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Simple Summary: Sexual dimorphism is a phenomenon commonly existing in animals. Chinese
tongue sole Cynoglossus semilaevis is an economical marine fish with obvious female-biased size
dimorphism. So, it is important to explore the molecular mechanism beyond gonadal development
for sex control in aquaculture industry. RNA-binding protein Ewing Sarcoma protein-like (ewsr1) gene
is important for mouse gonadal development and reproduction, however there are limited studies on
this gene in teleost. In this study, two ewsr1 genes were cloned and characterized from C. semilaevis.
The ewsr1-w gene, located in W chromosomes, showed female-biased expression during C. semilaevis
gonadal development. In addition, knock-down effect and transcriptional regulation of Cs-ewsr1-w
further suggested its essential role in ovarian development. This study broadened our understanding
on ewsr1 function in teleost, and provided genetic resources for the further development of sex control
breeding techniques in C. semilaevis aquaculture.

Abstract: Ewsr1 encodes a protein that acts as a multifunctional molecule in a variety of cellular pro-
cesses. The full-length of Cs-ewsr1-w and Cs-ewsr1-z were cloned in Chinese tongue sole (Cynoglossus
semilaevis). The open reading frame (ORF) of Cs-ewsr1-w was 1,767 bp that encoded 589 amino acids,
while Cs-ewsr1-z was 1,794 bp that encoded 598 amino acids. Real-time PCR assays showed that
Cs-ewsr1-w exhibited significant female-biased expression and could be hardly detected in male. It
has the most abundant expression in ovaries among eight healthy tissues. Its expression in ovary in-
creased gradually from 90 d to 3 y with C. semilaevis ovarian development and reached the peak at 3 y.
After Cs-ewsr1-w knockdown with siRNA interference, several genes related to gonadal development
including foxl2, sox9b and pou5f1 were down-regulated in ovarian cell line, suggesting the possible
participation of Cs-ewsr1-w in C. semilaevis ovarian development. The dual-luciferase reporter assay
revealed that the -733/-154 bp Cs-ewsr1-w promoter fragment exhibited strong transcription activity
human embryonic kidney (HEK) 293T cell line. The mutation of a MAF BZIP Transcription Factor K
(Mafk) binding site located in this fragment suggested that transcription factor Mafk might play an
important role in Cs-ewsr1-w basal transcription. Our results will provide clues on the gene expression
level, transcriptional regulation and knock-down effect of ewsr1 gene during ovarian development
in teleost.

Keywords: Cynoglossus semilaevis; ewsr1-w; ovarian development; Mafk; RNA interference

1. Introduction

Sexual dimorphism is widespread in mammals, fish, birds and reptiles that character-
ized by body size, physiological and color differences between females and males [1–6].
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This phenomenon has been found in a lot of fish species, of which Chinese tongue sole
Cynoglossus semilaevis shows typically female-biased size dimorphism [2]. Female C. semi-
laevis can reach over twice in size and weight of males at the same age [7].

Sexual dimorphism is mainly resulted by genetic selection during the evolutionary
process and is the consequence of differential expression of sex-biased genes in development
stages [8–10]. The previous transcriptome analysis revealed thousands of sex-biased
genes in somatotropic and reproductive tissues of C. semilaevis [11]. Cyp19a gene was
expressed higher in ovary than testis and rose along the gonadal development, implying
its participation in sex determination [12]. Dhcr24 (24-dehydrocholesterol reductase) gene,
involved in steroid hormones and PI3K/Akt pathway and IGF-1 system, had the highest
expression in liver and gonad of females [13]. The female-biased gonadal gene igfbp7
(insulin-like growth factor binding protein 7) might be involved in growth regulation of
C. semilaevis by influencing insulin-like growth factor 1 receptor (igf1r), serine/threonine
kinase 1 (akt) and NFκB (the nuclear factor kappa B) signal [14]. To better understand
the molecular mechanism refining sex determination and differentiation in C. semilaevis,
comparative transcriptome analysis was performed to reveal 156 genes correlated with
ovary differentiation, including RNA-binding protein Ewing Sarcoma protein-like (ewsr1)
gene [15].

