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Abstract

Laboratory and epidemiological evidence indicate that ambient humidity modulates the sur-

vival and transmission of influenza. Here we explore whether the inclusion of humidity forc-

ing in mathematical models describing influenza transmission improves the accuracy of

forecasts generated with those models. We generate retrospective forecasts for 95 cities

over 10 seasons in the United States and assess both forecast accuracy and error. Overall,

we find that humidity forcing improves forecast performance (at 1–4 lead weeks, 3.8% more

peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and

that forecasts generated using daily climatological humidity forcing generally outperform

forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These

findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2-

and 4-week horizons. The results indicate that use of climatological humidity forcing is war-

ranted for current operational influenza forecast.

Author summary

Laboratory and epidemiological evidence indicate that atmospheric absolute humidity

conditions modulate the survival, transmission, incidence and seasonality of influenza.

Absolute humidity (AH) conditions are often incorporated as a forcing factor in mathe-

matical models used to describe and forecast influenza incidence. Here we examine

whether the inclusion of absolute humidity forcing improves influenza forecast accuracy.

We perform retrospective influenza forecasting over 10 seasons for 95 cities using 4 differ-

ent forms of AH forcing: 1) no AH forcing; 2) optimization and forecast with local clima-

tological AH forcing; 3) optimization and forecast with local observed AH forcing; and 4)

optimization with observed AH forcing and forecast with climatological AH forcing. We

find that humidity forcing improves forecast performance and that forecasts generated

using climatological humidity forcing generally outperform forecasts that utilize observed

humidity forcing.
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Introduction

A growing body of evidence indicates that the survival and transmissibility of influenza are

affected by ambient humidity conditions. Laboratory experiments have shown that aerosolized

influenza survival rates increase in low ambient relative humidity (RH), i.e. less than 40% [1–

10]. Additional experiments examining the transmission of human influenza among guinea

pigs have also shown that transmission increases at low RH levels [11]. Further evaluation of

these experiments has revealed a strong relationship in which low absolute humidity (AH)

conditions favor the survival and transmission of influenza [12].

Low AH conditions manifest outdoors during winter in temperate regions. Furthermore,

because temperature indoors is managed but humidity is generally not, both AH and RH tend

to be low indoors during winter. Indeed, even though RH is often maximal outdoors during

winter, indoor RH often reaches the very low levels (10–40%) favorable for influenza survival

and transmission, and indoor AH closely mirrors outdoor levels [13–16].

People in the developed world, such as the US, spend approximately 90% of their time

indoors [17]; as a result, influenza transmission is suspected to occur indoors in the developed

world. In addition, because both indoor RH and indoor AH are highly co-variable with out-

door AH, either variable can be estimated using outdoor AH. Consequently, regardless of

whether one considers RH or AH to be the true modulator of influenza survival and transmis-

sibility (and the mechanisms for this modulation remain undetermined), outdoor AH can be

used to estimate the effect of humidity on influenza transmission.

A number of epidemiological studies have found associations between outdoor AH and

estimates of influenza incidence or influenza-related mortality. Statistical analysis has shown

that the onset of influenza outbreaks is associated with anomalously low AH conditions [18].

Low AH levels in temperate regions have also been associated with increased influenza-associ-

ated mortality levels [19], increased influenza transmission intensity [20], and increased influ-

enza incidence [21].

Modeling studies have shown that the seasonality of influenza in temperate regions can be

reproduced when influenza transmission potential is modulated by observed AH conditions

[18]. Furthermore, AH, along with other dynamical processes, can be used to explain the tim-

ing of both seasonal and pandemic influenza outbreaks [22–25]. Indeed, even the development

of pandemic influenza outbreaks out of season (i.e. during summer) can be understood in the

context of ambient seasonal humidity conditions, contact patterns, and population susceptibil-

ity. Specifically, ambient humidity sets an upper bound on the transmission potential (a maxi-

mal basic reproductive number), contact patterns also influence transmission (e.g. through

preferential mixing among certain sub-populations), and population susceptibility reduces

transmissibility as it drops. In effect, AH constrains the extent to which an influenza virus

strain is capable of sustained transmission during summer and sustained transmission is possi-

ble only if population susceptibility to that strain remains sufficiently high. For circulating

seasonal influenza strains, higher AH and lower susceptibility conspire to limit sustained

transmission of circulating influenza strains during summer; however, the introduction of a

new pandemic strain, for which population susceptibility is much higher, can enable sustained

transmission during summer [22, 25].

