAPDH expression in the samples (data not shown). The
expression of CCL2 and TGM2 mRNA and protein, in response
to ATRA, were also tested. ATRA induced CCL2 (Table 2) and
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FIGURE 3 | ATRA and IL-4 synergistically induce CLCA1 and CCL26 mRNA

Induction in IPEC-J2 Cells. IPEC-J2 cells were treated with ± EtOH or 100 nM

ATRA for 18 h then treated with 5.0 ng/ml of porcine IL-4 for 24 h. Messenger

RNA of CLCA1 (A) and CCL26 (B) were analyzed as indicated in Materials and

Methods using RPL32 as an internal housekeeping gene. Data were

compared by 2-way ANOVA. Treatment with IL-4 alone leads to increased

expression of CLCA1 and CCL26 while ATRA further increased expression of

both. Means with non-matching superscripts are significantly different at

p < 0.05 [(n = 4 per group), 2 technical replicates].

TGM2 (Table S1) mRNA (at 1, 4, 8, 24, and 48 h,); however, only
CCL2 protein (at 8 and 48 h) was significantly induced by ATRA.

Previous experiments indicated that CCL13 mRNA was the
highest mRNA induced by IL-4 in THP-1 cells (39, 40), so we
used CCL13 mRNA to determine the ED50 of IL-4 in our system.
We estimated that 10 ng/mL was the ED50 (Table S2) and this
concentration was used to assess the induction of previously
described IL-4 induced genes under our cell culture conditions.
Multiple genes, including CCL2, CCL11, CCL17, CCL26, CD209,
CD274, fibronectin (FN), Interleukin 13 receptor, alpha 2
(IL13RA2), Mannose receptor; C type 1 (MRC1), neurotrophic
tyrosine kinase, receptor, type 1 (NTRK1) and TGM2 were
induced to various degrees by IL-4 at 24 and 48 h (data not

shown). CCL22 and CCL18 mRNA were inconsistently induced
while plasminogen activator, tissue type (PLAT) and Triggering
receptor expressed on myeloid cells 2 (TREM2) did not change,
and expression of Cytochrome b reductase 1 (CYBB) was reduced
by IL-4 (data not shown).

We then tested the effect of 24 h, 100 nM ATRA pretreatment
followed by treatment with 10 ng/ml IL-4 on multiple IL-4-
stimulated mRNAs and proteins in THP-1 cells. We found
that ATRA and IL-4 had individual and synergistic effects on
CCL2, CCL13, and CCL26 mRNA expression (Figures 4A,C,E,
respectively), but only the combined action of ATRA and IL-
4 induced a significant increase in detectable levels of CCL2,
CCL13, and CCL26 proteins (Figures 4B,D,F, respectively).
ATRA and IL-4 had a synergistic effect on IL-10 protein
levels; however, there was little correlation between mRNA and
protein expression (Figures 5A,B, respectively). TREM2 was
significantly induced above control levels in ATRA and IL-4
treated cells at 48 h (Figure 6A). CD274 (Figure 6B) and MRC1
(Figure 6C) mRNA were stimulated by IL-4, but inhibited by
ATRA, while CYBB mRNA was inhibited by IL-4 and stimulated
by ATRA (Figure 6D). There was a trend toward ATRA
increasing IL-4 induced CCL11, CCL18, and CCL22 expression
at the mRNA and protein level (data not shown), but these
effects were not consistent among experiments. Interestingly, the
expression of CYP26A1 was increased in the IL-4 and ATRA-
treated groups vs. the ATRA-treated groups at both time periods
(Figure S1).

We then tested the effect of 24 h, 100 nM M ATRA
pretreatment on IL-4-induced TGM2 mRNA, protein and
enzyme activity from THP-1 cells. Similar to the induction
of CCL2, CCL13, and CCL26, ATRA and IL-4 had individual
and synergistic effects on TGM2 mRNA expression (Figure 7A)
but protein levels and enzyme activity were detected only in
the groups treated with the combination of IL-4 and ATRA
(Figures 7B,C respectively).

