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Photoaging occurs by chronic skin exposure to the sun and ultraviolet irradiation and leads to skin aging accompanied by a lack of
skin hydration. We previously demonstrated the photoprotective effect of fermented Cyclopia intermedia (honeybush) extract on
the skin. In this study, we evaluated the skin hydration effects of scaled-up fermented honeybush extract (HU-018) against
ultraviolet B (UVB) radiation in HaCaT immortalized human keratinocytes and hairless mice. Pretreating HaCaTcells with HU-
018 attenuated the decreased hyaluronic acid (HA) levels and mRNA expression of genes encoding involucrin, filaggrin, and
loricrin by UVB irradiation. HU-018 treatment also ameliorated the decreased stratum corneum (SC) hydration and the increased
levels of transepidermal water loss (TEWL) and erythema index (EI) in hairless mice after UVB exposure. Microarray analysis
revealed changes in gene expression patterns of hyaluronan synthase 2 (Has2), transforming growth factor-beta 3 (TGF-β3), and
elastin induced by HU-018 in UVB-irradiated mice. Consistently, the mRNA expression of Has2, TGF-β3, and elastin was
increased by HU-018 treatment. Moreover, HU-018 restored the increased epidermal thickness and collagen disorganization in
skin tissue of UVB-irradiated mice. HU-018 treatment also decreased matrix metalloproteinase-1 (MMP-1) expression and
increased procollagen type-1, elastin, and TGF-β1 expression. In conclusion, we found that HU-018 promoted skin hydration
processes in UVB-irradiated keratinocytes and hairless mice by modulating involucrin, filaggrin, loricrin, and HA expression and
ameliorating visible signs of photoaging. ,us, HU-018 may be a good skin hydration agent for skin care.

1. Introduction

Cyclopia intermedia (honeybush) is a herbal tea indigenous
to South Africa that is traditionally used for medicinal
purposes and is highly similar to Rooibos [1]. Honeybush is
rich in polyphenols and is a rare source of the dietary
dihydrochalcones aspalathin and nothofagin [2]. Aqueous
extracts of honeybush have been reported to have anti-
mutagenic activities against 2-acetyl laminofluorence- and

aflatoxin B1-induced mutagenesis and chemoprotective
properties against cancer [3–5].

In a previous study, we presented evidence of the an-
tiwrinkle activity of fermented C. intermedia (honeybush)
extract and demonstrated the feasibility of using this extract
in animal models [6]. However, the production of fermented
honeybush extract would need to be scaled-up for use in a
clinical trial, both in terms of quantity and cost. Normally,
basic laboratory-scale studies are designed to determine the
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in vivo efficacy of an active pharmaceutical ingredient in the
early stages, without specific regard to its safety, production
cost, or stability of the development process of the product.
However, transitioning from laboratory-based research to
the trial phase requires scaling-up the production of the
active ingredient to establish its safety and efficacy, as well as
to ensure cost-effective production. For the use of fermented
honeybush extract in clinical trials, we modified the process
to yield scaled-up fermented honeybush extract (HU-018),
after confirming the nontoxicity of HU-018 in Sprague
Dawley rats and beagles, and confirmed that HU-018met the
requirements for commercialization as an antiaging agent.
In addition, the effects of HU-018 on UVB-irradiated
damage were previously evaluated in HaCaT cells [7].

Aging of the human skin is a complex biological process
that occurs due to a combination of endogenous (intrinsic)
and exogenous (extrinsic) factors [8]. Environmental factors
including ultraviolet (UV) exposure, alcohol intake, pollution,
and severe physical stress result in the development of extrinsic
aging [9]. Ultraviolet B (UVB) exposure is the most important
extrinsic factor that accelerates skin aging, a process that is
commonly termed photoaging [10]. Skin aging is characterized
by the loss of elastic and collagen fiber network, due to the
presence of dysfunctional fibroblasts, with the loss of structure
leading to wrinkle formation [11]. In photoaged skin, dermal
changes are observed, such as a reduction in the amount of
collagen and precursors of type I and III collagens, as well as a
degeneration of elastic fibers [12].