The ewsr1 gene encodes a multifunctional RNA binding protein that regulates tran-
scription and RNA splicing by interacting with other proteins and other cellular pro-
cesses [16–18]. It is one of Translocated in liposarcoma, Ewing’s sarcoma and TATA-binding
protein-associated factor 15 (TET, also named as FET) protein family members that also
contains Fused in Sarcoma (FUS) and TATA-box binding protein Associated Factor 15
(TAF15) [17]. These proteins share high homology amino acid sequences in vertebrates [19].
EWSR1 regulates gene transcription by interacting with CREB binding proteins, basic
transcription factors (TFs) TFIID and RNA polymerase II [17,20]. In zebrafish, ewsr1a
and ewsr1b were required for mitotic stability and cellular survival in central nervous
system (CNS) during early embryonic development [21]. Moreover, ewsr1 regulated the
transcription of HNF4, oct4 and BRN3A, which involved with development and hormone
regulation [16,22–27]. The offspring of ewsr1-deficient mice caused the abnormal gonadal
development and subsequently sterile [22,28]. However, there has been rare focus on its
function in gonadal development in teleost.

In C. semilaevis genome, it was found that two allele genes of ewsr1 were located on
chromosomes W and Z, named as Cs-ewsr1-w and Cs-ewsr1-z, respectively. Based on the
transcriptome dataset, we cloned and characterized two genes. Cs-ewsr1-w gene was chosen
for further analysis on its transcriptional regulation and knock-down effect. These results
could improve our understanding on the role of ewsr1 genes in C. semilaevis.

2. Materials and Methods
2.1. Ethics Approval

All the animal experiments were performed under the inspection of Yellow Sea
Fisheries Research Institute’s animal care and use committee (Approval number, YSFRI-
2022023). MS222 (Sigma-Aldrich, Oakville, ON, Canada) was used for anesthesia to
minimize fish suffering (solubilized in seawater, final concentration 20 mg/L, fish was
treated for 5 min) during experimental procedure [29]. The 293T cell line was purchased
from ATCC (CRL-3216TM) (American Type Culture Collection, Manassas, VA, USA). The
C. semilaevis ovarian cell line was previously established and cultured in our laboratory [30].

2.2. Samples Collection

All fish samples used in this experiment have been approved by the Care and Use of
Laboratory Animals of the Chinese Academy of Fishery Sciences. Before sampling, genomic
DNA was extracted from cut fins by TIANamp Marine Animals DNA Kit (TIANGEN,
Beijing, China) for genetic sex identification by using PCR amplification with primers
sex-F and sex-R (Table 1) [31]. After anesthesia with MS-222 (20 mg/L) [29], gonads
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were dissected from different developmental stages of C. semilaevis, including 90-day post
hatching (90 d), 6-month post hatching (6 m), and 1.5-year post hatching (1.5 y). Six females
and males were sampled at each stage. Brain, gonad, liver, spleen, heart, kidney, intestine
and muscle were collected from three 3 y females and males. Tissues were put into RNAwait
RNAlater solution (Solarbio, Beijing, China) quickly and stored in a refrigerator at −80 ◦C
for subsequent RNA extraction.

Table 1. All primers used in this study.

Symbol Information Sequences

Cs-ewsr1-w-F CDS cloning TTCAGTCGTTTAACTCGGAAGT
Cs-ewsr1-w-R CDS cloning TCACAAGTGGGAAAGTCACCCT

Cs-ewsr1-w-5′-1 5′-UTR CTGGAGCAGCAGCAGCTGGAGTACT
Cs-ewsr1-w-5′-2 5′-UTR TAACCCTGCTGGGCGTTGGCTTGA
Cs-ewsr1-w-3′-1 3′-UTR AATGAGAGGCAGCATGCCAATAAGA
Cs-ewsr1-w-3′-2 3′-UTR GGTCGGCGGTCCTCCATTCCCCCCT
Cs-ewsr1-w-RT-F qPCR GCGGGCCCCCCATGGACC
Cs-ewsr1-w-RT-R qPCR CAAATTTCACAAGTGGGA
Cs-ewsr1-w-P-F1 promoter AGATCTGCGATCTAAGTAAGCTGACGCTGGCATGTATGTT
Cs-ewsr1-w-P-F2 promoter AGATCTGCGATCTAAGTAAGCTGAGGACCACAACGACCCA
Cs-ewsr1-w-P-F3 promoter AGATCTGCGATCTAAGTAAGCTTGCGAACAAATCACTGCG
Cs-ewsr1-w-P-F4 promoter AGATCTGCGATCTAAGTAAGCTAGGTGTATCCTAAACAGAAA
Cs-ewsr1-w-P-F5 promoter AGATCTGCGATCTAAGTAAGCTATCGGATCGGAAAGGAAA
Cs-ewsr1-w-P-F6 promoter AGATCTGCGATCTAAGTAAGCTCGGTCTTCCCATCACTAA
Cs-ewsr1-w-P-R promoter CAACAGTACCGGAATGCCAAGCTTTCCGAGTTAAACGACTGAAGA