Recently, we developed a number of model-inference systems for the ensemble forecast of

seasonal influenza [26–29]. These systems use a compartmental model, such as a susceptible-

infected-recovered-susceptible (SIRS) model, that is first optimized prior to forecast using

observational estimates of US state and municipal influenza incidence. When first developed,

we used an AH-forced SIRS model for these predictions, as this model had been used to

describe the seasonality of influenza at state geographic scales in the US [18]. However, when
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applied to influenza forecast over larger areas, e.g. US CDC Health and Human Services multi-

state regions, or subtropical regions, we have heretofore adopted a SIRS form without AH forc-

ing [27, 30]. It remains an open question whether the prediction of influenza in temperate

regions is improved by the inclusion of AH forcing. In this paper, we perform retrospective

forecasting over 10 seasons for 95 cities using 4 different forms of AH forcing: 1) no AH forc-

ing; 2) optimization and forecast with local climatological AH forcing (i.e. historical average

AH conditions on a given day); 3) optimization and forecast with local observed AH forcing

(i.e. AH as observed on a given day); and 4) optimization with observed AH forcing and fore-

cast with climatological AH forcing. This effort applies these 4 AH forcing approaches to an

established model-inference prediction system that has been used for 5 years to forecast influ-

enza operationally in real-time [27, 31]. We explore whether clear differences in forecast accu-

racy emerge among these 4 approaches and quantify whether inclusion of AH forcing

improves forecast accuracy. We hypothesize, given evidence suggesting ambient AH modifies

the survival and transmissibility of influenza, that AH forcing will improve dynamic model

influenza forecast.

Methods

Modeling approaches

Forecast of influenza is here generated using compartmental models describing the propaga-

tion of influenza through a population, observational estimates of influenza incidence, and

data assimilation methods for model optimization [26–29]. Four different compartmental

models were used to generate the forecasts. All four forms are perfectly-mixed, absolute

humidity-driven compartmental constructs with the following designations: 1) susceptible-

infectious-recovered (SIR); 2) SIRS; 3) susceptible-exposed-infectious-recovered (SEIR); and

4) susceptible-exposed-infectious-recovered-susceptible (SEIRS). The differences among the

model forms align with whether waning immunity, which allows recovered individuals to

return to the susceptible class, or an explicit period of latent infection (the exposed period) is

represented.

As the SEIRS model is the most detailed, we present it here. All other forms are derived by

reduction of these equations, which are as follows:

dS
dt
¼

N � S � E � I
L

�
bðtÞIS

N
� a ð1Þ

dE
dt
¼

bðtÞIS
N
�

E
Z
þ a ð2Þ

dI
dt
¼

E
Z
�

I
D

ð3Þ

where S is the number of susceptible people in the population, t is time in years, N is the popu-

lation size, E is the number of exposed people, I is the number of infectious people, N-S-E-I is

the number of recovered individuals, β(t) is the contact rate at time t, L is the average duration

of immunity, Z is the mean latent period, D is the mean infectious period, and α is the rate of

travel-related import of influenza virus into the model domain.

The contact rate, β(t), is given by β(t) = R0(t)/D, where R0(t), the basic reproductive num-

ber, is the number of secondary infections the average infectious person would produce in a

fully susceptible population at time t. Specific humidity, a measure of absolute humidity (AH),

modulates transmission rates within this model by altering R0(t) through an exponential
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relationship derived from laboratory experiments [12]:

R0ðtÞ ¼ R0min þ ðR0max � R0minÞe
� aqðtÞ ð4Þ

where R0min is the minimum daily basic reproductive number, R0max is the maximum daily

basic reproductive number, a = 180 (unitless), and q(t) is the time-varying specific humidity

(in kg/kg). The value of a is estimated from the laboratory regression of influenza virus survival

upon AH [18]. Simulations were performed with fixed travel-related seeding of I of 0.1 infec-

tions per day (1 infection every 10 days).

