Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Acryloyl-2,6-bis(4-chlorophenyl)-3,5dimethylpiperidin-4-one

B. N. Lakshminarayana,^a J. Shashidhara Prasad,^a* C. R. Gnanendra,^b M. A. Sridhar^a and Nagaraja Naik^b

^aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006. India, and ^bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India Correspondence e-mail: jsp@physics.uni-mysore.ac.in

Received 16 February 2009; accepted 21 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.113; data-to-parameter ratio = 14.3.

In the crystal structure of the title compound, $C_{22}H_{21}Cl_2NO_2$, the piperidinone ring is in a boat conformation.

Related literature

For the bioactivity of piperidin-4-ones, see: Jerom & Spencer (1988); Bochringer & Shochne (1961); Mobio et al. (1989). For ring-puckering analysis, see: Cremer & Pople (1975). For the synthesis, see: Baliah et al., (1983). For a related structure, see: Ompraba et al. (2003).

Experimental

Crystal data C22H21Cl2NO2

 $M_r = 402.30$

•			
organic	com	nni	unds
Uguine	COM	90	unus

Monoclinic, $P2_1/c$ a = 10.2410 (8) Å b = 19.5070 (11) Å c = 10.9760 (9) Å $\beta = 112.567$ (2)° V = 2024.8 (3) Å ³	Z = 4 Mo K\alpha radiation $\mu = 0.34 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.27 \times 0.25 \text{ mm}$
Data collection MacScience DIPLabo 32001	3542 independent reflections
diffractometer Absorption correction: none 6713 measured reflections	2800 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ wR(F²) = 0.113 247 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.03 $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$ 3542 reflections

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON.

The authors are grateful to the DST and the Government of India (project SP/I2/FOO/93) and the University of Mysore for financial assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2157).

References

- Baliah, V., Jeyaraman, R. & Chandrashekaran, L. (1983). Chem. Rev. 83, 379-423
- Bochringer, C. F. & Shochne, G. M. B. H. (1961). British Patent Appl. No. BP866488.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Jerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. No. EP 277794.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
- Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421-427.
- Ompraba, G., Srinivasan, M., Perumal, S., Sekar, K., Choudhury, A. R., Guru Row, T. N. & Rafi, Z. A. (2003). Cryst. Res. Technol. 38, 918-921.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, o1001 [doi:10.1107/S1600536809010472]

1-Acryloyl-2,6-bis(4-chlorophenyl)-3,5-dimethylpiperidin-4-one

B. N. Lakshminarayana, J. Shashidhara Prasad, C. R. Gnanendra, M. A. Sridhar and N. Naik

Comment

The structural and therapeutic diversity of small heterocyclic molecules has attracted the attention of organic and medicinal chemists. Piperidin-4-ones are emerging prominently as pharmocologically important molecules because of their diverse bioactivities, such as anti-inflammatory (Jerom & Spencer, 1988), tranquilizers (Bochringer *et al.*, 1961) along with bacter-icidal, fungicidal and herbicidal activities (Mobio *et al.*, 1989). In view of the above, 1-acryloyl-2,6-bis(4-chlorophenyl)-3,5- dimethylpiperidin-4-one, was synthesized and its crystal structure is reported here.