mu-Mafk-F TF binding site mutation CAAACCATGTTGCCTCGTACGCTAAGTAAGCCCTACT
mu-Mafk-R TF binding site mutation CAAACCATGTTGCCTTCAGTATTAAGTAAGCCCTACT
mu-c-Myc-F TF binding site mutation ATTAGTTTCATTTGTAGACGAACAGAGAGCTCGGGT
mu-c-Myc-R TF binding site mutation ACCCGAGCTCTCTGTTCGTCTACAAATGAAACTAAT
mu-MAC1-F TF binding site mutation AGAGCTCGGGTCTCTACGATGATCATTCATCTTCACA
mu-MAC1-R TF binding site mutation TGTGAAGATGAATGATCATCGTAGAGACCCGAGCTCT

mu-POU1F1a-F TF binding site mutation AGTAAGCCCTACTCTCGGCTGTGTCAGAGAACCGC
mu-POU1F1a-R TF binding site mutation GCGGTTCTCTGACACAGCCGAGAGTAGGGCTTACT

Cs-ewsr1-w-siRNA siRNA CGUUUAACUCGGAAGUUGUGA
sox9b-F qPCR AAGAACCACACAGATCAAGACAGA
sox9b-R qPCR TAGTCATACTGTGCTCTGGTGATG
foxl2-F qPCR GAGGAAGGGCAACTACTGGA
foxl2-R qPCR CAGCGACCAGGAGTTGTTCA

pou5f1-F qPCR CCATCTGCCGCTTTGAGG
pou5f1-R qPCR CCTGGGTGTTGGGTTTGG

Cs-ewsr1-z-F CDS cloning ATGGCGTCGACACAGGATTACAGCT
Cs-ewsr1-z-R CDS cloning TTAGTAAGGTCTGTCTCGGCGCTCC

Cs-ewsr1-z-5′-1 5′-UTR CAGCAGCTGGAGTACTGTCATATCC
Cs-ewsr1-z-5′-2 5′-UTR CCCCTGCTGGGCGCTGGTCTGG
Cs-ewsr1-z-3′-1 3′-UTR GATGAGAGGTGGCATGCCAATGAGA
Cs-ewsr1-z-3′-2 3′-UTR AGGCGGAGGTCCTCCATTTCCCCCT
Cs-ewsr1-z-RT-F qPCR GGATATGACAGTACTCCAGCT
Cs-ewsr1-z-RT-R qPCR TCCTGCAGGCTGGCTATAGCTAC

sex-F sex identification CCTAAATGATGGATGTAGATTCTGTC
sex-R sex identification GATCCAGAGAAAATAAACCCAGG

2.3. Gene Cloning of Cs-ewsr1-w and Cs-ewsr1-z

RNA was extracted from each sample by using Trizol Reagent (Invitrogen, Carlsbad,
CA, USA). The quality and quantity of RNA was checked with agarose gel electrophoresis
and P100 Series Spectrophotometers (Pultton, San Jose, CA, USA). The first strand cDNA
was synthesized with 800 ng RNA as the template by using PrimeScript RT Kit with gDNA
eraser (TaKaRa, Tokyo, Japan). Gene specific primers for gene cloning were designed
by Primer Premier 5.0 (Table 1) based on partial sequences of ewsr1-w and ewsr1-z from
C. semilaevis genome [32]. The mixed cDNA of females and males was used as the template
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for PCR amplification. The 25 µL PCR mixture contained 12.5 µL Ex Taq Mix (TaKaRa,
Tokyo, Japan), 0.5 µL forward/ reverse primers, and 1 µL cDNA template. The PCR
program was set as follows: 95 ◦C for 5 min, 40 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, and
72 ◦C for 30 s, and 72 ◦C for 10 min. PCR products were purified by FastPure Gel DNA
Extraction Mini Kit (Vazyme, Nanjing, China), connected to pEASY-T1 vector, transformed,
and sequenced in Beijing Ribioco Biotechnology Co., Ltd. (Ribioco, Beijing, China). The
3′ and 5′ untranslated regions (UTR) were amplified by using SMARTer RACE 5′/3′ Kit
(TaKaRa, Tokyo, Japan) with the primers listed in Table 1 and the PCR program was
followed as mentioned above.