For each of the 4 compartmental model forms (SIR, SIRS, SEIR, SEIRS), four different

approaches were used to test how the incorporation of AH conditions in the model framework

affects the accuracy of influenza forecast. Each approach applied AH conditions in a different

fashion. In the first approach, ‘observed AH’, observed local daily AH conditions are applied

using Eq 4. This use of AH is not realistic for real-time forecast, as future AH conditions are

not known; however, as applied here, it can be used to forecast influenza outbreak characteris-

tics retrospectively and to determine if such information would, in theory, improve forecast

accuracy.

For the second approach, ‘climatological AH’, we use local daily climatological AH condi-

tions in Eq 4. Here, the climatology is based on 24 years (1979–2002) and represents the histor-

ical average conditions on a given day for the location at which the model is applied. Due to

averaging over many years, climatological AH is much smoother than observed AH conditions

and has been used operationally to generate real-time influenza forecasts [27, 31].

The third approach, ‘combination AH’, is a hybrid of the first two approaches. Observed

AH is used during model optimization prior to forecast, but the forecast of future outcomes is

generated using climatological AH. This strategy can be used for real-time forecasting and was

implemented previously [26].

The final approach, ‘no AH’, replaces Eq 4 with R0(t) = R0. In this fashion R0 is treated as an

adjustable parameter to be optimized during the data assimilation process (see below). As with

the other parameters of the model, it remains fixed during forecast when the optimized model

is integrated into the future to generate an ensemble of predictions.

Data

Specific humidity (q; used in Eq 4) data were compiled from the National Land Data Assimila-

tion System (NLDAS) project-2 dataset. These data are derived through spatial interpolation,

temporal disaggregation and vertical adjustment from station measurements and National

Center for Environmental Prediction North American Regional Reanalysis [32]. The gridded

NLDAS meteorological data are available in hourly time steps on a 0.125˚ regular grid from

1979 through the present [33]. Specific humidity data from the grid cell containing the cen-

troid of each of the 95 cities included in this study were assembled for 1979–2015. These

hourly data were then averaged to daily resolution. A 1979–2002 (24 year) daily climatology

was then constructed for each city.

As described in Shaman et al. [27], weekly estimates of influenza incidence were generated

by multiplying 2003–2015 historical Google Flu Trend (GFT) estimates of municipal influ-

enza-like illness (ILI) [34], as these data were released in real time (S1 Data), by coincident

census division (regional) weekly laboratory-confirmed influenza positive proportions as com-

piled through the National Respiratory and Enteric Virus Surveillance System (NREVSS) and

U.S.-based World Health Organization (WHO) Collaborating Laboratories [35]. This com-

bined metric, termed ILI+, provides a more specific measure of influenza incidence than ILI

alone, which non-specifically captures signal from other circulating respiratory viruses, such

The use of ambient humidity conditions to improve influenza forecast
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as adenovirus and rhinovirus [27, 36]. While the spatially coarser regional NRVESS/WHO

data does not fully discriminate variability in influenza positivity at the municipal scale, multi-

plication of municipal ILI with these regional proportions does remove some of the signal

associated with other respiratory viruses and provides a more precise estimate of influenza

activity than ILI alone.

Data assimilation

Three ensemble filter methods—the ensemble Kalman filter [37], the ensemble adjustment

Kalman filter [38] and the rank histogram filter [39]—and a particle filter (PF) with resampling

and regularization [40] were used in conjunction with ILI+ to optimize and initialize the com-

partmental models prior to forecast. Both the model state variables (S, E, I) and parameters (L,

Z, D, R0max, R0min and R0) were subject to optimization. Ensemble filter simulations were run

with 300 ensemble members and PF simulations were run with 10,000 particles.

