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The sperm protein associated with nucleus in the X chromosome (SPANX) genes cluster at Xq27 in two subfamilies, SPANX-A/D
and SPANX-N. SPANX-A/D is specific for hominoids and is fairly well characterized. The SPANX-N gave rise to SPANX-A/D in the
hominoid lineage ,7 MYA. Given the proposed role of SPANX genes in spermatogenesis, we have extended studies to SPANX-
N gene evolution, variation, regulation of expression, and intra-sperm localization. By immunofluorescence analysis, SPANX-N
proteins are localized in post-meiotic spermatids exclusively, like SPANX-A/D. But in contrast to SPANX-A/D, SPANX-N are
found in all ejaculated spermatozoa rather than only in a subpopulation, are localized in the acrosome rather than in the
nuclear envelope, and are expressed at a low level in several nongametogenic adult tissues as well as many cancers. Presence
of a binding site for CTCF and its testis-specific paralogue BORIS in the SPANX promoters suggests, by analogy to MAGE-A1 and
NY-ESO-1, that their activation in spermatogenesis is mediated by the programmed replacement of CTCF by BORIS. Based on
the relative density of CpG, the more extended expression of SPANX-N compared to SPANX-A/D in nongametogenic tissues is
likely attributed to differences in promoter methylation. Our findings suggest that the recent duplication of SPANX genes in
hominoids was accompanied by different localization of SPANX-N proteins in post-meiotic sperm and additional expression in
several nongonadal tissues. This suggests a corresponding functional diversification of SPANX gene families in hominoids.
SPANX proteins thus provide unique targets to investigate their roles in the function of spermatozoa, selected malignancies,
and for SPANX-N, in other tissues as well.
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INTRODUCTION
Mammalian spermatogenesis is a complex hormone-dependent

developmental program in which a myriad of events ensure proper

development of germ cells at the right time. The genes expressed

during spermatogenesis comprise diploid and haploid expressed

groups [1]. Many of the haploid, post-meiotically expressed genes

have been mapped to autosomal chromosomes, but the sperm

protein associated with nucleus in the X chromosome (SPANX)

gene family is one of the few mapped to the X chromosome [2–4].

The Xq27 SPANX multigene family includes two subfamilies,

SPANX-A/D and SPANX-N. SPANX-A/D has five members,

SPANX-A1, -A2, -B, -C, and –D, which are extensively character-

ized. Each has two exons separated by a ,650 bp intron

containing a retroviral long terminal repeat (LTR) [2–4]. Further

classification of SPANX-A/D genes is based on the presence of

diagnostic amino acid substitutions, with one group (97 amino acid

proteins) containing SPANX-A1, -A2, -C, and –D, and the other

comprised of the SPANX-B gene (103 amino acid protein) that

varies to up to as many as a dozen copies [5].

The SPANX-A/D proteins were first detected in the nuclear

envelope of early round spermatids in the Golgi phase of

acrosomal biogenesis. As nuclear condensation and elongation

proceed, SPANX-A/D proteins migrate as a distinct post-

acrosomal domain of the nuclear envelope towards the base of

the nucleus. In the mature spermatids, SPANX-A/D proteins then

associate with the redundant nuclear envelope within the residual

cytoplasm. The SPANX-A/D domain of the nuclear envelope is

thus caudal to the acrosome and reorganized as acrosome

biogenesis progresses, ultimately constricting into the redundant

nuclear envelope. Interestingly, only 50% of ejaculated sperma-

tozoa showed staining of the nuclear craters and cytoplasmic

droplet, corresponding to the redundant nuclear envelope with

SPANX-A/D specific Abs [4,6]. The localization of SPANX-A/D

to a subpopulation of spermatids and spermatozoa suggests the

precise temporal and spatial distribution of SPANX-A/D proteins
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in post-meiotic spermatid nuclei. In accordance with a special role

of SPANX-A/D proteins in spermatogenesis, expression of these

genes was not detected in nongametogenic adult tissues [4,6].

They were, however, found expressed in various malignancies [7–

12], making them conceivable candidates for cancer immuno-

therapy.

Ironically, the SPANX-N genes were discovered later than

SPANX-A/D but prove to include their ancestral precursor.

