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Acute kidney injury (AKI) is a health problem worldwide, but there is a lack of early
diagnostic biomarkers and target-specific treatments. Ischemia-reperfusion (IR), a major
cause of AKI, not only induces kidney injury, but also stimulates the self-defense system
including innate immune responses to limit injury. One of these responses is the
production of erythropoietin (EPO) by adjacent normal tissue, which is simultaneously
triggered, but behind the action of its receptors, either by the homodimer EPO receptor
(EPOR)2 mainly involved in erythropoiesis or the heterodimer EPOR/b common receptor
(EPOR/bcR) which has a broad range of biological protections. EPOR/bcR is expressed in
several cell types including tubular epithelial cells at low levels or absent in normal kidneys,
but is swiftly upregulated by hypoxia and inflammation and also translocated to cellular
membrane post IR. EPOR/bcR mediates anti-apoptosis, anti-inflammation, pro-
regeneration, and remodeling via the PI3K/Akt, STAT3, and MAPK signaling pathways
in AKI. However, the precise roles of EPOR/bcR in the pathogenesis and progression of
AKI have not been well defined, and its potential as an earlier biomarker for AKI diagnosis
and monitoring repair or chronic progression requires further investigation. Here, we
review biological functions and mechanistic signaling pathways of EPOR/bcR in AKI, and
discuss its potential clinical applications as a biomarker for effective diagnosis and
predicting prognosis, as well as directing cell target drug delivery.

Keywords: acute kidney injury, apoptosis, EPOR/bcR, fibrosis, inflammation, ischemia-reperfusion
INTRODUCTION

Acute kidney injury (AKI) is a critical syndrome characterized by a sudden decline of renal function,
with high morbidity and mortality (1–3). The poor prognosis of AKI is also evidenced by the high
risk of progression to chronic kidney disease and end-stage renal disease over time, characterized by
tubulointerstitial fibrosis (4, 5). Effective management of AKI is urgently needed including early
diagnosis as well as target-specific treatment.
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Renal ischemia-reperfusion (IR) injury is a common
contributor to AKI, which could result from various clinical
settings such as kidney transplantation, cardiac surgery, shock,
vomiting, diarrhea, and burns (6). Parallel to injury, the kidney
also develops defensive responses to restrict cellular damage and
promote repair, one of which is associated with the classical
hormone erythropoietin (EPO). Recombinant EPO, 5000 U/L in
hemoperfusate, markedly decreased apoptotic cells in tubular
areas, but increased the apoptotic cell death of inflammatory cells
and their clearance in isolated porcine kidneys (n = 6) (7). In
vivo, EPO at 1000 U/kg significantly improved renal function
and structure at the acute stage (24 h) of IR-induced AKI in rats
(n = 6) (8). These observations suggest a therapeutic opportunity
of using EPO to improve the outcome of AKI. However, a large
dose of EPO is needed for tissue protection, so it often results in
side effects such as hypertension and thrombosis due to its high
affinity to the classical homodimer (EPOR)2. The renoprotective
receptor of EPO was a complex composed of the EPO receptor
and b common receptor (EPOR/bcR), also known as innate
repair receptor (9), but EPO has a low affinity to EPOR/bcR.
Therefore, EPO-derived helix B surface peptide (HBSP) or its
cyclic form CHBP was designed, which recognizes only EPOR/
bcR, but not (EPOR)2, thus dissociating tissue protection and
erythropoiesis (10).

Our previous work demonstrated the renoprotective effects of
HBSP and CHBP in a series study using both animal and cellular
models. It was shown that the expression of EPOR/bcR was
greatly triggered by IR injury in kidneys, and in particular located
in tubular epithelial cells (TECs) (11), while its ligand HBSP or
CHBP protected the kidney against IR-induced AKI, as well as
cyclosporine A-induced fibrotic damage in kidneys (12).
Mechanically, HBSP or CHBP was found to regulate the
activation of transient receptor potential melastatin 7 ion
channels and endoplasmic reticulum stress in tubular epithelia
(13, 14). Exploring the role of EPOR/bcR in renal IR-induced
AKI could help researchers to better understand its self-defense
mechanisms, its signaling pathways and associated outcomes, as
well as assessing its role as a potential biomarker to facilitate
timely diagnosis, monitor the progression of kidney injury, and
direct cell target drug delivery.
EPO AND ITS DERIVATIVES