A perspective view of the structure with the atomic numbering scheme is shown in Fig. 1. Ring-puckering analysis (Cremer & Pople, 1975) of the six-membered ring in the molecule indicates that the ring adopts a boat conformation, with a puckering amplitude Q=0.670 (2)Å, θ =85.71 (2)° and φ =72.45 (2)°. Atoms C2 and C6 deviate from the plane (Cremer & Pople, 1975) defined by the atoms N1/C/C3/C4/C5/C6 by -0.397 (2)Å and 0.240 (2)Å, respectively. The piperidin ring in the molecule 1-acryloyl-2,6-bis(4-chlorophenyl)-3,5-dimethylpiperidin-4-one has a weighted average torsion angle of 34.35° (compare to 52.3° in 2,6-bis(4-chlorophenyl)-3-phenylpiperidin-4-one, Ompraba *et al.*, 2003). The substituent at C2 has an equatorial conformation as indicated by the dihedral angle of 86.87 (1)° between piperidin ring and phenyl ring and the substituent at C6 between the piperidin and phenyl ring has a dihedral angle of 77.81 (1)°. The methyl groups substituted at C3 and C5 are oriented in -syn-clinal and +anti-periplanar conformation as indicated by the torsion angle value of N1–C2–C3–C7, which is -65.3 (2)° and N1–C6–C5–C9, which is 173.51 (18)°. The torsion angle value of -3.0 (3)° for C6–N1–C17–O18 indicates that O18 is oriented in a -syn-periplanar conformation.

Experimental

To a well stirred solution of 2,6-bis(4-chlorophenyl)-3,5-dimethylpiperidin-4-one (Baliah *et al.*, 1983) (5 mmol) and triethylamine(5 mmol) in 30 ml of benzene, 3-chloropropanoyl chloride (5 mmol) in 20 ml benzene was added drop wise through a funnel for about an hour. The resulting mixture was stirred for about 4 hours under ambient conditions. After the completion of the reaction the mixture was quenched in cold water and the organic layer was extracted into ethyl acetate, washed with 5% sodium bicarbonate solution and dried over anhydrous sodium sulphate. This upon evaporation and recrystallization in alcohol yielded 2,6-bis(4-chlorophenyl)-1-(3-chloropropanoyl)-3,5-dimethylpiperidin-4-one. The crystals were dissolved in ethanol (60 ml), refluxed for half an hour and allowed to crystallize by slow evaporation of ethanol.

Refinement

H atoms were placed at idealised positions and allowed to ride on their parent atoms with C–H distances in the range 0.93–0.98 Å; $U_{iso}(H)$ set to either 1.2 U_{eq} or 1.5 U_{eq} of the carrier atom.

Figures

Fig. 1. Crystal structure of the title compound with 50% probability displacement ellipsoids.

1-Acryloyl-2,6-bis(4-chlorophenyl)-3,5-dimethylpiperidin-4-one

Crystal data	
$C_{22}H_{21}Cl_2NO_2$	$F_{000} = 840$
$M_r = 402.30$	$D_{\rm x} = 1.320 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6713 reflections
<i>a</i> = 10.2410 (8) Å	$\theta = 3.0-25.0^{\circ}$
<i>b</i> = 19.5070 (11) Å	$\mu = 0.34 \text{ mm}^{-1}$
c = 10.9760 (9) Å	T = 293 K
$\beta = 112.567 \ (2)^{\circ}$	Block, colourless
V = 2024.8 (3) Å ³	$0.30 \times 0.27 \times 0.25 \text{ mm}$
Z = 4	

Data collection

MacScience DIPLabo 32001 diffractometer	3542 independent reflections
Radiation source: fine-focus sealed tube	2800 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 293 K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: none	$k = -23 \rightarrow 23$
6713 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0437P)^{2} + 0.7531P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.113$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$