2.4. Characterization of Cs-ewsr1-w and Cs-ewsr1-z

The characters including open reading frame (ORF), amino acid sequence, molec-
ular weight, protein domains, and phosphorylation sites were predicted and analyzed
by DNAstar (V7.1.0) (Bioinformatics Software, Madison, WI, USA), SMART (V9.0, Letu-
nic et al. [33], Heidelberg, Germany) (http://smart.embl.de/, accessed on 26 March 2022),
and NetPhos-3.1 (https://services.healthtech.dtu.dk/service.php?NetPhos-3.1) (Depart-
ment of Health Technology, Technical University of Denmark, Kongens Lyngby, Den-
mark). The BLASTP Program (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=
blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) (National Center for Biotech-
nology Information, National Institutes of Health, Bethesda, MD, USA) was used for
multiple sequence alignment. The MEGA X (Kumar et al. [34], Philadelphia, PA, USA)
was used to construct phylogenetic tree by neighbour-joining algorithm (NJ). The NCBI
accession numbers of amino acid sequences used in this study were listed in Table 2.

Table 2. Accession numbers of Ewsr1 proteins used in this study.

Species Accession No.

Larimichthys crocea XP_019130992.1
Paralichthys olivaceus XP_019956591.1

Poecilia formosa XP_007559175.1
Gadus morhua XP_030215256.1

Scophthalmus maximus XP_035495384.1
Danio rerio-Ewsr1a XP_021334784.1
Danio rerio-Ewsr1b NP_997795.1

Epinephelus lanceolatus XP_033475149.1
Alligator sinensis XP_025048938.1

Homo sapiens XP_011528297.1
Gallus gallus XP_015150339.2

Mus musculus NP_001269990.1
Chelonia mydas XP_037735001.1

Sus scrofa XP_020927659.1
Equus caballus XP_023502669.1
Xenopus laevis XP_018095208.1

Oryctolagus cuniculus XP_017206143.1

2.5. Gene Expression Patterns of Cs-ewsr1-w and Cs-ewsr1-z in Different Tissues and Stages

The expressions of Cs-ewsr1-w and Cs-ewsr1-z in different development stages and
tissues were analyzed with gene specific primers (Table 1) via qPCR assays on a 7500 Fast
Real Time PCR platform (Applied Biosystems, Foster City, CA, USA). β-actin was set as
the internal control. The 20 µL reactions contained 10 µL SYBR Premix Ex TaqTM (TaKaRa,
Tokyo, Japan), 2 µL cDNA, 0.4 µL of each sense and anti-sense primers, and 0.4 µL ROX
Dye II. The qPCR program was set as default settings followed by the dissociation curve,
that is, 95 ◦C for 30 s, 40 cycles of 95 ◦C for 5 s, 60 ◦C for 30 s. The relative mRNA expression
of Cs-ewsr1-w and Cs-ewsr1-z were processed by using 2−∆∆Ct method [35]. The data were
analyzed by one-way ANOVA followed by Duncan’s multiple comparison in SPSS 25.0

http://smart.embl.de/
https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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(IBM Corp., Armonk, NY, USA), and the differences were considered significant when
p < 0.05.

2.6. Promoter Activities Analysis of Cs-ewsr1-w

Based on the TFs prediction, six promoter plasmids with luciferase report were con-
structed by serial-deletion to detect the promoting activity of regulatory elements of Cs-
ewsr1-w. The primers were listed in Table 1. The fragments were inserted into pGL3-basic
vector (Promega, Madison, WI, USA) for the recombinant plasmid construction of pGL3-
Cs-ewsr1-w-F1~F6 by using TSV-S1 Trelief® SoSoo Cloning Kit (Tsingke, Beijing, China).