Each ensemble filter algorithm is applied sequentially through time to update ensemble

model simulations of observed state variables (i.e. influenza incidence) to better align with

observations (i.e. ILI+). These updates are calculated, per the specifics of each filter algorithm

(described below), by halting the ensemble integration when a new observation comes avail-

able. The posterior is then integrated through time using the model equations to the next

observation and the process is repeated. Through this iterative updating process the ensemble

of simulations provides an increasingly accurate estimate of the observed state variable (i.e.

influenza incidence), and estimates of the unobserved variables and parameters (e.g. suscepti-

bility and mean infectious period) are obtained through additional adjustments that take

advantage of their co-variability with the observed state variable.

In general, Kalman filters assume normality of the observational error, the prior distribu-

tion, and the posterior distribution. Differences among the ensemble filter algorithms manifest

from the means by which the update is specified. The ensemble Kalman filter (EnKF) is a sto-

chastic, perturbed observation Kalman filter in which the update of each ensemble member is

computed using the current observation plus Gaussian random noise [41]. That is, the poste-

rior for each ensemble member is simply the weighted sum of the prior for that ensemble

member and the observation plus random noise with variance equal to the observational error

variance. The weights themselves are calculated as ratios of the ensemble prior variance and

the observational error variance.

The ensemble adjustment Kalman filter (EAKF) employs a deterministic algorithm to com-

pute the ensemble posterior mean and variance [38]. At each update, the EAKF algorithm

aligns the first two ensemble posterior moments with those predicted by Bayes’ theorem.

Unlike the EnKF and EAKF, the rank histogram filter (RHF) does not impose a Gaussian

structure on the prior, observations or posterior [39]; rather, this filter employs an algorithm

that creates an approximate probability distribution by ordering (i.e. ranking) the ensemble

prior. In this fashion, the RHF admits non-Gaussian distributions, thus relaxing the normality

assumption inherent to most Kalman filters.

For the ensemble filters, multiplicative inflation [38] was applied following the assimilation

of each weekly observation of ILI+. The inflation was used to counter the ensemble filter ten-

dency toward ‘filter divergence’, which occurs when the prior ensemble spread becomes spuri-

ously low. In the absence of inflation, the system may give too little weight to the observations

and thus diverge from the true trajectory.

Unlike the above ensemble filters, PFs are an alternate class of assimilation method that do

not require assumptions about linearity or normality. The PF approach used here adopts

sequential importance sampling with resampling and regularization [40, 42]. Resampling
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generates a new suite of particles with equal weight during the model integration whenever the

effective sample size is low. Regularization jiggles the state and parameter values of each resam-

pled particle to eliminate redundancies and further sample parameter space around each pre-

viously highly weighted particle. As a consequence of resampling and regularization, a much

richer range of parameter and state space is spanned than with a basic PF, which relies only on

the initial parameter choices.

For all 16 model-filter combinations (i.e. 4 models × 4 filters) a scaling factor was employed

to convert ILI+ to influenza incidence, the quantity represented in the compartmental models,

per Shaman et al. [27]. Both ILI and ILI+ are biased in that they only capture persons seeking

medical attention and are measured per 100,000 patient visits. The scaling factor partially com-

pensates for this bias by accounting for the probability that a person with influenza seeks medi-

cal attention and the probability that a person seeks medical attention for any reason [27].

Even after this scaling, bias in the data likely remains; however, as long as this bias remains sta-

tionary, it should not corrupt forecasting. That is, if a given model is well optimized using

biased observations, it should make biased predictions, as the accuracy of those out-of-sample

predictions is being assessed using the same biased dataset.

Additional details on the application of the ensemble filters and PF to infectious disease

models are provided in Shaman and Karspeck [26] and Yang et al. [28]. S1–S3 Figs present

example forecasts from the more than 1.2 million predictions generated.