247 parameters

$$\begin{split} &\Delta\rho_{min} = -0.25 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL97 (Sheldrick, 2008),} \\ &\text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \end{split}$$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0072 (15) Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl16	0.26934 (10)	0.75475 (4)	0.51117 (9)	0.1061 (4)
C127	0.37661 (8)	0.35272 (4)	0.88810 (6)	0.0863 (3)
08	0.44186 (17)	0.35510 (9)	0.20478 (18)	0.0739 (7)
O18	-0.06985 (15)	0.51370 (8)	0.12166 (15)	0.0631 (6)
N1	0.09295 (16)	0.43755 (8)	0.24406 (16)	0.0460 (5)
C2	0.1348 (2)	0.36689 (10)	0.2923 (2)	0.0487 (6)
C3	0.2196 (2)	0.33554 (11)	0.2177 (2)	0.0524 (7)
C4	0.3467 (2)	0.37817 (11)	0.2317 (2)	0.0507 (7)
C5	0.3488 (2)	0.45090 (10)	0.2808 (2)	0.0475 (6)
C6	0.20081 (19)	0.48388 (10)	0.23015 (19)	0.0449 (6)
C7	0.1287 (2)	0.32667 (14)	0.0708 (2)	0.0694 (8)
C9	0.4536 (2)	0.49632 (13)	0.2509 (3)	0.0714 (9)
C10	0.2080 (2)	0.55179 (10)	0.29977 (19)	0.0466 (6)
C11	0.2401 (2)	0.55513 (11)	0.4340 (2)	0.0571 (7)
C12	0.2581 (2)	0.61714 (12)	0.4992 (2)	0.0627 (8)
C13	0.2426 (2)	0.67645 (11)	0.4290 (3)	0.0631 (8)
C14	0.2087 (3)	0.67519 (12)	0.2960 (3)	0.0735 (10)
C15	0.1915 (3)	0.61283 (12)	0.2318 (2)	0.0636 (8)
C17	-0.0434 (2)	0.45859 (11)	0.1803 (2)	0.0512 (7)
C19	-0.1601 (2)	0.41532 (13)	0.1856 (3)	0.0693 (9)
C20	-0.2902 (3)	0.43327 (19)	0.1270 (3)	0.0892 (13)
C21	0.2020 (2)	0.36349 (10)	0.4431 (2)	0.0490 (6)
C22	0.3290 (2)	0.33092 (11)	0.5125 (2)	0.0569 (8)
C23	0.3825 (2)	0.32739 (12)	0.6491 (2)	0.0628 (8)
C24	0.3089 (3)	0.35647 (11)	0.7166 (2)	0.0594 (8)
C25	0.1816 (3)	0.38854 (13)	0.6510(2)	0.0658 (9)
C26	0.1296 (2)	0.39179 (12)	0.5151 (2)	0.0600 (8)
H2	0.04690	0.34050	0.26590	0.0580*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H3	0.25260	0.29010	0.25510	0.0630*
H5	0.38110	0.44830	0.37710	0.0570*
H6	0.17350	0.49350	0.13600	0.0540*
H7A	0.09920	0.37090	0.03120	0.1040*
H7B	0.04700	0.29960	0.06080	0.1040*
H7C	0.18290	0.30400	0.02820	0.1040*
H9A	0.54450	0.47450	0.28190	0.1070*
H9B	0.46110	0.53970	0.29450	0.1070*
H9C	0.42130	0.50350	0.15740	0.1070*
H11	0.24990	0.51470	0.48150	0.0690*
H12	0.28050	0.61850	0.58970	0.0750*