Presumed to be present in all mammals, they gave rise to the

SPANX-A/D subfamily in the hominoid lineage ,7 MYA [13] and

consist of five members. Four SPANX-N genes (-N1, -N2, -N3, and -

N4) are mapped ,1.3 Mb away from the SPANX-A/D gene

cluster. Each of these genes has ,8 kb intron containing the ERV

sequence flanked by two long terminal repeats (LTR). The fifth

member, SPANX-N5, is located on the short arm of the X

chromosome at Xp11. SPANX-N proteins share 60–80% identity

with each other and 40–50% similarity with the sequences of

SPANX-A/D proteins; all encode unfolded small proteins with

a similar organization of coding and noncoding regions [13],

though two SPANX-N proteins, SPANX-N1 and SPANX-N2,

have a frameshift mutation in exon 2 that suggests they may not be

functional.

Here we describe an analysis of the distribution of SPANX-N

gene expression, protein localization within spermatozoa, and

some features of polymorphism and evolution. Despite the

structural similarities of SPANX-A/D and SPANX-N subfamilies,

we find that they differ greatly in expression pattern and

localization site in spermatozoa. Taken together, these results

suggest that duplication of SPANX genes in primates was

accompanied by diversification of gene function.

METHODS

Tissues and cell lines
SKOV3 and ten melanoma cell lines 537MEL, 938MEL,

1363MEL, 501AMEL, 526MEL, 553BMEL, 624MEL,

836MEL, SKMEL28 and 888MEL were all established at the

Surgery Branch of the National Cancer Institute, NIH (kindly

provided by Steven Rosenberg). Melanoma cell line VMM150 was

derived from a tumor digest obtained from a patient at the

University of Virginia [14]. NCI-60 cancer cell lines that included

six types of cancer (8 endometrial, 7 colorectal, 7 ovarian, 4

melanoma, 12 breast, and 5 prostate) were from the National

Cancer Institute, NIH. Human normal tissues (prostate, placenta,

proximal and distal colon, lung, cervix, uterus, stomach, testis,

brain, liver, skeletal muscle, spleen, heart, lymphoma, lymph node,

and kidney) were from Clontech Laboratories, Inc. (Mountain

View, CA, USA); normal/tumor RNA pairs (ovary, prostate,

uterus, breast, cervix, testis, lung, thyroid, colon and stomach)

were from Ambion, Inc. (Austin, TX, USA). Primary tumors

(ovarian and uterine) were kindly provided by Larry Maxwell,

CCR, NCI, NIH). Tissues were obtained with Institutional

Review Board-approved informed consent, and this study was

approved by the NCI Institutional Review Board.

Analysis of normal and cancer tissues by RT-PCR
Total RNA from normal adult human tissues, normal/tumor

tissues pairs, NCI-60 cancer cell lines, melanoma cell lines and

primary tumors was used for screening SPANX-N expression with

the primers described in Table S1. cDNA was made from 1 mg of

total RNA using the Superscript first strand system kit (Invitrogen,

Carlsbad, CA, USA) and primed with oligo dT per their standard

protocol. Human beta-actin primers (BD Biosciences Clontech,

Mountain View, CA, USA) were used as positive controls. RT-

PCR was performed using 1 ml of cDNA in a 50 ml reaction

volume. Standard reaction conditions were 94uC 5 min, (94uC
1 min, 55uC 1 min, 72uC 1 min635 cycles), 72uC 7 min, 4uC
hold). To evaluate abundance of SPANX-N transcripts in

nongametogenic tissues, a set of dilutions of the testis cDNA was

done. The same intensity of bands in nongametogenic tissues was

obtained when the testis cDNA was diluted 50–100 times. Before

sequencing, PCR products were cloned into a TA vector

(Invitrogen, Carlsbad, CA, usa). Database analysis was performed

using versions of the BLAST program appropriate for different

types of sequence comparisons: BLASTN for nucleotide se-

quences, BLASTP for protein sequences.

Generation of peptide specific antibodies
Three synthetic peptides representing SPANX-N (EQPTSSTN-

GEKRKSPCESNN; positions 2–21), SPANX-B (ANEA-

NEANKTMP; positions 21–32), and SPANX-C (SNEVNETMP;

positions 18–26) were conjugated to Keyhole Limpet Hemacyanin

and used as immunogens in rabbits according to an established

protocol [15]. The resulting antisera (EQPT, ANEA, and SNEV)

were affinity–purified over columns of peptide conjugated to

Affigel 15 (Bio-Rad, Hercules, CA, USA) and concentrated in

stirred cells with YM30 membranes (Millipore, Billerica, MA,

USA). The concentrates were then subjected to gel filtration

chromatography using 2.6660 cm2 Superdex 200 columns (GE

Healthcare, Piscataway, NJ, USA), and the monomeric IgG

fractions were pooled and concentrated. The protein concentra-

tions were determined using the Bradford assay (Bio-Rad,

Hercules, CA, USA).