Human embryonal kidney (HEK) 293T cells were maintained in DME/F-12 containing
10% fetal bovine serum (FBS, Gibco, New York, NY, USA) and 1% bFGF (Invitrogen,
Carlsbad, CA, USA) in 5% CO2 at 37 ◦C. The pGL3-Cs-ewsr1-w~F1~F6 were transfected
into HEK293T cells by using Lipo8000TM Transfection Reagent (Beyotime, Shanghai,
China). Meanwhile, pGL3-basic and PGL3-control plasmids were used as the negative
control and the positive control, respectively. The pRL-TK plasmid was transfected at the
mean time as the internal reference. Dual Luciferase Reporter Gene Assay Kit (Beyotime,
Shanghai, China) was employed to measure the promoter activities. Each experiment was
performed in triplicates following the standard protocol provided by the manufacturer.
Data obtained from Varioskan Flash spectral scanning multimode reader (Thermo Fisher
Scientific, Vantaa, Finland) were analyzed by LSD (Least-significant difference) in SPSS 25.0,
and the significance was regarded at p < 0.05.

The TF binding sites were predicted by PROMO (http://alggen.lsi.upc.es/, accessed
on 2 April 2022) (Messeguer et al. [36], Barcelona, Spain) and JASPAR 2022 (https://jaspar.
genereg.net/, accessed on 2 April 2022) (Castro-Mondragon et al. [37], Oslo, Norway).
Nucleotides were mutated within TF binding sites (Mafk, c-MYC, MAC1, and POU1F1a-
binding sites) following the protocols of Fast Site-Directed Mutagenesis Kit (TIANGEN,
Beijing, China). After successful mutations were confirmed by sequencing, transfection
and dual luciferase assays detection were performed as mentioned above.

2.7. The Knockdown Effect of Cs-ewsr1-w siRNA in C. semilaevis Ovarian Cells

The specific siRNA of Cs-ewsr1-w gene, the negative control siRNA, and siR transfect
control (5cy3) were synthesized in Sangon Biotech (Sangon, Shanghai, China). C. semi-
laevis ovarian cells were cultured in L-15 medium supplemented with 1% bFGF and 15%
FBS at 24 ◦C. Cs-ewsr1-w siRNA was transfected into the cells by using riboFECTTM CP
Transfection Kit (Ribobio, Beijing, China) following the protocol described in the previous
study [13]. Three replicates were set for both Cs-ewsr1-w-siRNA and negative control (NC)
groups. At 48 h post transfection, the cellular status and the florescence of 5cy3-transfected
cells would be checked. When it reached 90–95% of cell confluency and the percentage
of transfection reached ~80%, it would be a good timing to harvest ovarian cells for the
following experiments. After cell collection and RNA extraction, reverse transcription and
qPCR assays were performed following the methods mentioned above. The relative ex-
pression levels of sex-related genes, such as Forkhead Box L2 (foxl2), SRY-box transcription
factor 9b (sox9b), POU Class 5 Homeobox 1 (pou5f1) were measured with the primers listed
in Table 1.

3. Results
3.1. Gene Cloning and Characterization of Cs-ewsr1s

Cs-ewsr1-w (GenBank accession no. 103397238) located in W chromosomes, with
the full length of 2297 bp containing the ORF region of 1767 bp encoding 588 amino
acids (Figure 1A). Functional domain prediction showed that Cs-Ewsr1-W contained RNA
recognition motif in 313–393 residues and a Ran binding protein zinc finger domain in
454–480 residues. Cs-ewsr1-z (GenBank accession no. 103398620), located in Z chromosome,
was 2230 bp in full length. It contains 1794 bp ORF region encoding 598 amino acids

http://alggen.lsi.upc.es/
https://jaspar.genereg.net/
https://jaspar.genereg.net/
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(Figure 1B). The same functional domains were located at 313–399 and 460–486 in Cs-Ewsr1-
Z, respectively.
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Figure 1. The ORF and predicted amino acid sequences of Cs-ewsr1-w gene (A) and Cs-ewsr1-
z gene (B). The UTR region sequence is represented in lowercase letters. The ORF sequence is
represented in uppercase letters. The start codon and stop codon are bold in red. An asterisk (*)
represents the stop codon at the end of the ORF. The RNA recognition motif is represented by an
underscore and the Ran binding protein zinc finger domain is represented by a dot-dash underline.