Forecast metrics

For each model-filter combination, we generated weekly retrospective forecasts of influenza

outbreak characteristics during weeks 6–25 of the influenza season (beginning early October)

over 10 seasons (2003–2004 through 2014–2015, excluding the pandemic seasons 2008–2009

and 2009–2010). For the ensemble filters, the ensemble mean trajectory was used for forecast

accuracy assessment; for the PF, the particle weighted average trajectory was used. A simple

average of these trajectory forecasts as generated by all 16 model-filter combinations was used

for accuracy analysis unless otherwise specified. We limit our analysis to forecasts made 0–8

weeks before the predicted peak week.

Let O(t) be the ILI+ observed at time t and Fw(t) the ILI+ forecast made for time t using

ILI+ available through week w, i.e. w< t. The predicted peak intensity at w is defined as the

maximum of the average forecast trajectory, and the peak week is the week when that maxi-

mum occurs. A predicted peak week is defined as accurate if it is within ±1 week of the ob-

served peak week, and the predicted peak intensity is deemed accurate if it is within ± 25% of

the observed peak intensity. In addition, absolute error was calculated for each prediction of

peak week and peak intensity and used to rank the weekly performances of the 4 AH forecast

approaches.

Root mean squared error (RMSE) was calculated over the entire trajectory at time horizons

of 2 and 4 weeks:

RMSEh
w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xwþh

t¼wþ1

ðFwðtÞ � OðtÞÞ2
s

h
ð5Þ

where h 2 {2, 4} weeks. We also performed a Friedman test followed by a Nemenyi test to

assess whether forecast error differed significantly among the 4 AH forcing approaches. The

Friedman test is a non-parametric test that ranks the error of each group—here, each AH forc-

ing approach—for each forecast location-week. The Nemenyi test assesses for statistically sig-

nificant differences between each pair of ranked groupings.

The use of ambient humidity conditions to improve influenza forecast
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Results

For predictions of peak intensity, forecasts using one of the 3 AH forcing approaches were

superior at all lead times (Fig 1). Peak week forecasts showed similar results, with the excep-

tion of the forecasts with 6- and 7-week leads. Note that the number of no AH forecasts gener-

ated with 6- and 7-week leads was small, so this result may be due to sampling error. The

climatological AH forecasts were most accurate for leads of 0 through 3 weeks. These findings

were insensitive to the choice of error margin used to define accuracy (S4 and S5 Figs).

Forecast error rank for peak intensity reveals the climatological AH forecasts most often

had the lowest rank (smallest error) at most leads and the no AH forecasts most often had the

largest error at all leads (Fig 2). For predictions of peak week, the no AH forecasts again most

often had the largest error at all leads; however, differences among the 3 humidity-forced fore-

casts were less clearly discernible. These findings were confirmed by Friedman rank, which

showed that overall the no AH forecasts ranked the worst among the four AH approaches

(Table 1). Results from the pairwise comparison revealed highly significant differences among

most pairings (p< 0.001) with the exception of the climatological AH-combination AH pair

(Table 2).

Fig 1. Percentage of forecasts accurate for predictions of peak intensity (top, within ±25% of

observed peak intensity) and peak timing (bottom, within ±1 week of the observed peak) plotted as a

function of forecast lead relative to the predicted peak. Shown are the forecast accuracies for models

with climatological AH forcing (green), observed AH forcing (red), a combination of observed AH during

optimization and climatological AH during forecast (blue), and no AH forcing (grey). The number of forecasts

(log transformed) at each lead is represented by the size of the dot.

https://doi.org/10.1371/journal.pcbi.1005844.g001
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Similar findings hold for RMSE over 2- and 4-week prediction horizons (Fig 3). Here, the

no AH forecasts rank either best or worst depending on lead time. Specifically, the no AH fore-

casts rank worst at longer leads but often rank best at shorter leads (2 to 4 weeks). In contrast,

the combination and observed AH forecasts most often cluster at ranks 2 and 3. The climato-

logical AH forecasts appear to have the greatest diversity of ranking; however, overall it has the

lowest mean ranking (Table 1) and provides a significant benefit over the 3 other approaches

(Table 2).