To determine if CCL2 was an M1 or M2a associated
chemokine under our experimental conditions and whether
ATRA synergistically acted with LPS to induce CCL2 in a manner
analogous to IL-4. CCL2 protein expression was induced by IL-4
and LPS to a similar degree (Figure 8). However, ATRA increased
IL-4 but inhibited LPS induced CCL2 protein expression. As
expected LPS induced IL-1β and TNF-α production. ATRA
had no effect on LPS-induced IL-1β but inhibited LPS-induced
TNF-α (Figure 8).

Finally, we determined whether IL-4 or ATRA had an effect
on NF-κβ activation under our culture conditions. Using the
NF-κβ reporter assay, we determined that ATRA, IL-4 or the
combination of the two had no effect on NF-KB activation
(Figure S2). LPS-induced robust NF-κβ activation that was
inhibited by ATRA.

DISCUSSION

Our data demonstrated that ATRA treatment enhances an IL-
4-induced Th2 response in both porcine epithelial cell lines
and a human Mϕ-like cell line. These results indicate that,
like porcine Mϕs, porcine intestinal epithelial cell responses
to IL-4 are increased by exposure to ATRA suggesting that
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TABLE 2 | ATRA increases CCL2 mRNA and protein expression.

Control ATRA

Time Adj. mean CT ± SD Adj. mean CT ± SD Fold change Significance

RNA

1 h 32.6 ± 0.2 34.1 ± 0.7 2.9 0.0207

2 h 33.0 ± 0.9 33.3 ± 1.0 1.3 NS

4h 33.0 ± 0.2 34.8 ± 0.1 3.6 <0.0001

8 h 32.0 ± 0.2 34.7 ± 0.4 6.7 0.0006

24 h 31.9 ± 0.3 33.9 ± 0.0 4.1 0.0032

48 h 31.4 ± 0.1 32.4 ± 0.4 2.0 0.0171

Control ATRA

Time pg/ml ± SD pg/ml ± SD Fold change Significance

PROTEIN

1 h 13 ± 3 8 ± 2 −1.6 NS

2h 46 ± 0.2 59 ± 21 1.3 NS

4h 56 ± 22 51 ± 16 −1.1 NS

8h 141 ± 6 406 ± 32 2.9 0.0002

24 h 139 ± 20 267 ± 193 1.9 NS

48 h 247 ± 15 176 ± 6 −1.4 0.0017

THP-1 cells were treated with ± EtOH or 100 nM ATRA for 1, 2, 4, 8, 24 or 48 h. mRNA was determined by real-time PCR and protein levels determined by ELISA. Expression and

protein data were compared by student t-test at each time point [1 technical replicate, (n = 3 per group)].

this may be a conserved response to ATRA that spans both
cell types and species. ATRA induced IL-4R mRNA and that
ATRA-treatment of IPEC-1 and IPEC-J2 porcine epithelial cells
led to greater IL-4-induced STAT6 phosphorylation. STAT6 is
activated by IL-4 and IL-13 and plays a predominant role in the
immune system including clearance of helminthic parasites as
well as the pathogenesis of allergic disorders like asthma, food
allergies, and atopic dermatitis. Synergistic induction of CLCA1
and CCL26 mRNA in response to IL-4 after pre-treatment
of IPEC-J2 cells for 24 h with ATRA was observed. These
results recapitulate in vivo gene expression changes observed
in the lungs of Ascaris suum-infected pigs fed ATRA. CLCA1
is an IL-4 and IL-13 inducible (41, 42), STAT6-dependent (29)
mediator of chloride ion transport/fluid production (43) and
mucin/mucus production (44) and is involved in asthma (41, 45).
CCL26 is the dominant (46), STAT6-dependant (47) eosinophil
chemoattractant in humans.

We extended our observations made in porcine alveolar Mϕs
to human-derived THP-1 cells. First, the expression of IL-4
induced genes and proteins for CCL2, CCL13, CCL26, IL10, and
TGM2 were increased by ATRA, and ATRA potentiated IL-4-
induced TGM2 enzymatic activity. Second, IL-4-induced CD274
and MRC1gene expression was inhibited by ATRA, and CYBB
was inhibited by IL-4 but stimulated by ATRA. Finally, IL-4
induced FN1 gene expression was not significantly affected by the
addition of ATRA (data not shown).