EPO is a highly-glycosylated protein with a molecular weight of
around 30.4 kDa (15). In adults, interstitial fibroblasts in the
kidneys are the major cells of EPO production, which maintain
the level of EPO in the circulation by feedback signals (16). The
main function of EPO is enabling the terminal differentiation of
erythroid progenitor cells by inhibiting apoptosis and activating
pro-survival signaling pathways (17–19). However, the action of
EPO is not restricted to the hematopoietic system. Initial
research observed a neuroprotective effect of recombinant EPO
against ischemia-induced neuron damage in the brain (20). A
similar effect was also described in other organs including the
kidney, heart, and liver against ischemia-related injuries, by
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improving autophagy, anti-apoptosis, and anti-inflammation
(21–23). It indicates that these organs have a receptor of EPO,
which mediates the protection of tissues. Accumulated evidence
suggests that heterodimer EPOR/bcR is responsible for the tissue
protective effects (24–26). Upon injury, the expression of EPOR/
bcR is instantly elevated, but EPO production in the site of injury
is usually postponed, for example in astrocytes of the brain (27).
Thus, there is a therapeutic window for exogenous supplement of
EPO and its derivatives (9). Due to the much lower binding
affinity of EPO to (1-20 nM) EPOR/bcR than to classic
homodimer (EPOR)2 (100-200 pM) (28), a significantly higher
dose of EPO is required to induce cytoprotection compared to
erythropoiesis. Nevertheless, a high dose of EPO showed no
significant tissue-protective effect in clinical trials, including four
trails of renal transplantation (29–32) and one trail of AKI (33).
Additionally, a number of studies indicated a high risk of
mortality and adverse events related to the cardiovascular
system by raising hematocrit and enhancing the activation of
platelets and endothelia after EPO administration (34–37).
Therefore, the application of EPO is restricted due to
significant risk compromising its benefit. Looking into the 3D
structure of EPO, helices A, C, and D binding with (EPOR)2 are
associated with erythropoiesis, but only aqueous helix B binding
with EPOR/bcR is related to tissue protection. Therefore, EPO
was modified in a variety of ways to generate molecules retaining
tissue protection and avoiding hematopoiesis, which included
desialated EPO, carbamylated EPO (CEPO), and glutaraldehyde
EPO. However, these EPO derivatives have different pitfalls
including either short half-life, immune stimulation, or tissue
permeability and compatibility (38–42).

Nevertheless, a small peptide derived from EPO, helix B surface
peptide (HBSP), was designed and synthesized. It is a linear
peptide formed by 11 amino acids, derived from the exterior
aqueous surface of helix B, also known as ARA290 (10). HBSP
possesses specific and powerful roles in tissue protection but
without the side effect of erythropoiesis (43). Unfortunately, the
plasma half-life of HBSP is short, around 2 min, which might
affect its function in vivo. Scientists from the Chinese Academy of
Sciences optimized the metabolic stabilization of HBSP in plasma
by the conformational constraining of the head-to-tail connection
that forms cyclic HBSP (CHBP) via thioether. CHBP gained
proteolytic resistance significantly and prolonged its half-life
time to at least 300 min in vivo (44). Preclinical studies proved
that CHBP was renoprotective against IR injury in rodents (45)
and large animal porcine models (3). The clinical application of
CHBP, in particular HBSP, is promising as it is easily obtained, is
an ambient dry powder for transportation, has low cost, and
potential high efficacy for organ protection (45). However,
metabolic characteristics such as serum stability, safety, tissue
permeability, and cytoprotective efficacy in humans still need to
be further investigated.