,e skin is important for protecting the body against
dehydration and environmental factors including temper-
ature, variations in humidity, and sun exposure [13]. UVB
radiation alters epidermal morphology by increasing the
thickness of the stratum corneum (SC), which causes an
imbalance in the permeability of the SC barrier, and thus
increases transepidermal water loss (TEWL) [14].

One of the most important indicators of skin barrier
function in the cosmetic and skin pathology field is skin
hydration [15]. Skin aging is also associated with skin water
loss, the main factor being hyaluronic acid (HA), an ex-
tracellular matrix molecule [16]. Several factors control skin
moisture and elasticity, including HA and elastic fibers,
which regulate skin tissue elasticity and resilience [17].
Enzymes such as HA synthases (Has) synthesize HA, and
Has2 expression is differentially upregulated by TGF-β1 in
the dermis and epidermis [18]. Additionally, involucrin,
filaggrin, and loricrin play important roles to promote
terminal differentiation of the epidermis and formation of
the skin barrier [19].

Based on the evidence mentioned above suggesting the
feasibility of using fermented honeybush extract for inhibiting
photoaging-induced skin hydration, our aim in this studywas to
evaluate the skin hydration effects of the scale-up fermented
HU-018 in a HaCaT cells and a hairless mouse model.

2. Materials and Methods

2.1. Preparation of HU-018. HU-018 was prepared as per a
previously described method [7] with slight modifications.
In brief, honeybush (Cyclopia intermedia) was obtained

from Rooibos Ltd. (Clanwilliam, South Africa). To prepare
the honeybush extract, rawmaterial was extracted twice with
water for 1 h under reflux conditions.,e extract was filtered
and then evaporated to yield 20 brix (the solid content is
about 20% (20 g/100 g)). A lactic acid bacterium (Strepto-
coccus thermophilus) was obtained from Lallemand Health
Solutions, Inc (Montreal, Canada). To prepare the fermented
honeybush extract, 10% of lactic acid bacterium (S. ther-
mophilus, 1× 105 cfu/ml) was inoculated in 0.5% whole milk
powder (Seoulmilk Co., Seoul, Korea) with 3% lactose (Sung
Poong Co. Ltd., Seoul, Korea), 23% honeybush extract (20
brix), and 63.5% purified water. ,e mixture was fermented
in an incubator at 37°C for 48 h. After sterilizing the fer-
mentedmixture, the final product (HU-018) was obtained by
mixing with dextrin (DE12; Roquette, Lestrem, France) and
spray-drying.

2.2. Cell Culture andUVB Irradiation. ,e detailed methods
have been described previously [7]. In brief, HaCaT cells
were purchased from CLS Cell line service (Eppelheim,
Germany) andmaintained in Huons Co., Ltd. (Gyeonggi-do,
Korea). We obtained the HaCaT cells from Huons, and the
cells were cultured in Dulbecco’s modified Eagle medium
(DMEM; Gibco, Rockville, MD, USA) containing 10% heat-
inactivated fetal bovine serum (FBS, Gibco) and 1% anti-
biotics (Gibco) at 37°C and 5% CO2 in a humidified incu-
bator. ,e cells were plated and allowed to adhere for 24 h,
and then treated with various concentrations of HU-018.
After 24 h, the medium was changed and exposed to UVB
radiation at a dose of 20mJ/cm2. UVB irradiation was
performed using a UVM-225D Mineralight UV display
lamp (UVP, Phoenix, AZ, USA) that emitted at a wavelength
of 302 nm. ,e strength of the UV radiation was measured
using a HD2102-2 UV meter (Delta OHM, Padova, Italy).