Fig 2. Heat map of forecast error rank for predictions of peak intensity (top) and peak timing (bottom)

plotted as a function of forecast lead relative to the predicted peak. Weekly forecasts for a location were

ranked (1–4) based on prediction error for a given metric, where 1 was the forecast with the least error. Color

indicates the number of forecasts at each lead with a given error ranking relative to the other forms. Darker

colors indicate more forecasts at a given lead with a particular ranking.

https://doi.org/10.1371/journal.pcbi.1005844.g002

Table 1. Mean Friedman ranks of forecast error for predictions of peak intensity, peak week and incidence during the first 2 weeks (RMSE2) and 4

weeks (RMSE4) of forecast. For pairwise tests of significance see Table 2. Best performing model forms are in bold. Note, two forms may be best if not sta-

tistically different.

Forecast Peak Intensity Peak Week RMSE2 RMSE4

Climatological AH 2.36 2.33 2.35 2.36

Combination 2.32 2.34 2.42 2.43

No AH 2.89 2.88 2.69 2.64

Observed AH 2.43 2.45 2.54 2.56

https://doi.org/10.1371/journal.pcbi.1005844.t001
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When we stratify the forecasts by model form, we find similar results for peak intensity (Fig

4). Specifically, the no AH forecasts are less accurate than the 3 AH-forced forecasts for each of

the 4 compartmental model forms. Similarly, the forecasts of peak week stratified by model

form are similar to the overall findings (Fig 1).

For peak intensity, stratification by filter reveals a less clear distinction between the no AH

forecasts and the 3 AH-forced forecasts (Fig 5). The EAKF and EnKF no AH peak intensity

Table 2. Pairwise p-values derived from Nemenyi tests of the forecast ranks shown in Table 1. Asterisks designate differences significant at p<0.01

(**) and p<0.001 (***).

Peak Intensity Forecasts Peak Week Forecasts

Climatological Combination No AH Climatological Combination No AH

Combination 0.234 - - Combination 0.899 - -

No AH <0.001*** <0.001*** - No AH <0.001*** <0.001*** -

Observed <0.01** <0.001*** <0.001*** Observed <0.001*** <0.001*** <0.001***

RMSE during the first 2 weeks of Forecast (RMSE2) RMSE during the first 4 weeks of Forecast (RMSE4)

Climatological Combination No AH Climatological Combination No AH

Combination 0.003** - - Combination 0.003** - -

No AH <0.001*** <0.001*** - No AH <0.001*** <0.001*** -

Observed <0.001*** <0.001*** <0.001*** Observed <0.001*** <0.001*** 0.001***

https://doi.org/10.1371/journal.pcbi.1005844.t002

Fig 3. As for Fig 2, but showing RMSE of incidence for the first 2 weeks of forecast (top, RMSE 2) and

the first 4 weeks (bottom, RMSE 4).

https://doi.org/10.1371/journal.pcbi.1005844.g003
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forecasts do comparatively well for 0- to 2-week leads, whereas the RHF no AH forecasts do

well for 4- to 8-week leads. The PF no AH forecasts of peak intensity generally perform less

well at all leads but 0 weeks. For peak week, the results by filter are less distinct. Here the

EAKF no AH forecasts perform better at longer lead times (5–8 weeks), and the EnKF at 0 to 1

week leads.

Discussion

Overall, our findings indicate that peak intensity forecast accuracy improves with some type of

AH forcing regardless of lead time. With the exception of long-lead time forecasts, where the

low number of samples for the no AH approach make it difficult to interpret the results, fore-

cast of peak week timing is also generally improved with AH forcing. Analyses of forecast

error reveal that predictions generated with no AH forcing are most likely to perform worse

than counterpart AH-forced prediction. While this tendency is consistent for forecast peak

intensity, for peak timing, RMSE2 and RMSE4, the no AH approach at times produced supe-

rior forecasts (Figs 2 and 3), although the overall performance of the no AH form was worse

(Table 1).