The effectiveness of a ligand drug is not only dependent on its
specificity and tissue permeability, but also relies on the
responsiveness of the receptor type. EPOR was reported to be
associated with chronic fibrosis of the kidney by receiving
persistent signals from EPO or excessive expression (46, 47).
June 2021 | Volume 12 | Article 697796
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It was also reported that recombinant EPO provided
renoprotection against fibrosis in adenine-induced CKD (48).
However, EPO protected the IR kidney at the acute stage but
promoted renal fibrosis in the long term. It is necessary to note that
recombinant human EPO greatly increased myofibroblast numbers
and collagen deposition in kidneys at 28 days post IR (46). The same
study revealed that EPO stimulated profibrotic transforming growth
factor b, oxidative stress and phosphorylation of ERK in IR kidneys,
and also promoted epithelial-to-mesenchymal transition and
activated fibroblasts under oxidative stress in vitro. Through
overexpression of EPOR in tubules, evidence also demonstrated
that higher EPO/EPOR signaling caused fibrosis in the IR-injured
kidney at 14 days post IR by suppressing basal autophagy activity
and upregulating apoptotic events through modifying microtubule-
associated protein 1A/1B-light chain 3 and active caspase-3
expression, respectively (47). This evidence indicates that the
homodimer (EPOR)2 could contribute to the fibrotic development
of IR kidneys, as the heterodimer EPOR/bcR was demonstrated to
have an anti-fibrotic role in the kidney after IR through its specific
ligands such as CHBP (45). Thus, an advantage of EPO derivatives
is that they only specifically bind to EPOR/bcR, avoiding the side
effects of EPO caused by not only erythropoiesis but also pro-
fibrosis. Understanding the expression, regulation, and function of
(EPOR)2 and EPOR/bcR under different diseases would be
beneficial to increase the effectiveness of their respective ligand
drugs, reduce side effects, and avoid invalid use.
PHYSICAL INTERACTION BETWEEN
EPOR AND bCR

The protective role of EPO revealed in different organs indicates
that a variety of non-hematopoietic tissues have the receptor of
EPO. EPOR, a member of the type I cytokine receptor family,
is present on the surface of erythroid progenitor cells at a high
level, and assembly of the homodimer (EPOR)2 mediates
erythropoiesis upon receiving signals from EPO (49). During
the developmental stages of embryos, EPOR was found broadly
expressed in many organs and cells, such as the kidney, brain,
and heart (50–52). It appeared predominantly in the kidney after
the first two trimesters. Knockout of EPOR in a mouse fetus
resulted in death of the mouse, which may be partially due to
erythropoiesis and the development of organs including the
kidney (53). Thus, the signaling of EPO/EPOR is crucial in the
normal development of mouse fetuses, showing its potentially
broader roles apart from erythropoiesis. However, EPOR
expression was gradually decreased in the kidney cortex and
became stable until the maturation of the kidney postnatally (54).
In adult rats, EPOR expression in kidneys remains very low or
absent under normal conditions, mainly in TECs (55). This
expressional change of EPOR indicates its multiple functions
that may be involved in the different periods of life.

Alike EPOR, bcR also belongs to the type I cytokine receptor
family. bcR is a shared common b chain with a receptor of
interleukin (IL)-3, IL-5, and granulocyte-macrophage colony
stimulating factor (GMCSF), which binds to a corresponding
Frontiers in Immunology | www.frontiersin.org 3
a chain (56–58). bcR mainly locates on the surface of
hematopoietic cells and exerts immune regulation (59). In
1995, bcR was found to be responsive to EPO as the tyrosine
phosphorylation of bcR was observed upon EPO treatment to
cultured cells (60). Paul and his colleagues (61) transfected B
lymphocytes with vectors expressing both EPOR and bcR genes
and then obtained their heterologous expression in these cells.
The two receptors associated with each other as EPOR/bcR were
demonstrated in transfected cells by the detection of co-
immunoprecipitation. In 2004, Brines and his colleagues
demonstrated that EPOR and bcR were physically linked via
cysteine residues (24), which might be already assembled in the
absence of the EPO molecule (61). Co-expression of EPOR and
bcR has been detected in various organs, such as the kidney,
heart, and nervous system (62, 63).
SIGNALING PATHWAYS MEDIATED
BY EPOR/bCR

EPOR and bcR do not contain an intrinsic kinase domain for
downstream signaling but could induce Janus kinase 2 (JAK2)
auto-phosphorylation by spatial conformational change upon
receptor occupancy (60, 64, 65). As EPO signals go through both
homodimer and heteromer receptors, molecular pathways
specifically associated with EPOR/bcR were demonstrated by
non-erythropoietic tissue-protective compounds, primarily
HBSP and CEPO (42). Three dominant pathways followed by
JAK2 phosphorylation have been identified, which were similar
to those used in the hematopoietic system followed by
homodimer receptor (EPOR)2 binding (Figure 1).