H14	0.19730	0.71590	0.24900	0.0880*
H15	0.16830	0.61200	0.14120	0.0760*
H19	-0.13880	0.37430	0.23230	0.0830*
H20A	-0.31280	0.47420	0.08010	0.1070*
H20B	-0.36180	0.40530	0.13170	0.1070*
H22	0.37920	0.31110	0.46670	0.0680*
H23	0.46800	0.30540	0.69450	0.0750*
H25	0.13140	0.40770	0.69740	0.0790*
H26	0.04360	0.41360	0.47040	0.0720*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl16	0.1353 (7)	0.0604 (4)	0.1182 (7)	0.0015 (4)	0.0437 (6)	-0.0258 (4)
Cl27	0.1033 (6)	0.0961 (5)	0.0559 (4)	-0.0045 (4)	0.0265 (4)	0.0072 (3)
08	0.0597 (10)	0.0782 (11)	0.0950 (13)	0.0049 (8)	0.0422 (9)	-0.0148 (9)
O18	0.0510 (9)	0.0705 (10)	0.0633 (10)	0.0131 (7)	0.0168 (7)	0.0124 (8)
N1	0.0388 (9)	0.0478 (9)	0.0506 (9)	0.0018 (7)	0.0162 (7)	0.0009 (7)
C2	0.0431 (11)	0.0457 (10)	0.0580 (12)	-0.0012 (8)	0.0202 (9)	-0.0002 (9)
C3	0.0541 (12)	0.0481 (11)	0.0566 (12)	0.0027 (9)	0.0229 (10)	-0.0034 (9)
C4	0.0445 (11)	0.0594 (12)	0.0490 (11)	0.0057 (9)	0.0187 (9)	0.0014 (9)
C5	0.0430 (11)	0.0511 (11)	0.0494 (11)	-0.0004 (8)	0.0187 (9)	0.0013 (9)
C6	0.0415 (10)	0.0483 (11)	0.0441 (10)	0.0007 (8)	0.0155 (8)	0.0032 (8)
C7	0.0609 (14)	0.0813 (16)	0.0628 (14)	-0.0048 (12)	0.0203 (12)	-0.0189 (12)
C9	0.0537 (14)	0.0697 (15)	0.0981 (19)	-0.0016 (11)	0.0374 (13)	0.0114 (14)
C10	0.0421 (10)	0.0479 (11)	0.0482 (11)	0.0011 (8)	0.0155 (9)	0.0036 (9)
C11	0.0695 (14)	0.0515 (12)	0.0513 (12)	-0.0003 (10)	0.0242 (11)	0.0054 (9)
C12	0.0714 (15)	0.0634 (14)	0.0540 (13)	0.0008 (11)	0.0247 (11)	-0.0052 (11)
C13	0.0644 (14)	0.0496 (12)	0.0752 (16)	0.0025 (10)	0.0268 (12)	-0.0054 (11)
C14	0.0946 (19)	0.0473 (13)	0.0759 (17)	0.0084 (12)	0.0297 (14)	0.0120 (12)
C15	0.0780 (16)	0.0575 (13)	0.0522 (13)	0.0060 (11)	0.0214 (11)	0.0102 (10)
C17	0.0438 (11)	0.0614 (13)	0.0490 (11)	0.0031 (9)	0.0184 (9)	-0.0062 (10)
C19	0.0463 (13)	0.0713 (15)	0.0906 (18)	-0.0025 (11)	0.0267 (12)	-0.0075 (13)
C20	0.0502 (15)	0.136 (3)	0.0838 (19)	-0.0066 (15)	0.0283 (14)	-0.0043 (18)
C21	0.0496 (11)	0.0448 (10)	0.0566 (12)	-0.0021 (9)	0.0248 (10)	0.0051 (9)
C22	0.0548 (13)	0.0563 (12)	0.0637 (14)	0.0058 (10)	0.0273 (11)	0.0052 (11)
C23	0.0582 (13)	0.0618 (13)	0.0651 (14)	0.0022 (11)	0.0199 (11)	0.0116 (11)