2.3. Experimental Animals and Oral Administration. All
animal experiments were approved by the Institutional
Animal Care and Use Committee of Kyunghee University
(approval number: KHUASP(SE)-16-008). ,e experimen-
tal protocols and animal care were carried out following the
National Research Council Guide for the Care and Use of
Laboratory Animals. Female HR-1 hairless mice (5 weeks
old) were purchased from Dae Han Bio Link Co., Ltd.
(Chungcheongbuk-do, Korea) and allowed to habituate to
the laboratory for 1 week before the animal experiments.,e
hairless mice were housed in a controlled environment
(23± 3°C at 55± 15% humidity) with a 12 :12-h light/dark
cycle. ,e mice were given free access to water and food. For
the experimental evaluation, the mice were divided into 7
groups, with 10 animals in each group: the normal group,
UVB-irradiated group treated with vehicle, UVB-irradiated
group treated with HA (50mg/kg), UVB-irradiated group
treated with collagen (400mg/kg), UVB-irradiated group
treated with fingerroot (160mg/kg), UVB-irradiated group
treated with HU-018 at a low (80mg/kg) concentration, and
UVB-irradiated group treated with HU-018 at a high
(160mg/kg) concentration. Mice in the positive control
(hyaluronic acid, collagen, and fingerroot) and HU-018
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groups orally received 0.2mL of 0.5% carboxymethyl cel-
lulose daily for 12 weeks. Mice in the normal group and
UVB-irradiated vehicle group were orally administered with
0.5% carboxymethyl cellulose for 12 weeks. ,e mice were
sacrificed under anesthesia by using a mixture of tiletamine/
zolazepam (Virbac, Carros, France) and xylazine (Bayer
Korea Ltd., Seoul Korea) through intraperitoneal injection.

2.4. UVB Irradiation. ,e method for UVB irradiation was
based on previously reported methods with slight modifi-
cations [20]. In brief, five Sankyo Denki sunlamps were used
to perform the UVB irradiation with a peak irradiance at
310 nm (G9T5E lamps, Sankyo Denki, Hiratsuka, Japan).
,e UV source was positioned 15 cm above the backs of
hairless mice. Irradiance was measured using an IL1700
Research Radiometer equipped with a UVB sensor (Inter-
national Light, Inc., Newburyport, MA, USA). ,e mice
were exposed to 100mJ/cm2 UVB radiation (one minimal
erythemal dose� 100mJ/cm2) every day for the first week
and then 200mJ/cm2 UVB radiation every other day for 2
weeks. ,en, mice were exposed to 400mJ/cm2 UVB ra-
diation twice a week for 2 weeks, and finally 100mJ/cm2

UVB radiation every other day for 7 weeks.

2.5. Determination of HA Expression by ELISA. ,e expres-
sion of HA in the skin tissue of UVB-irradiated mice was
evaluated using the total HA enzyme-linked immunosorbent
assay (ELISA) kits according to the manufacturer’s instructions
(R&DSystems,Minneapolis,MN,USA).,e expression level of
HA was measured and quantified using a microplate reader
(Molecular Devices, Sunnyvale, CA, USA).

2.6. Histological Examination. Dorsal skin specimens were
obtained from hairless mice after final UVB irradiation, and
the skin specimens were fixed using 4% paraformaldehyde
for 24 h. After fixation, the specimens of dorsal skin were
embedded in paraffin and sectioned at 5 μm thickness.
Epidermal thickness of skin specimens was analyzed after
staining by hematoxylin and eosin (H&E), and collagen
fibers were detected using Masson’s trichrome staining. ,e
stained skin specimens were analyzed under a microscope
(Observer D2, Zeiss, Munich, Germany).

2.7. Physiological Analysis of Skin Functions. TEWL, SC
hydration, and erythema index (EI) were evaluated using the
relevant probes (DermaLab®; Combo, Cortex Technology).
In this study, TEWL, SC hydration and EI were analyzed
based on data obtained before exposure and after 12 weeks of
UVB irradiation.