Firstly, the phosphatidylinositol 3-kinase (PI3K)/Akt (also
known as protein kinase B) pathway was involved through
EPOR/bcR in the kidney, liver, and heart (66–70). In a mouse
renal IR model, autophagy was induced by CHBP via inhibition
of mammalian target of rapamycin complex 1 (mTORC1), but
activation of mTORC2 led to renoprotective effects (44). Forkhead
box O 3a (FoxO3a), a downstream effector of Akt, was activated
by CHBP and linked to anti-fibrotic effect in a kidney IR model
(45). Nevertheless, upon CEPO treatment, FoxO3a was
dephosphorylated and consequently stimulated p27 expression,
which was a key factor responsible for the negative regulation of
cell cycle and cell proliferation demonstrated in human acute
myeloid leukemia cell line UT-7 (71).

The second major molecular pathway involves signal
transducer and activator of transcription 3 (STAT3) signaling.
Phosphorylation of STAT3 in murine kidneys was found
upregulated by IR insult, along with decreased apoptotic events
(44). The activation of the STAT3 pathway was reported to occur
in a cardiovascular system insulted by IR by the blockade of
apoptosis and inflammation (68, 69, 72). In addition, in a rat renal
allograft model, JAK2/STAT3 signaling induced the downstream
pathway of the suppressor of cytokine signaling 1 expression for
inhibiting toll-like receptor-induced dendritic cell maturation, as
well as pro-inflammatory cytokine production of these cells (73).
Most recently, the same group discovered that the JAK2/STAT3
June 2021 | Volume 12 | Article 697796
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pathway was also essential to enhance the immunosuppressive
capability of myeloid-derived suppressor cells (74).

A third pathway refers to mitogen-activated protein kinases
(MAPKs) identified in the heart, liver as well as the kidney via
EPOR/bcR signaling (67–69). Extracellular signal-regulated
kinase (ERK)1/2, a downstream pathway of MAPK, plays an
important role in the protection of EPO from IR-induced renal
apoptosis (75). Activation of ERK signals also accelerates repair
of TECs and inhibits progression of interstitial fibrosis, and its
correlation with EPOR/bcR needs investigation (76).

Additionally, both the PI3K and MAPK pathways inhibit
glycogen synthase kinase 3b (GSK3b), which leads to stabilization
of the mitochondrion, reduces oxidative stress damage, and
subsequently inhibits death signals (72, 77). HBSP enhanced the
phosphorylation of GSK3b in the rat kidney post IR and ultimately
reduced inflammation by inhibiting nuclear factor-kB (NF-kB)
(39). Moreover, an oxidative pathway including NADH-
ubiquinone oxidoreductase Fe-S protein 6, alpha-aminoadipic
semialdehyde synthase, and ATP-binding cassette subfamily D
member 3 was also elicited by EPOR/bcR, leading to the
renoprotective effect of CHBP (78).
RENOPROTECTION MEDIATED
BY EPOR/bCR

The signaling pathways of EPOR/bcR bring multiple favorable
effects on IR-injured kidney, not only against the injury, but also
promotes repair. Upon IR insult, kidney cells were stressed with
energy exploitation, waste retention, and accumulation of
Frontiers in Immunology | www.frontiersin.org 4
reactive oxygen species, then underwent sublethal, lethal
damage, resulting in the release of alarm signals and evoking a
sterile inflammatory reaction (7). Although the kidney has the
capability to self-renew, maladaptive repair characterized as the
deposition of collagen in tubulointerstitial areas cannot be
avoided completely (79). As expected, the instant injury at an
early stage of IR injury was greatly reversed by EPO and its
derivatives through ameliorating kidney apoptosis and
inflammatory response. Moreover, early intervention of EPO
derivatives seems to turn on the switch of long-lasting biological
actions as it can also inhibit chronic renal fibrosis. It was thought
that EPOR/bcR mediated the balance of the microenvironment
at injury sites, which benefited the recovery of the injured organ.
However, the exact mechanism is still not very clear. The cell
types in the kidney possessing EPOR/bcR were summarized
(Figure 2), with detailed discussion below.