The phylogenetic tree was constructed by using Ewsr1 proteins from 17 different
species. The results showed that two Cs-Ewsr1 proteins were clustered together and then
embedded with the teleost clade with Paralichthys olivaceus, Scophthalmus maximus and
Poecilia formosa. The mammalian and the other species were clustered together (Figure 2).
RNA recognition motif and Ran binding protein zinc finger domain were conserved in all
the aligned species, including teleost, amphibians, and mammalians.
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3.2. The Expression Patterns of Cs-ewsr1s in Different Tissues and Developmental Stages

qPCR assays revealed that the sex-biased expression patterns of two Cs-ewsr1s in
Chinese tongue sole. Cs-ewsr1-w was expressed in all tissues of female tongue sole with
the highest expression in gonad, but was hardly detected in any tissue of male tongue
sole (Figure 3A). In comparison, Cs-ewsr1-z was prevalently expressed in all tissues of
female and male tongue sole (Figure 3B). It exhibited the highest expression in male gonad,
followed by female gonad, brains of male and female, livers of male and female, and female
heart and intestine (Figure 3).
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Cs-ewsr1-w gradually increased with ovary development, and reached the peak at 3 y
(Figure 4A). However, its expression was hardly detected during testis development be-
cause of no expression in testis. Cs-ewsr1-z gene was expressed in all tested developmental
stages of ovaries and testes. Its expression was relatively low in 6 m female and male, and
was significantly higher in testes of 1.5 y male (Figure 4B).
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3.3. Promoter Activity of Cs-ewsr1-w Detection and Analysis

The Cs-ewsr1-w promoter sequence of 2690 bp (−2590/+99) was cloned by genomic
DNA with specific primers Cs-ewsr1-w-P-F/R (Table 1). Cs-ewsr1-w promoter region had
only one CpG island, which was located from −1215 to −1101 bp.

A series of promoter fragments with different length deletion were generated to
explore the promoter activity of Cs-ewsr1-w gene. The promoter activities of all Cs-ewsr1-w
fragments were significantly higher than that of pGL3-basic (p < 0.05, Figure 5), among
which the activity of Cs-ewsr1-w-P-F2/R fragment was the highest. The relative activity
significantly decreased by 2.7-fold from Cs-ewsr1-w-P-F5/R fragment to Cs-ewsr1-w-P-F6/R
fragment (p < 0.05, Figure 5), indicated region−733 to−154 positively affected the promoter
activity of Cs-ewsr1-w gene. Similarly, the positive effect was detected from other two region
as well, which were −2190 to −1692 bp and −154 to +99 bp (Figure 5).
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Prediction of TF binding sites in the −733/−154 bp interval of Cs-ewsr1-w promoter
revealed numerous TFs binding sites, including STAT4, HOXA3, c-Myc, GAGA factor,
MAC1, POU1F1a, Mafk, and PRA (Figure 6). The interval containing TF Mafk, c-MYC,
MAC1 and POU1F1a were mutated and transfected into 293T cells for detection after 48 h.
The results indicated mutation of Mafk binding site led to the significant decrease by 46% in
the activity of Cs-ewsr1-w-P-F5/R fragment (p < 0.05, Figure 7), which showed no significant
difference compared with the activity of Cs-ewsr1-w-P-F6/R fragment. Mutations on other
TF binding sites showed no significant effect (Figure 7).
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3.4. Expression Patterns of Sex-Related Genes in Cs-ewsr1-w Knockdown Ovarian Cells

Cs-ewsr1-w expression was significantly reduced by 80% (p < 0.05) after in vitro Cs-
ewsr1-w siRNA interference (RNAi), while no significant variation of Cs-ewsr1-z gene was
detected. The down-regulation of sex-related genes was detected after Cs-ewsr1-w RNAi
(p < 0.05), including foxl2, sox9b and pou5f1. Among that, foxl2 expression significantly
dropped by18.8-fold compared with the control group. The expression levels of sox9b and
pou5f1 were significantly reduced by half (p < 0.05, Figure 8).
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expression variations of Cs-ewsr1-z, Forkhead Box L2 (foxl2), SRY-box transcription factor 9b (sox9b),
POU Class 5 Homeobox 1 (pou5f1) were measured. An asterisk (*) indicates a significant difference
between negative control group and siRNA-treated group (p < 0.05). Two asterisks (**) indicates an
extremely significant difference (p < 0.01).