2.8. Preparation of Microarray Library and Sequencing.
,e microarray library was prepared and sequenced
according to previously reported methods [21]. In brief, total
RNA was extracted using Trizol reagent (Invitrogen,
Carlsbad, CA, USA), and RNA quality was measured using
an Agilent 2100 bioanalyzer and the RNA 6000 Nano Chip

(Agilent Technologies, Amstelveen, ,e Netherlands). RNA
was quantified using an ND-2000 spectrophotometer
(,ermo Inc., DE, USA). A QuantSeq 3′mRNA-Seq Library
Prep Kit (Lexogen, Inc., Austria) was used to analyze the
microarray library. ,e libraries were constructed according
to the manufacturer’s protocols. In brief, reverse tran-
scription was performed after hybridizing each total RNA
(500 ng) with an oligo-dT primer containing an illumina-
compatible sequence at its 5′ end. ,e second strand was
synthesized using a random primer containing an illumina-
compatible linker sequence at its 5′ end, after degradation of
the RNA template. All reaction components were incubated
with magnetic beads to purify the double-stranded library.
To add the complete adapter sequences required for cluster
generation, the library was amplified. High-throughput
sequencing was performed as single-end 75 sequencing by a
NextSeq 500 (Illumina, Inc., USA) after purifying PCR
components from the finished library.

2.9. Analysis of Microarray Data. Microarray data were
analyzed according to previously reported methods [21]. In
brief, QuantSeq 3′ mRNA-Seq reads were aligned using
Bowtie2 [22]. Bowtie2 indices were either generated from
the genome assembly sequence or the representative tran-
script sequences from aligning to the genome and tran-
scriptome. ,e alignment file was used for assembling
transcripts, estimating their abundances, and detecting
differential gene expression. Differentially expressed genes
were determined based on counts from unique and multiple
alignments using coverage in Bedtools [23]. ,e RC (read
count) data were processed based on global normalization
method using Genowiz™ version 4.0.5.6 (Ocimum Bio-
solutions, India). Genes were classified based on searches in
DAVID (http://david.abcc.ncifcrf.gov/) and Medline data-
bases (http://www.ncbi.nlm.nih.gov/).

2.10. Analysis of mRNA Expression. ,e total RNA from
HaCaT cells and skin of UVB-irradiated hairless mice was
isolated using TRIzol reagent (Invitrogen) according to the
manufacturer’s instructions. mRNA expression was ana-
lyzed by quantitative real-time polymerase chain reaction
(qRT-PCR) using TaqMan assays (Applied Biosystems,
Foster City, CA, USA) and a QuantStudioTM 6 Flex real-time
PCR system (Applied Biosystems) according to the manu-
facturer’s instructions. Each sample was assayed in triplicate.
,e mRNA levels were normalized to that of β-actin and
calculated using the ΔΔCt method.

2.11. Western Blotting Analysis. After the animals were sac-
rificed, all dorsal skin tissue samples were homogenized with
lysis buffer (50mMTris-Cl, pH 8.0, 0.1% SDS, 150mMofNaCl,
1% NP-40, 0.02% sodium azide, 0.5% sodium deoxycholate,
100μg/mL phenylmethanesulfonyl fluoride, 1μg/mL of apro-
tinin, and a phosphatase inhibitor), and then they were
centrifuged at 12,000×g for 20min. ,e concentration of
protein lysates was determined using the Bradford reagent (Bio-
Rad) using bovine serum albumin as a standard. Equal
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concentrations of protein lysates were separated through 8% or
10% SDS-polyacrylamide gel electrophoresis and transferred to
a nitrocellulose membrane (Amersham Biosciences, Little
Chalfont, UK). ,e membrane was incubated for 1h with
blocking buffer (5% nonfat milk in tris-buffered saline solution
with Tween® (TBS-T)) at room temperature (RT). After
blocking, the membranes were incubated with primary anti-
bodies against MMP-1, procollagen type-1, elastin, TGF-β1, or
β-actin (Santa Cruz Biotechnology Inc.) at 4°C overnight. After
washing three times with TBS-T, the membranes were incu-
bated for 1h with secondary antibodies conjugated with
horseradish peroxidase (HRP) (Santa Cruz Biotechnology Inc.)
at R.T. Finally, the membranes were developed using an en-
hanced chemiluminescence (ECL) detection system (Amer-
sham Biosciences) and an LAS-4000 image analyzer (Fujifilm,
Tokyo, Japan).