Ameliorating Apoptotic Cell Death
Injury of renal TECs was the most predominant pathological
change of renal IR injury. These cells demand a high amount of
oxygen and ATP, and thus are susceptible to ischemic insult.
Severe stress to TECs could lead the cells to a variety of cell death
modes including apoptosis (80). In both rodent and large animal
experiments, inhibiting apoptotic pathways demonstrated
substantial benefits to the recovery of IR kidneys (81, 82).
Anti-apoptotic effect through EPOR/bcR in IR-induced AKI
was also evidenced in animal models (3, 39, 83). The
underlying mechanism could be manifested by the instant
expression of EPOR/bcR on kidney TECs, which helps to
construct an image that HBSP directly binds to EPOR/bcR on
FIGURE 1 | Signaling pathways identified in IR-induced AKI via EPOR/bcR activation. EPO-derived tissue protective components such as CEPO, HBSP, and CHBP
lead to the phosphorylation of EPOR/bcR-linked JAK2, and subsequently activates several downstream cascades. Biological processes that were influenced through
EPOR/bcR signaling included immune response (blue box), cell death (purple box), and kidney repair/preventing renal fibrosis (yellow box).
June 2021 | Volume 12 | Article 697796
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these cells and transmits protective signals inhibiting apoptosis
(11). Evidence also suggested that the anti-apoptotic effect of
EPOR/bcR activation would also contribute to the reduced level
of oxidative (78) and enhanced autophagy via inhibition of
mTORC1 and activation of mTORC2 (44), which rescues the
TECs from apoptotic cell death. In addition, sustained
dysfunction of the endothelium post reperfusion results in the
obstruction of capillaries and a local ‘no-reflow’ phenomenon,
which could lead to continuous hypoxia and cumulative
apoptosis (84). Sautina et al. defined the association of vascular
endothelial growth factor receptor 2 with EPOR/bcR to elicit
downstream signals in the endothelium and attenuated
microvascular damage (85, 86). It is indicated that EPOR/bcR
would also mediate the maintenance of microvasculature and
reduce further damage to tubules.

Regulating Immune Response
Neutrophils, Macrophages, Dendritic Cells, and T Cells
Inflammatory cells accumulated at the site of damage are usually a
double-edged sword. These cells cause further damage at the early
Frontiers in Immunology | www.frontiersin.org 5
stage of AKI, and also initiate the clearance of injured cells and
inflammation to limit damage and promote tissue repair.
However, sustained inflammatory cell infiltration leads to
uncontrolled inflammation in the kidney, further tissue injury,
and maladaptive repair (87). Others and our previous work
demonstrated that HBSP reduced infiltration of neutrophils and
production of pro-inflammatory cytokines such as IL-1, IL-6, and
tumor necrosis factor a by inhibiting the NF-kB pathway in
rodent renal IR injury models (39, 44). Furthermore, in a large
animal model, CHBP protected isolated porcine kidney and
restored renal function by reducing interstitial neutrophils and
decreasing pro-inflammatory cytokine transcripts 3 h after
reperfusion (3). It has been found that EPOR/bcR presented or
functioned in several types of immune cells, such as macrophages
and dendritic cells (25). HBSP inhibited the transformation of
macrophages to the pro-inflammatory M1 phenotype (88) but
markedly increased the ratio of the anti-inflammatory M2
phenotype (89), of which the latter supports the transition from
tubule injury to tubule repair in IR kidneys (90). In addition,
CHBP also inhibited the maturation of dendritic cells through the
FIGURE 2 | EPO derivatives with tissue protective features benefited IR-injured kidneys at both acute and chronic stages. CEPO, HBSP and CHBP occupied
EPOR/bcR on identified cells, reduced the apoptotic death of TECs, and the infiltration, pro-inflammatory transformation and maturation of inflammatory cells at the
acute injury stage. The potential role of EPOR/bcR on the phagocytic function of TECs needs further study. These EPO derivatives also promoted the proliferation of
TECs and transformation of macrophages to the M2 phenotype (anti-inflammatory) and reversed the proliferation of myofibroblasts and deposition of extracellular
matrix proteins including collagen in interstitial areas at the chronic repair stage.
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JAK2/STAT3 signaling pathway (73), suggesting the expression of
EPOR/bcR on dendritic cells. This effect of CHBP also suppressed
the infiltration of T cells, which would reduce tissue damage
caused by excessive immune activation (91). The expressional and
functional profile of EPOR/bcR on dendritic cells, antigen-
presenting cells, and T cells should be further defined, which
may influence the outcome of diseases.