The expression of chemokines by M2a Mϕs between rodents
and pigs and humans is dramatically different. CCL2, also known
as monocyte chemotactic protein-1 (MCP-1), is reportedly a
stable M2a marker in mouse (48) but its expression by human
M2a is controversial (40, 49, 50). Other chemokines like CCL11,
CCL17, and CCL22 appear to be shared between the species
(7); however the expression of CCL13 and CCL18 are exclusive
to humans. CCL26 is present in the mouse genome but is not

responsive to IL-4 (34), presumably because it lacks a STAT6
response element in its promoter (23).

We previously demonstrated that the protein expression
of CCL2 was induced by ATRA in anti-CD3 mAb-stimulated
human PBMCs (51). In several previous experiments, ATRA
or related compounds, increased the level of CCL2/MCP-1
production and stimulated LPS-induced CCL2 from THP-1 cells
and primary human Mϕs (13). In vivo, a decrease in MCP-1
expression was observed in ATRA-treated mice (52). Notably,
a decrease in CCL2/MCP-1protein expression was found in
feces of VA-treated children infected with E. coli, but not VA-
treated children infected with Ascaris. In pig alveolar Mϕs, CCL2
mRNA and protein were downregulated by IL-4 and upregulated
by ATRA. In our current experiment, ATRA induced CCL2
protein andmRNA expression and IL-4 andATRA synergistically
upregulated CCL2 protein in THP-1 cells.

There are other differences between our previous and
current findings. In porcine alveolar Mϕs, CYB mRNA was
downregulated by both ATRA and IL-4. Although it was
downregulated in THP-1 cells, it was upregulated by ATRA.
CCL18 and CCL22 mRNA and protein were weakly upregulated
by IL-4 and inconsistently regulated by ATRA. CCL11 mRNA
and protein were strongly upregulated by IL-4 and inconsistently
regulated by ATRA. In pig Mϕs, CD209, IL13RA2, and NTRK1
were three of the most highly expressed genes that were modestly
induced by IL-4 in THP-1 cells (data not shown). Unlike pig
Mϕs, PLAT mRNA was not affected by IL-4 or ATRA. It is
likely that the two very different cell origins of a primary,
terminally differentiated, lung-derived pig Mϕs vs. an in vitro
differentiated, THP-1 tumor cell line may account for some of
these differences.

Several indirect lines of evidence suggest that the vitamin D
receptor (VDR), NF-KB or IL-10 may not play a role in the
potentiation of IL-4 signaling by ATRA in Mϕs or epithelial cells.
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FIGURE 4 | ATRA and IL-4 synergistically induce CCL2, CCL13, and CCL26 mRNA and protein in THP-1 cells. THP-1 cells were treated with ± EtOH or 100 nM

ATRA for 18 h and treated with 10.0 ng/ml of human IL-4 for 24 or 48 h. mRNA was determined by real-time PCR and protein levels determined by ELISA for CCL2

(A,B), CCL13 (C,D), and CCL26 (E,F). ANOVA for all the assays had a significance level of p < 0.0001. Means with non-matching superscripts are significantly

different at p < 0.05. [CCL13 and CCL26 (n = 3 per group), 3 technical replicates CCL2 (n = 3 per group), 2 technical replicates].
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FIGURE 5 | Effect of ATRA and IL-4 on IL-10 mRNA and protein expression in THP-1 cells. THP-1 cells were treated with ± EtOH or 100 nM ATRA for 18 h and

treated with 10.0 ng/ml of human IL-4 for 24 or 48 h. mRNA (A) was determined by real-time PCR and protein levels (B) determined by ELISA. ANOVA for all the

assays had a significance level of p < 0.0001. Means with non-matching superscripts are significantly different at p < 0.05. [(n = 3 per group), 2 technical replicates].
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FIGURE 6 | Effect of ATRA and IL-4 on TREM2, CD274, MRC1, and CYBB mRNA expression in THP-1 cells. THP-1 cells were treated with ± EtOH or 100 nM ATRA

for 18 h and treated with 10 ng/ml of human IL-4 for 24 or 48 h. mRNA for TREM2 (A), CD274 (B), MRC1, (C) or CYBB (D) was determined by real-time PCR. ANOVA

for all the assays had a significance level of p < 0.0001. Means with non-matching superscripts are significantly different at p < 0.05. [(n = 3 per group), 2 technical

replicates].