2.12. Statistical Analysis. ,e data were analyzed using the
Statistical Analysis System (GraphPad Prism 5, GraphPad
Software, Inc., San Diego, CA, USA). All experiments were
performed at least three times independently, and the data
were calculated as means. ,e data are represented as
mean ± standard deviation (SD). Statistical comparisons
among groups were analyzed by one-way analysis of
variance (ANOVA) using Tukey’s multiple comparison
test. p values <0.05 were considered statistically significant.

3. Results

3.1. Effects of HU-018 on Moisturizing-Related Genes and HA
Levels in UVB-Irradiated HaCaT Cells. In our previous
study, we investigated the expression of involucrin, filaggrin,
and loricrin in UVB-induced HaCaT cells after treatment
with HU-018 [7]. Consistently, the mRNA expression of
genes encoding involucrin, filaggrin, and loricrin decreased
upon UVB exposure in HaCaT cells compared with ex-
pression in normal control cells, and their expression in-
creased upon treatment with HU-018 (Supplementary
Figure 1). ELISA analysis revealed that HA levels were
markedly decreased in UVB-irradiated HaCaTcells andHU-
018 treatment increased HA levels in a dose-dependent
manner (Figure 1).

3.2.EvaluationofTEWL,SCHydration,andEI. ,ere was no
difference in the mortality rate of mice across the 7 ex-
perimental groups for 12 weeks. Moreover, the body weight
was comparable across the 7 groups (data not shown). After
UVB irradiation, the hydration level decreased in the SC,
with a concomitant increase in TEWL and EI of hairless
mice skin (Figure 2). HU-018 treatment attenuated the ef-
fects of UVB irradiation on decreasing SC hydration, TEWL,
and EI levels to levels similar or better to those observed in
the positive controls (HA, collagen, and fingerroot).

3.3. Microarray Analysis. To verify the microarray results,
HU-018 treatment caused differential regulation of over 20,000
genes between the HU-018 administration animal group and

the UVB-irradiated vehicle group. ,e expression of genes
related to the extracellular matrix (ECM) was changed in the
skin of hairless mice; 63 genes were upregulated, and 31 genes
were downregulated (Figure 3(a)). Among the genes related to
skin hydration, 20 genes were upregulated and 51 genes were
downregulated (Figure 3(b)). Cluster analysis showed that UVB
irradiation downregulated the expression of skin hydration-
related genes including COL1A1, Has-2, TGF-β3, and elastin,
and expression of these genes was upregulated by HU-018
administration. Moreover, HU-018 administration normalized
the gene expressions of proteoglycans such as Acan, Kera, and
Podn which were downregulated by UVB irradiation. HU-018
administration also downregulated the gene expression of
keratin-1 and keratin-associated proteins, whose expression is
well known to protect epithelial cells from damage or stress.

3.4. Effect of HU-018 on Skin Hydration Factors. To confirm
the microarray findings, mRNA expression of skin hydra-
tion factors was analyzed by qRT-PCR in skin tissue of UVB-
irradiated hairless mice. ,e qRT-PCR results showed that
UVB irradiation suppressed the expression of genes
encoding Has2, TGF-β3, and elastin (Figure 4), and these
changes in expression reversed by HU-018 treatment in
UVB-irradiated mice.