Phagocytosis of TECs
Additionally, timely clearance of damaged cells also benefits the
injured kidney from secondary inflammatory injury (92). Bangwei
Luo et al. reported that apoptotic cell-released sphingosine
1-phosphate activated EPO/EPOR signaling in macrophages,
which enhanced dying cell clearance (93). However, whether the
phagocytic function of macrophages was enhanced through EPOR
homodimer or hetero-receptor EPOR/bcR upon EPO binding
remains unclear. Nevertheless, surviving TECs are the main (semi-
professional) phagocytes to uptake dead cells in the kidneys
subjected to IR injury by expressing kidney injury molecule-1
(KIM-1) (94). KIM-1, a specific molecule expressed by TECs upon
injury, recognizes phosphatidylserine on apoptotic cells and
transforms TECs to phagocytes (94). The mechanism of EPOR/
bcR ameliorating IR injury in kidneys may also relate to the
phagocytic function of TECs and facilitate clearance of apoptotic
cells. Using a bioinformatics method, STAT3 was identified as an
upstream regulator of KIM-1 expression (95), which could also be
activated via EPOR/bcR. It is suggesting that ligands to EPOR/bcR
might trigger signals for TECs turning into phagocytes.

Promoting Regeneration/Remodeling
The kidney could recover from IR injury that resulted in
substantial loss of TECs (96). Nevertheless, kidney repair is
often maladaptive when the injury is severe or mild but
frequent (97). The sources of cells that contribute to the
replenishment of the population of TECs after injury mainly
originate from endogenous surviving TECs (98). Many injury
factors, especially long-term hypoxia resulted from sustained
loss of peritubular microvessels (99), and disturbance of
immune-respondent components such as chronic activation
of macrophages of the M1 phenotype (100, 101) have been
suggested to contribute to post-ischemic fibrosis. These factors
may then induce epigenetic changes in resident myofibroblasts,
which result in prolonged fibroblast activation and fibrogenesis
(102). Imbalanced regeneration of renal parenchymal cells and
repair were characterized by interstitial fibrosis that might be the
key determiner for the fate of the injured kidney in terms of its
long-term outcome.

The activation of EPOR/bcR was observed to decrease the
expression of a-smooth muscle actin (a-SMA), a specific marker
for myofibroblasts, and deposition of the extracellular matrix in
rodent IR injury and unilateral ureteral obstruction models (44,
83). EPOR/bcR signaling also compromised the pro-fibrotic
effect of transforming growth factor-b in cultured TECs by
maintaining the level of E-cadherin and lowering vimentin,
attenuating their epithelial-mesenchymal transition in vitro (3,
45). This action would contribute to the reduced expression of
pro-fibrotic FoxO3a on TECs through EPOR/bcR signaling. In
Frontiers in Immunology | www.frontiersin.org 6
addition, CEPO, which specifically recognizes EPOR/bcR,
decreased a-SMA expression, a marker of myofibroblasts, in a
14-day rat AKI model induced by unilateral ureteral obstruction
(103). These findings suggest that signals after EPOR/bcR
activation would block the way of fibrogenesis by modifying
the behavior of both parenchymal cells and interstitial cells,
however, the exact mechanism needs further investigation.
Evidence has shown that EPOR/bcR mediated the proliferation of
endothelial cells and neural progenitor cells (26, 104). However,
whether EPOR/bcR mediates the dedifferentiation and proliferation
of surviving TECs is unknown. Moreover, communication among
cells is critical to kidney repair, such as crosstalk between TECs and
myofibroblasts, pericytes, or macrophages, which would lead to
regeneration of kidney parenchymal cells or the bulk production of
the extracellular matrix. Investigation of EPOR/bcR on cell-to-cell
communication would not only lead to further understanding of
its pro-repair and anti-fibrotic action but also benefit the
determination of the pathogenesis of renal IR injury.
EPOR/bCR AS POTENTIAL BIOMARKER