Production of recombinant SPANX proteins and test

for antibody specificity
For the production of SPANX proteins in E. coli cells, full-size

ORFs of SPANX-N1 (216 bp), SPANX-N2 (540 bp), SPANX-N3

(423 bp), SPANX-N4 (297 bp) and SPANX-N5 (216 bp) as well as

SPANX-B (309 bp), and SPANX-C (291 bp) were generated by RT-

PCR from RNA samples using the primers described in Table 1S

and cloned into the BamHI site of the pMAL-p2X expression

vector (New England BioLabs Inc., Beverly, MA, USA) to produce

a fusion maltose-binding protein (MBP). The recombinant fusion

proteins were purified by affinity chromatography using a column

with MBP. Expression of these fusion SPANX proteins was

performed in TB1 bacterial cells. To produce non-fusion proteins,

ORFs of all five SPANX-N genes were also cloned as BamHI

fragments into the pET-11d vector (New England Biolabs Inc.,

Beverly, MA, USA). Expression of these full-size SPANX proteins

was performed in Bl21 cells containing an integrated copy of the

T7 RNA polymerase gene. For one-dimensional SDS-PAGE,

electrophoresis was performed on 4–20% Tris-Glycine acrylamide

gels with 10 mg of the total E. coli protein per lane. After SDS-

PAGE, polypeptides were either visualized by amido black

staining or transferred onto a PVDF membrane (Bio-Rad

Laboratories, USA) for Western blotting. Western blots were

incubated in PBS containing 0.05% Tween-20 (PBS-T) and 10%

nonfat dry milk to block nonspecific protein-binding sites. In all

subsequent incubation steps, the blots were washed with PBS-T

alone or incubated in PBS-T containing antibodies. Rabbit anti-

EQPT antibody was used to detect SPANX-N and affinity-

purified F(ab9)2 fragments of goat anti-rabbit IgG conjugated to

horseradish peroxidase (HRP; Jackson ImmunoResearch, West

Grove, PA) used as the secondary antibody. The HRP

conjugates were visualized using TMB reagent according to

the manufacturer’s protocol (Kirkegaard & Perry Laboratories,

Analysis of SPANX-N genes
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Gaithersburg, MD). Because the peptide representing EQPT

antibodies is conservative for SPANX-N proteins, it recognized

all five SPANX-N proteins expressed in E. coli cells (Figures

S1a and S1b). No cross-reactivity between SPANX-B, SPANX-

C, and SPANX-N proteins was observed with the ANEA,

SNEV, or EQPT antibodies by Western blot (Figures S2a and

S2b). Pre-absorption of an antibody with the corresponding

peptide used for immunization abolished the signal (data not

shown).

Western blot analysis in human tissues and cell lines
To analyze expression of the SPANX-N proteins in normal tissues

and cancer cell lines, the cells were mixed with SDS sample buffer

containing a protease inhibitor cocktail (Sigma-Aldrich Corp., St.

Louis, MO, USA), homogenized and resolved in 4–20% Tris-

Glycine acrylamide gel. Following electrophoresis, the proteins

were transferred to PVDF membranes (Millipore, Billerica, MA,

USA) for 40 min at 15 V in transfer buffer (50 mM Tris, 380 mM

glycine, 0.1% SDS and 20% methanol) by the semi-dry method.

All subsequent steps were carried out in PBS containing 0.05%

Tween-20 (TPBS). After blocking for 30 min with 10% non-fat

milk-TPBS, the membranes were exposed to 1/2500 diluted anti-

EQPT and anti-alpha-tubulin antibodies (Sigma, St. Louis,

Missouri, USA) for 1 h. Human anti-alpha-tubulin Abs were used

as a positive, internal control. The PVDF membranes were

washed three times with TPBS, incubated for 30 min with 1/2500

diluted HRP conjugated anti-rabbit IgG and anti-mouse IgG then

washed as in the previous step. The membranes were incubated

for 1 min with ECL plus reagents (GE Healthcare, Piscataway, NJ,

USA). No bands were detected with the pre-immune serum. Pre-

absorption of the EQPT antibodies with excess of the antigenic

peptide (100 mM) abolished the signal (data not shown).