3.5. Evaluation of Antiwrinkle Effects byHistological Staining.
To evaluate the wrinkle alleviation effect of HU-018, skin
tissue samples from hairless mice were analyzed after
staining with H&E and Masson’s trichrome. ,e H&E-
stained skin tissue showed that the thickness of the SC and
epidermis was significantly higher in the UVB-irradiated
vehicle group than that in the normal group (Figure 5(a)).
However, HU-018 treatment resulted in similar or better SC
and epidermal thickness values as those in the positive
control groups. Moreover, a greater volume of collagen fi-
bers was observed upon HU-018 treatment than was ob-
served in the vehicle group after Masson’s trichrome
staining (Figure 5(b)).
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3.6. Effect ofHU-018 on Procollagen Type-1, Elastin, andTGF-
β1 Expression. To confirm the antiwrinkle effects of HU-018
treatment, we analyzed the protein levels of matrix

metalloproteinase-1 (MMP-1), procollagen type-1, elastin,
and TGF-β1 in skin tissue of UVB-irradiated mice. ,e
expression of MMP-1 was markedly increased by UVB
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irradiation, and it was reduced by HU-018 treatment to a
similar or better level as that observed in positive controls
(Figure 6). ,e suppressed expression of procollagen type-1,
elastin, and TGF-β1 by UVB irradiation was also restored by
HU-018 treatment to a similar or better level as that observed
in positive controls.

4. Discussion

Scale-up is generally achieved by increasing batch size,
with practical and robust methods developed for estab-
lishing a large-scale production facility. During the scal-
ing-up process, all factors that can influence the
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Figure 3: Expression profiles of genes regulated by HU-018 in UVB-irradiated hairless mice. ,ese subsets of genes were clustered
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formulation of the active agent must be considered,
ranging from basic factors (such as the boiling time and
exposure duration) to the selection of commercial-grade
materials that will be economically feasible to use. ,is
process of modifying the compound for commercial use
can also modify the risk profile of the agent, including
toxicity and unwanted hazardous reactions. ,erefore, the
focus of our nonclinical evaluation of HU-018 was to
bridge the gap between the discovery of a potent anti-
wrinkle agent in the laboratory to human clinical trials by
developing a suitable procedure for production and test-
ing, including setting the initial starting doses for clinical
trials that balance antiaging effects with the level of risk for
adverse effects (no-observed-adverse-effect level). ,e
protective effects of HU-018 against UVB-induced skin
damage described in our study are comparable to those in a
previous study [6]. ,erefore, we propose that HU-018
could be used in a clinical trial to evaluate its biological
effects and the economic feasibility of production. We have
confirmed the nontoxicity of HU-018 in a previous study
in Sprague Dawley rats and beagles to establish that HU-
018 met the requirements for commercialization. In ad-
dition, our previous study showed that HU-018 had a
cytoprotective effect on HaCaT cells [7].

Photoaging is characterized by the formation of fine
and coarse wrinkles, in combination with skin shallow-
ness, histological changes, roughness, dryness, and various
cutaneous changes, including altered skin barrier function
[24]. Previous studies have described the effects of UVB
radiation on epidermal morphology, such as increasing the
SC thickness and the associated disruption of the per-
meability of the SC barrier, increases in TEWL and de-
creases in SC hydration [25, 26]. Additionally, a cornified
cell envelope is composed of filaggrin, loricrin, and
involucrin, and it contains differentiated epidermal ker-
atinocytes and corneocytes. One of the most important
roles of the cornified cell envelope is maintaining skin
barrier function and moisture [27]. In this study, we found
that HU-018 can reduce skin damage, decrease TEWL and

EI, and increase the level of skin hydration in an animal
model of photoaging.