Regulation and Modulation of EPOR/bcR
On a genomic level, the upstream regulation of EPOR expression
has been studied in various studies involving the kidney. Hypoxia
inducible factor-1a (HIF-a) is a major transcription factor
mediating the cellular response to hypoxia and plays a pivotal
role in the resolution of AKI (105). Exogenous HIF-a improved
the survival of rat AKI induced by IR insult, as well as increased
the downstream effector EPOR, indicating the association between
EPOR and HIF-a (106). In addition, overexpression of
transmembrane Klotho or administration of secreted Klotho
exerted protective effects against IR-induced AKI (107, 108). Hu
and colleagues reported that EPOR was a downstream effector of
Klotho (55, 109). It was also suggested that tumor necrotic factora
and its receptor were required for the upregulation of EPOR and
the therapeutic effects of EPO (110, 111). Furthermore, Youn-Soo
Lee et al. found that deficiency of the Von Hippel-Lindau gene
resulted in the development of tumors in the kidney, characterized
by consistent upregulation of EPO and EPOR in renal carcinoma
(112). Thus, it indicated that Von Hippel-Lindau might be an
upstream inhibitor of EPO or EPOR, of which the latter genes are
responsible for the proliferation of immature mesenchymal cells
(113). Besides, EPO induces the ubiquitination and internalization
of EPOR via clathrin-mediated endocytosis, following by the
degradation of its intracellular part by the proteasome,
preventing further signal transduction (114, 115). Nevertheless,
the regulation of bcR expression in kidney parenchymal cells at the
genomic level remains unreported, for which studies might be
limited by the lack of specific ligands for (bcR)2. The potential
effect of upstream genes on EPOR regulation and EPOR/bcR
formation for enhancing protection needs to be further explored.

Both EPOR and bcR belong to the type I cytokine
superfamily, of which one family member usually creates a
complex with the other in the same family as stimulated by the
ligand. In addition, EPOR could be translocated from the nucleus
June 2021 | Volume 12 | Article 697796
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to the cytoplasm and cellular membrane under hypoxia (116). In
addition, it was claimed that EPOR could be recruited into
membrane lipid raft fractions within 1 min post the exposure
of the growth factor, reaching a peak at 10 min (117). There is
also evidence regarding the bcR migration to lipid rafts under
stimulation of the ligand GMCSF in hematopoietic cells (118).
Similarly, the altered cell surface expression of bcR in fibroblasts
and macrophages that immediately occurred under stress
indicated the swift translocation of the receptor (119). It was
assumed that homodimer (EPOR)2 and (bcR)2 translocated from
the cytoplasm to the plasma membrane quickly upon stimulation
and assembled a heteroreceptor at the molecular level.
Additionally, the regulation of heteroreceptor EPOR/bcR
expression has been also shown by its ligand treatment in
different disease models. CEPO promoted the complex
association of EPOR and bcR on myocardium at 4 h post-
reperfusion in a mouse myocardial IR injury model (70).
However, the level of EPOR/bcR was decreased by HBSP in a
48-h mouse renal IR model, which may contribute to the
decreased degree of kidney injury (11). These regulatory
observations indicated potential differences in the underlying
mechanisms of EPOR/bcR expression.

Potential Diagnostic Biomarker
Up to date, the diagnosis for AKI in the clinic mainly relies on
the change of serum creatinine level and/or urine output (120).
However, the functional alteration of the kidney always results
from massive structural disorder, so the supreme timing for
targeted therapeutics is often missed, which is crucial for the
long-term outcome. Minor damage in the kidney might result in
the poor prognosis without timely diagnosis and intervention
(97). An ideal biomarker is one that can diagnose AKI at the
early stage, monitor the development of the injury, direct the
therapeutic interventions, and predict the prognosis of disease
(33). The instant expression of EPOR/bcR in the kidney upon
renal stress or insult suggested that EPOR, bcR, and/or EPOR/
bcR might be a potential early biomarker(s) for IR-induced AKI.
However, kidney biopsy is not a routine examination for AKI
patients. Dropped off damage parenchymal cells and/or
apoptotic inflammatory cells to the tubular lumen provided an
opportunity for detecting these receptors in the urine, which
might also reflect the level of these receptors in the kidney and
the occurrence of renal injury. However, there is no available
report regarding EPOR/bcR in plasma and urine so far, which
may be due to the challenge of EPOR/bcR detection.
Nevertheless, EPOR was found as a soluble protein in plasma
that corresponds to the extracellular domain of EPOR on the
cellular membrane. Biologically, the soluble EPOR exists in
human plasma to bind excessive EPO and maintains the latter
at a constant level (121). It has been reported that the level of
soluble EPOR may contribute to erythropoietin resistance in end
stage renal disease, and that its production may be mediated by
pro-inflammatory cytokines such as TNF-a and IL-6 (122),
indicating soluble EPOR as a potential biomarker of cell injury.
However, the regulation of soluble EPOR in the plasma of
animals or humans with IR-injured kidneys remains unclear.
Understanding the expression and regulation of EPOR in
Frontiers in Immunology | www.frontiersin.org 7
different forms, as well as EPOR/bcR could benefit its potential
application in AKI diagnosis and progression.