C24	0.0695 (15)	0.0561 (12)	0.0547 (13)	-0.0089 (11)	0.0261 (11)	0.0063 (10)
C25	0.0763 (16)	0.0662 (15)	0.0659 (15)	0.0037 (12)	0.0396 (13)	0.0048 (12)
C26	0.0577 (13)	0.0656 (14)	0.0630 (14)	0.0114 (10)	0.0303 (11)	0.0086 (11)
Geometric pa	arameters (Å, °)					
Cl16—C13		1.741 (3)	C22–	-C23	1.33	87 (3)
Cl27—C24		1.740 (2)	C23–	C24	1.30	67 (4)
O8—C4		1.209 (3)	C24–	-C25	1.3	74 (4)
O18—C17		1.229 (3)	C25–	-C26	1.38	80 (3)
N1—C2		1.480 (3)	C2—	H2	0.98	800
N1—C6		1.480 (3)	C3—	H3	0.98	800
N1-C17		1.363 (3)	С5—	Н5	0.98	800
C2—C3		1.531 (3)	С6—	Н6	0.98	800
C2-C21		1.531 (3)	С7—	H7A	0.90	600
C3—C4		1.502 (3)	С7—	H7B	0.90	600
C3—C7		1.531 (3)	С7—	H7C	0.90	600
C4—C5		1.515 (3)	С9—	H9A	0.90	600
C5—C6		1.541 (3)	С9—	H9B	0.90	600
С5—С9		1.522 (3)	С9—	Н9С	0.90	600
C6—C10		1.517 (3)	C11–	-H11	0.92	300
C10-C11		1.383 (3)	C12–	-H12	0.93	300
C10-C15		1.381 (3)	C14-	-H14	0.92	300
C11—C12		1.381 (3)	C15–	-H15	0.92	300
C12—C13		1.365 (3)	C19–	-H19	0.92	300
C13—C14		1.365 (4)	C20–	-H20A	0.92	300
C14—C15		1.383 (3)	C20–	-H20B	0.93	300
C17—C19		1.482 (3)	C22–	-H22	0.93	300
C19—C20		1.286 (4)	C23–	-H23	0.93	300
C21—C22		1.384 (3)	C25–	-H25	0.93	300
C21—C26		1.389 (3)	C26–	-H26	0.93	300
C2—N1—C6		118.73 (16)	C21–	-С2—Н2	106	0.00
C2—N1—C17	7	124.27 (17)	C2—	С3—Н3	108	.00
C6—N1—C17	7	114.92 (16)	C4—	С3—Н3	108	.00
N1—C2—C3		109.06 (16)	С7—	С3—Н3	108	.00
N1-C2-C2	1	112.06 (16)	C4—	С5—Н5	107	2.00
C3—C2—C21	1	116.68 (18)	С6—	С5—Н5	107	2.00
C2—C3—C4		111.79 (17)	С9—	С5—Н5	107	2.00
С2—С3—С7		111.59 (18)	N1—	С6—Н6	108	.00
C4—C3—C7		108.85 (17)	C5—	С6—Н6	108	3.00
O8—C4—C3		121.2 (2)	C10-	-С6—Н6	108	3.00
08—C4—C5		122.2 (2)	C3—	С7—Н7А	109	0.00
C3—C4—C5		116.64 (18)	C3—	С7—Н7В	109	0.00
C4—C5—C6		112.65 (17)	C3—	С7—Н7С	109	0.00
С4—С5—С9		112.55 (19)	H7A-	—С7—Н7В	109	0.00
С6—С5—С9		110.90 (17)	H7A-	—С7—Н7С	109	0.00
N1-C6-C5		112.19 (16)	H7B-	—С7—Н7С	109	0.00
N1-C6-C10	0	112.04 (17)	С5—	С9—Н9А	110	.00
C5-C6-C10)	109.39 (16)	C5—	С9—Н9В	109	0.00