Fig 4. Percentage of forecasts accurate for predictions of peak intensity (top, within ±25% of

observed peak intensity) and peak timing (bottom, within ±1 week of the observed peak) plotted as a

function of forecast lead relative to the predicted peak for each of the 4 models forms (SEIR, SEIRS,

SIR and SIRS). Shown are the forecast accuracies for models with climatological AH forcing (green),

observed AH forcing (red), a combination of observed AH during optimization and climatological AH during

forecast (blue), and no AH forcing (grey). The number of forecasts (log transformed) at each lead is

represented by the size of the dot.

https://doi.org/10.1371/journal.pcbi.1005844.g004
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Among the 3 AH forcing approaches the differences were less clear. The climatological AH

approach most often performed best (Table 1); however, for forecast of peak intensity and

peak timing, the accuracy of the climatological and combination AH approaches was not sta-

tistically different (Table 2). It is interesting that forecasts with climatological AH forcing were

more accurate than those generated using observed AH conditions. This finding indicates that

the short-term fluctuations of observed AH due to synoptic variability—the 1–4 day variability

associated with storms and frontal systems—may actually degrade prediction. Whether this

effect is due to the transience of the synoptic AH signal, which corrupts filter optimization, ILI

+ observational noise, or the simplicity of the models, which may not appropriately represent

the effects of these fluctuations on virus transmissibility, is not clear.

To test whether model simplicity underlies our findings, we performed a synthetic test in

which we used local daily, observed AH data for 2003–2015 and the SIRS model to generate

time series of influenza incidence for 61 cities (see S1 Text). Daily cases were aggregated by cal-

endar week and observations were drawn from a negative binomial distribution. These syn-

thetic observations were then used, in turn, in conjunction with the EAKF, EnKF and RHF

filters to optimize the SIRS model, with each of the 4 AH approaches, and generate forecasts of

Fig 5. Percentage of forecasts accurate for predictions of peak intensity (top, within ±25% of

observed peak intensity) and peak timing (bottom, within ±1 week of the observed peak) plotted as a

function of forecast lead relative to the predicted peak for each of the 4 filters (EAKF, EnKF, PF and

RHF). Shown are the forecast accuracies for models with climatological AH forcing (green), observed AH

forcing (red), a combination of observed AH during optimization and climatological AH during forecast (blue),

and no AH forcing (grey). The number of forecasts (log transformed) at each lead is represented by the size of

the dot.

https://doi.org/10.1371/journal.pcbi.1005844.g005
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the synthetic truth for each of the 61 cities and 10 seasons. Forecast results for this synthetic

target were similar to the findings for the ILI+ target (S1 and S2 Tables). In particular, forecasts

made using the climatological AH approach most consistently ranked first or tied for first even

though observed AH had been used to generate the synthetic observations. This finding indi-

cates that model simplicity is not the primary reason for our findings.

For shorter lead predictions (1 to 4 weeks) the improvement of the climatological AH

approach over other approaches appears to be greater for the 2 models that include a latent

period (i.e. the SEIR and SEIRS models, see Fig 4). Laboratory evidence and physical consider-

ations point to an immediate effect of ambient humidity on virus survival and transmissibility

[4]. However, given that there exists an intrinsic delay between infection and seeking medical

attention, a lag between humidity anomalies and observed changes in rates of ILI and influ-

enza positivity rates should be evident, and has similarly been observed for excess pneumonia

and influenza mortality [18]. For ILI+, observations are summed over a calendar week, so

some individuals are no doubt infected and seek clinical care in the same week; however, for

other individuals, the effects of humidity at the end of one week, would be expected to modu-

late ILI+ levels during the following week [43]. It thus may be that the models with a latent

period (i.e. SEIR and SEIRS) are able to capture some of this lag—but perhaps for the wrong

reason in that the period of latency accounts for some of the time between infection and seek-

ing medical attention.