Therefore, exploration of the dynamic expressional profile of
EPOR and potentially EPOR/bcR in the serum and urine post renal
IR at different stages of injury would provide essential evidence to
assess the diagnostic potential of these receptors. The association
between the expression of these receptors and the development of
renal IR injury might give information on the monitoring of disease.
Early intervention using EPO derivatives that specifically activate
EPOR/bcR will be beneficial for not only the short-term but also
long-term outcome of IR-induced AKI. The dynamic change of
EPOR/bcR in the kidney post insults such as IR at the initiation and
the development of injury, as well as repair stage, might direct the
application of specific ligand drugs.
CHALLENGES AND OPPORTUNITIES

Apart from the availability of the clinical specimens, the sensitivity
and specificity of detection for the level of EPO and its receptors
including EPOR, bcR, and EPOR/bcR in liquid specimens
should be optimized. Especially for the heterocomplex, a co-
immunoprecipitation assay needs a large sample with adequate
expression. Whether EPOR or bcR protein, as well as the mRNA
level of these receptors, could represent the level of heteroreceptor
remains unclear and requires further study. Additionally, the
complexity of disease may compromise the sensitivity of
detection as various diseases may increase the expression of this
protective receptor especially in patients with problems in other
organs except the kidney or possessing complex kidney problems.
Besides, there is also crosstalk between the kidney and other
organs such as the brain, liver, and lung post renal IR (123).
The level of EPOR, bcR, or EPOR/bcR in urine might not reflect
the exact injury in the kidney, making the assessment of renal
injury difficult. However, the functions, underlining mechanisms,
and diagnostic potential regarding EPOR/bcR in AKI would also
be applicable to other organs with acute injury. There are clinical
trials using HBSP (also named ARA290) on neural systems
(NCT02070783, NCT02039687) and the endocrine system
(NCT01933529) indicating that HBSP possesses a wide range
and great potential for clinical applications in different organ
systems. EPOR/bcR has been found widely expressed in many
kinds of cells including progenitor cells. The potential side effect of
in vivo administration of EPOR/bcR ligands such as HBSP/CHBP
in the clinic shall consider the potential that the repair signal of the
receptor might lead to excessive proliferation of progenitor cells,
resulting in tumorigenesis or fibrosis. In addition, EPOR/bcR
might also be a natural guider for specific cell target drug
delivery such as small interfering RNA conjugated with its
ligand HBSP or CHBP, as TECs are most vulnerable to IR
injury and highly expressed EPOR/bcR.
CONCLUSION

The timely and spatial expression of EPOR/bcR in the injured
kidney upon IR suggests its potential for early diagnosis and
June 2021 | Volume 12 | Article 697796
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monitoring progression, as well as cell target drug delivering
such as siRNA conjugated to its ligand. The key facts and
messages are summarized as follows:

1. Hypoxia and inflammatory cytokines stimulate the swift
translocation of EPOR and bcR to the cellular membrane
and assemble the heterodimer.

2. EPO-derived peptide HBSP or CHBP only activates EPOR/
bcR, possessing great renoprotection against IR injury. The
metabolic profile and potential side effect of EPO derivatives
should be further investigated before their clinical applications.

3. The signaling pathways of PI3K/Akt, STAT3, and MAPK
were involved in the renoprotective effects of EPOR/bcR such
as anti-apoptosis of TECs and endothelial cells and anti-
inflammation at the acute stage, promoting proliferation of
parenchymal cells and anti-fibrosis at the chronic stage.

4. Highly expressed EPOR/bcR in damaged cells provides a
great opportunity for cell target delivery of drugs that was
conjugated with its ligand such as siRNA conjugated with
Frontiers in Immunology | www.frontiersin.org 8
HBSP to precisely treat IR-induced AKI, promote repair/
remodeling, and prevent its chronic progression to fibrosis.
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