C6—C10—C11	121.58 (18)	С5—С9—Н9С	109.00
C6—C10—C15	120.58 (18)	Н9А—С9—Н9В	109.00
C11—C10—C15	117.71 (19)	Н9А—С9—Н9С	109.00
C10-C11-C12	121.55 (19)	Н9В—С9—Н9С	109.00
C11—C12—C13	119.1 (2)	C10-C11-H11	119.00
Cl16—C13—C12	119.3 (2)	C12—C11—H11	119.00
Cl16—C13—C14	119.65 (18)	C11—C12—H12	120.00
C12—C13—C14	121.0 (2)	С13—С12—Н12	120.00
C13—C14—C15	119.4 (2)	C13—C14—H14	120.00
C10-C15-C14	121.2 (2)	C15—C14—H14	120.00
O18—C17—N1	120.6 (2)	С10—С15—Н15	119.00
O18—C17—C19	120.0 (2)	C14—C15—H15	119.00
N1—C17—C19	119.40 (19)	С17—С19—Н19	119.00
C17—C19—C20	121.4 (3)	С20—С19—Н19	119.00
C2—C21—C22	123.55 (19)	С19—С20—Н20А	120.00
C2—C21—C26	118.78 (19)	С19—С20—Н20В	120.00
C22—C21—C26	117.61 (19)	H20A—C20—H20B	120.00
C21—C22—C23	121.1 (2)	С21—С22—Н22	119.00
C22—C23—C24	119.6 (2)	С23—С22—Н22	120.00
Cl27—C24—C23	119.7 (2)	С22—С23—Н23	120.00
Cl27—C24—C25	119.3 (2)	C24—C23—H23	120.00
C23—C24—C25	121.0 (2)	С24—С25—Н25	121.00
C24—C25—C26	118.8 (2)	С26—С25—Н25	121.00
C21—C26—C25	121.9 (2)	C21—C26—H26	119.00
N1—C2—H2	106.00	С25—С26—Н26	119.00
С3—С2—Н2	106.00		
C6—N1—C2—C3	-46.8 (2)	C4—C5—C6—C10	171.32 (17)
C6—N1—C2—C21	83.9 (2)	C9—C5—C6—N1	173.51 (18)
C17—N1—C2—C3	115.9 (2)	C9—C5—C6—C10	-61.5 (2)
C17—N1—C2—C21	-113.4 (2)	N1—C6—C10—C11	59.9 (3)
C2—N1—C6—C5	-4.6 (2)	N1-C6-C10-C15	-124.3 (2)
C2-N1-C6-C10	-128.09 (18)	C5-C6-C10-C11	-65.2 (3)
C17—N1—C6—C5	-168.89 (17)	C5-C6-C10-C15	110.6 (2)
C17—N1—C6—C10	67.6 (2)	C6-C10-C11-C12	174.6 (2)
C2-N1-C17-O18	-166.34 (19)	C15-C10-C11-C12	-1.3 (3)
C2-N1-C17-C19	15.5 (3)	C6-C10-C15-C14	-174.9 (3)
C6—N1—C17—O18	-3.0 (3)	C11-C10-C15-C14	1.0 (4)
C6—N1—C17—C19	178.84 (19)	C10-C11-C12-C13	0.6 (3)
N1—C2—C3—C4	56.9 (2)	C11—C12—C13—Cl16	-178.46 (18)
N1—C2—C3—C7	-65.3 (2)	C11-C12-C13-C14	0.5 (4)
C21—C2—C3—C4	-71.3 (2)	Cl16—C13—C14—C15	178.2 (2)
C21—C2—C3—C7	166.51 (18)	C12-C13-C14-C15	-0.8 (4)
N1—C2—C21—C22	-130.3 (2)	C13—C14—C15—C10	0.0 (5)
N1—C2—C21—C26	52.7 (3)	O18—C17—C19—C20	1.8 (4)
C3—C2—C21—C22	-3.5 (3)	N1—C17—C19—C20	179.9 (3)
C3—C2—C21—C26	179.44 (19)	C2—C21—C22—C23	-177.7 (2)
C2—C3—C4—O8	163.9 (2)	C26—C21—C22—C23	-0.7 (3)
C2—C3—C4—C5	161(2)	C2 C21 C26 C25	177.8(2)
	-10.1(2)	$C_2 = C_2 I = C_2 0 = C_2 3$	177.0(2)

C7—C3—C4—C5 O8—C4—C5—C6	107.6 (2) 144.5 (2)	C21—C22—C23—C24 C22—C23—C24—Cl27	0.0 (3) -179.46 (18)
08—C4—C5—C9	18.3 (3)	C22—C23—C24—C25	0.8 (4)
C3—C4—C5—C6	-35.4 (2)	Cl27—C24—C25—C26	179.38 (19)
C3—C4—C5—C9	-161.70 (19)	C23—C24—C25—C26	-0.8 (4)
C4—C5—C6—N1	46.3 (2)	C24—C25—C26—C21	0.2 (4)