While there is no perfect estimate of influenza infection rates, the use of 2003–2015 histori-

cal GFT municipal ILI estimates in this study may have introduced some biases. Firstly, Google

repeatedly altered their algorithm for estimating ILI [44–45]; we here used GFT ILI estimates

as they were initially made available in real time, rather than subsequently revised estimates, in

order to produce retrospective forecasts as they would have been generated in real time. Sec-

ondly, GFT ILI national and regional estimates have documented inaccuracies relative to tar-

get CDC ILI measurements [46–47]. Thirdly, GFT ILI estimates were developed and validated

using national and regional CDC ILI targets. Detailing of the precise algorithm used by Google

or the process of extrapolation to sub-regional spatial scales has not been published. Our use of

municipal ILI estimates, which are spatially correlated and derived from the same GFT algo-

rithm, suggests that the 95 cities used in this study may not provide 95 independent tests of the

importance of humidity. Consequently, it is possible that the significance of the rank differ-

ences reported in Table 2 are inflated.

In general, our findings support the continued use of climatological AH forcing when gen-

erating influenza forecasts. This approach has been our primary means for generating opera-

tional real-time forecasts. Many other groups are also presently developing and generating

influenza forecasts using a combination of dynamical and/or statistical methodologies [48–

52], both of which have their strengths. Given the findings here, which indicate that inclusion

of humidity forcing improves forecast accuracy, this forcing should be included and tested in

conjunction with other forecasting systems. Further, as new, improved model forms and filter-

ing methods are brought online, the effects of humidity forcing on forecast accuracy will need

to be continually monitored.
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S1 Table. Mean Friedman ranks of forecast error for predictions of synthetic truth targets
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(RMSE4) of forecast. For pairwise tests of significance see S2 Table. Best performing model
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shown in S1 Table. Asterisks designate differences significant at p<0.01 (��) and p<0.001
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S1 Fig. Example forecasts from Atlanta, GA during 2005–2006. Shown are the average tra-

jectories across all 16 model-filter combinations for each of the 4 AH forcings. Successive

weekly forecasts are shown for Weeks 45–60. Climatological AH forecasts are shown in red;

combination AH forecasts in green; observed AH forecasts in blue; and no AH forecasts in

purple. ILI+ observations are denoted by the black triangles and the vertical dashed line delim-

its the forecast initiation week and the observations used to optimize models.
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jectories across all 16 model-filter combinations for each of the 4 AH forcings. Successive

weekly forecasts are shown for Weeks 45–64. Climatological AH forecasts are shown in red;

combination AH forecasts in green; observed AH forecasts in blue; and no AH forecasts in

purple. ILI+ observations are denoted by the black triangles and the vertical dashed line delim-

its the forecast initiation week and the observations used to optimize models.

(TIFF)

S3 Fig. Example forecasts from Tampa Bay, FL during 2005–2006. Shown are the average

trajectories across all 16 model-filter combinations for each of the 4 AH forcings. Successive

weekly forecasts are shown for Weeks 45–64. Climatological AH forecasts are shown in red;

combination AH forecasts in green; observed AH forecasts in blue; and no AH forecasts in

purple. ILI+ observations are denoted by the black triangles and the vertical dashed line delim-

its the forecast initiation week and the observations used to optimize models.
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S4 Fig. Percentage of forecasts accurate for predictions of peak intensity using various

error margins to define accuracy. Shown are the forecast accuracies as a function of week rel-

ative to predicted peak for models with climatological AH forcing (green), observed AH forc-

ing (red), a combination of observed AH during optimization and climatological AH during

forecast (blue), and no AH forcing (grey). The top left sub-panel shows accuracy per the error

margins specified in the main manuscript.

(TIFF)

S5 Fig. Percentage of forecasts accurate for predictions of peak week using various error

margins to define accuracy. Shown are the forecast accuracies as a function of week relative

to predicted peak for models with climatological AH forcing (green), observed AH forcing

(red), a combination of observed AH during optimization and climatological AH during fore-

cast (blue), and no AH forcing (grey). The top left sub-panel shows accuracy per the error mar-

gins specified in the main manuscript.
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