,e major changes in photoaged skin are localized to the
dermal connective tissue, and they have been evaluated by
histological and ultrastructural studies [28]. Morphological
alteration of extrinsically aged skin is characterized by in-
creased collagen degradation, sparse distribution of collagen
fibers, accumulation of abnormal elastic tissue, presence of
stellate phenotype of fibroblasts, thickening of the epidermis,
and increased biosynthetic activity [29]. Repeated exposure
to UV radiation also causes the accumulation of partially
degraded collagen in the dermis, leading to wrinkles and
skin damage, which are visible signs of photoaging [30].
Since skin roughness can be affected by thickened epidermis,
epidermal thickness can be quantified to reflect skin damage
due to UV irradiation using a histological feature of pho-
toaged skin [31]. ,e increased epidermal thickness due to
UV exposure can help protect the skin from further UV
damage [32]. In this study, we performed H&E staining and
Masson’s trichrome staining to evaluate the histological
alternations in the dorsal skin upon UVB irradiation. ,e
results demonstrated that HU-018 administration reduced
the epidermal thickening after UVB exposure, underlining
the protective effects of HU-018.

HA exists at the periphery and interfaces of elastin fibers
and collagen, and it can help hold elastin and collagen to
maintain a proper configuration. However, these connec-
tions with HA are particularly decreased in aged skin, and
might lead to the presence of fine lines, wrinkles, and
nasolabial folds in the skin due to the disorganization of
collagen and elastin fibers [33]. HA is a key molecule in-
volved in skin moisture and helps maintain healthy skin by
preventing aging and retaining skin hydration [16]. ,e
synthesis of HA has been reported to be increased by growth
factors such as TGF-β and synthesized fromHas in the inner
surface of the cell membrane [34]. Levels of hyaluronan
synthase 2 (Has2), an enzyme that generates HA which is
involved in moisturization, are reduced by UV irradiation
[35]. Additionally, elastin is a well-understood connective
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Figure 4: Effects of HU-018 on Has2, TGF-β3, and elastin expression in UVB-irradiated hairless mice. Expression of (a) Has2, (b) TGF-β3,
and (c) elastin mRNA was determined by qRT-PCR. ∗p< 0.05 versus the normal group. HU-018, scaled-up fermented honeybush extract;
UVB, ultraviolet B; mRNA, messenger RNA; qRT-PCR, quantitative real-time polymerase chain reaction. Normal, non-irradiated group;
vehicle, UVB-irradiated group.
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tissue protein that is initially synthesized from the precursor
molecule tropoelastin [36]. ,e microarray expression
analysis performed in this study revealed that many skin
hydration-related genes were also expressed in the HU-018

administration group. Our results showed that HU-018 at a
high dose upregulated Has2, TGF-β3, and elastin gene ex-
pression in the UVB-irradiated group. ,is was accom-
plished by enhancing collagen synthesis, including an
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Fingerroot HU-018 low
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Figure 5: Effect of HU-018 on UVB irradiation-induced epidermal thickening in the dorsal skin of hairless mice. (a) Hematoxylin and
eosin-stained images of UVB-irradiated dorsal skin ofmice.,e number (μm) is the epidermal thickness. (b) Protective effects of HU-018 on
photoaging of the skin regarding changes in collagen fiber volume determined using Masson’s trichrome staining. Collagen fibers are
stained in blue, and images were obtained under 200x magnification. Scale bar� 100 μm. HU-018, scaled-up fermented honeybush extract;
UVB, ultraviolet B. Normal, non-irradiated group; vehicle, UVB-irradiated group.
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increased expression of TGF-β1, procollagen type-1, and
elastin.

5. Conclusions

HU-018 treatment promoted skin hydration processes in a
UVB-irradiated hairless mouse model by modulating
elastin, involucrin, filaggrin, and loricrin expression. ,is
was accomplished through enhanced collagen synthesis,
including an increased expression of TGF-β1, procollagen
type-1, and elastin. Based on these findings, we propose
that HU-018 may be a good skin hydration agent for skin
care.
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