Unlike pig Mϕs and a previous study using THP-1 cells, the
VDRwas not induced by ATRA under our cell culture conditions
(data not shown). Vitamin D3 (VD3) was also without effect
on CCL13 or CCL26 mRNA expression, further suggesting that
the obligatory involvement of the VDR in the action of ATRA
on M2a polarization is unlikely. Although inhibition of NF-
KB is likely involved in the inhibition of M1 polarization by
ATRA, the involvement of NF-KB in the M2a polarization is also
unlikely as ATRA had no effect on NF-KB activation. IL-10 levels
correlated with protein levels for CCL2, CCL13, and CCL26 and
it is tempting to speculate that it plays a direct role; however,
several lines of evidence contradict this assumption. First, we did
not see a change in IL-10 mRNA or protein levels in our pig
Mϕs or experiments with epithelial cells, yet we still observed
potentiation of IL-4 signaling. Although CD274, or programmed

cell death 1 ligand 1 (PDCD1LG1), is a known target of IL-10 in
Mϕs (53), its expression was not correlated with IL-10 levels.

CD274 (PDCD1LG1) was induced by IL-4 in our previous
studies in porcine alveolar Mϕs where we observed potentiation
of expression by ATRA. However, in the current experiments, we
observed the opposite since ATRA down regulated IL-4-induced
CD274 expression. In a previous experiment, it was reported that
VD3 induced the mRNA expression of CD274 in THP-1 cells
(54). This occurs only in human cells due to a primate-specific
VDRE element in the promoter (54). We observed induction
of CD274 by VD3 in THP-1 cells, but its expression was not
influenced by ATRA (data not shown).

Another interesting observation was the induction of
mRNA for CYP26A1, the enzyme responsible for ATRA
catabolism and a sensitive indicator of ATRA bioactivity
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FIGURE 7 | The combination of ATRA and IL-4 increase TGM2 mRNA, protein and enzyme activity in THP-1 Cells. THP-1 cells were treated with ± EtOH or 100 nM

ATRA for 18 h and treated with 10 ng/ml of human IL-4 for 24 or 48 h. TGM2 mRNA levels (A) were determined by real-time PCR, protein levels (B) by ELISA, and

enzyme activity by a colorimetric assay (C). ANOVA for all 3 assays had a significance level of p < 0.0001. Means with non-matching superscripts are significantly

different at p < 0.05. [(n = 3 per group), 2 technical replicates].
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FIGURE 8 | ATRA increased IL-4-induced, but not LPS-induced, CCL2 Protein. THP-1 cells were treated with ± EtOH or 100 nM ATRA for 18 h and treated with

10 ng/ml of human IL-4 or 10 ng/mL Escherichia coli LPS for 48 h. Protein levels determined by ELISA. ANOVA for all the assays had a significance level of p <

0.0001. Means with non-matching superscripts are significantly different at p < 0.05. [(n = 4 per group), 1 technical replicate]. Protein levels for CCL2 (A), TNF-α

(B) and IL-1β (C) were determined by ELISA.

activity (55, 56), by ATRA in THP-1 cells that were also
treated with IL-4. This is in contrast to ATRA-induced
CYP26A1 expression that was significantly reduced in
THP-1 cells that were also treated with LPS (15). These
data suggest that there is reciprocal regulation of CYP26A
under M1 and M2a polarizing conditions and that the
bioactivity and disposal of ATRA may be facilitated
by IL-4.

In conclusion, these data provide important mechanistic
information regarding the nutritional role of vitamin A in
infection and inflammation suggested from the co-induction of
the M2a markers CCL13 and CCL26 along with the M2c marker
IL-10. The data also extend the activity of ATRA and IL-4 found
in pig alveolar Mϕs to pig epithelial cells and human Mϕs. The
current findings provide potential mechanisms whereby ATRA
may contribute to a reduction of inflammation, in humans, and
further reinforce our previous finding that ATRA may stimulate
a distinct form of alternative activation of Mϕs in addition to
priming certain aspects of M2a differentiation.
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