4. Discussion

Ewsr protein, a key player in cancer, is involved in RNA metabolism and DNA re-
pair [38]. However, studies on teleost EWS protein are rare. Based on the comparative
transcriptome analysis on early developmental stages of gonad in C. semilaevis, ewsr1-w
was specifically expressed in ovary and continuously up-regulated with ovarian differenti-
ation [15]. The amino acid sequences of Cs-Ewsr1-w and Cs-Ewsr1-z proteins have high
similarity of 91.41%, both of which contained the conserved RNA recognition motif and
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Ran binding protein-zinc finger domain, suggesting that Cs-Ewsr1s might have similar
function with Ewsr1s in other vertebrates. RNA recognition motif is associated with the
interaction of protein with RNA. Meanwhile, this protein has a variable number of RGG
(arginine-glycine-glycine) repeats that are regarded as a RNA-binding region as well [39].
Based on the phylogenetic analysis, the sequences we obtained from C. semilaevis fell in a
well-supported clade, suggesting that we obtained the ewsr1 gene orthologs.

Based on our qPCR results, Cs-ewsr1-w gene was uniquely expressed in females with
the highest transcriptional level in ovary. Its expression increased gradually with ovarian de-
velopment from 90 d to 3 y. These results indicated the possible involvement of Cs-ewsr1-w
gene in ovarian development. After Cs-ewsr1-w gene expression was interfered in the ovar-
ian cells of C. semilaevis, several gonadal development-related genes were down-regulated,
including foxl2, sox9b and pou5f1. Foxl2 gene, belonging to winged helix transcription
factor, is one of the crucial players in ovarian development [40]. Many studies have shown
that this gene functions in sex differentiation and gonadal development in teleost [41–44].
C. semilaevis foxl2 was significantly expressed in 12-month old ovary of phase II fish ovary
development stages, suggesting its possible involvement in oocyte development [45]. Sox9b,
another important gene related to gonadal development, were significantly expressed in
ovaries of fugu (Takifugu rubripes) and zebrafish (Danio rerio) [46,47]. It facilitated sex dif-
ferentiation and gonadal development in medaka and Japanese flounder [48–50]. Besides,
prominent expression of sox9b was detected in gonads of early-stage C. semilaevis, indicating
its potential involvement in gonadal differentiation [51]. Pou5f1 (also known as oct4) is a
key TF regulating embryonic stem cell pluripotency, primordial germ cell formation, early
embryonic and gonadal germ cell development [27]. Pou5f1 analogue in teleost plays a
post-embryonic role in adult gonad and gametes development [52–54]. Based on the sup-
pressive effect of Cs-ewsr1-w knockdown on several sex-related genes, we proposed that it
might be a positive regulator in ovarian development of C. semilaevis. In the future, analysis
including in vivo trials would be conducted for further investigation on its mechanism.

Promoters contain sequence-specific binding sites for many TFs, and the TFs could
recognize and bind target sequences to guide underlying transcription and regulate tran-
scriptional activity [55–57]. In Cs-ewsr1-w promoter −733 to −154 bp was the core region
that had a great effect on transcription regulation. After site-direct mutagenesis on the
TF-binding sites, the activity of TF Mafk-binding site decreased significantly, suggesting
potential involvement of Mafk in Cs-ewsr1-w transcription. Mafk, a member of small MAFs
family, was essential for mice embryonic development [58]. It regulates genes involved in
several cellular processes, including ubiquitination/proteasome [59]. Numerous ubiquitin-
conjugating enzyme genes showed female-biased gene expressions in early developmental
stages of C. semilaevis, revealing the indispensable involvement of ubiquitination pathway
in female differentiation [15]. Based on the above analysis, we deduced that TF Mafk might
be a positive regulator in Cs-ewsr1-w transcription during C. semilaevis ovarian development.
The regulation mechanism between them are worthy for further functional studies. In
the future, further studies will be performed to get a clearer picture on the regulation of
Cs-ewsr1-w by TF Mafk during female differentiation and ovarian development.

5. Conclusions

In this study, two ewsr1 genes were cloned and characterized from Chinese tongue
sole (Cs-ewsr1-w and Cs-ewsr1-z). The female-biased gonad expression of Cs-ewsr1-w was
observed from 90 d to 3 y, suggesting its potential roles in ovarian development. Its
knockdown significantly down-regulated the expressions of foxl2, sox9b and pou5f1. The
activity analysis, and the prediction and verification of transcription factors for Cs-ewsr1-
w promoter shed some lights on the transcription regulation of this gene. Our findings
suggested the potential roles of Cs-ewsr1-w in C. semilaevis ovarian development, providing
fundamental information for further exploration on its biological functions in teleost.
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