Sperm preparation
Fresh semen samples were obtained from healthy men after

informed consent using forms approved by the University of

Virginia Human Investigation Committee. Ejaculates were

allowed to liquefy at room temperature then counted using the

computer-assisted sperm analysis system (Hamilton Thorne

Research); only those that contained normal semen parameters

were pooled for use in this study. The semen pool was recounted

and an aliquot was diluted to 26106/ml in wash media (Nutrient

Mixture F-10 HAM; Sigma) then fixed by adding a 16% solution

of paraformaldehyde (Electron Microscopy Sciences, Ft. Wash-

ington, PA USA) to a final concentration of 3.2%. After a 10 min

fixation at 4uC, the sperm were washed by centrifugation thrice

with PBS then spotted onto slides and allowed to air-dry. For some

experiments, motile spermatozoa were separated from seminal

plasma, immature germ cells, and somatic cells (mainly white

blood cells and epithelial cells) by the swim-up technique prior to

fixation. The remaining semen pool was diluted 1:5 in wash

media; the spermatozoa were pelleted by centrifugation (500g),

washed once in PBS and then frozen at 280uC until protein

extraction was performed.

Indirect immunofluorescent analysis of the sperm

with anti-SPANX antibodies
Slides containing air-dried human spermatozoa were washed (3X)

in PBS to rehydrate the cells, incubated in 100% methanol for

10 min to permeabilize the cells then washed again in PBS (3X)

before blocking was performed. Non-specific binding was blocked

by incubating the slides in PBS containing 10% normal goat serum

(heat-inactivated at 55uC for 30 min; GibcoBRL, Invitrogen

Corp, Grand Island, NY USA) for 30–60 min prior to incubation

with the primary antibodies. Rabbit polyclonal anti-EQPT, anti-

ANEA or anti-SNEV antibodies were used to detect specific

SPANX-N, SPANX-B or SPANX-C staining, respectively. The

slides were incubated with the primary antibodies for 60 min,

washed thrice in primary antibody buffer (PBS containing 0.025%

Tween-20 and 1.5% normal goat serum; PBST-NGS), and then

incubated for 30 min with Fluorescein-labeled, AffiniPure F(ab9)2
fragment, goat anti-rabbit IgG (Jackson ImmunoResearch Labo-

ratories, West Grove, PA USA) diluted 1:500 in PBST-3% NGS.

Thereafter, the slides were washed with PBS (4X), incubated with

PBS containing 2% paraformaldehyde for 10 min, and washed

again in PBS (2X) before being mounted with SlowFade Gold

antifade reagent containing DAPI (Molecular Probes Invitrogen,

Eugene, OR USA). Dual-fluorescent labeling of the human

spermatozoa for both SPANX-N and SPANX-A/D proteins was

performed by adding a mouse polyclonal ascites fluid raised

against recombinant SPANX-A to the primary antibody reaction

and CY3-labeled AffiniPure F(ab9)2 fragment, goat anti-mouse

IgG/IgM (Jackson ImmunoResearch Laboratories, West Grove,

PA USA) diluted 1:1300 to the secondary antibody reaction. All

incubations were performed at room temperature. Labeled cells

were visuaslized with a Zeiss Axioplan 2 microscope equipped

with a Hamamatsu digital camera.

Immunostaining of human testis sections
Normal human testis sections were collected from formalin-fixed,

paraffin-embedded samples (Cybrdi, Frederick, MD, www.cybrdi.

com). Immunostaining for SPANX-N was obtained after heat

unmasking (5 min at 90uC in standard citrate buffer using

a temperature-controlled microwave) with overnight incubation

of the primary antibody at 4uC. Secondary antibody was

purchased from Invitrogen (Alexa Fluor series). The primary

antibody was omitted in the incubation step for negative controls.

Photographs were taken with a Deltavision system.

Immunocytochemistry of tumor cells
Immunocytochemistry was performed on 938MEL cells fixed for

1 hour in Histochoice (Amresco Inc., Solon, Ohio, USA) and

briefly heat-unmasked in standard citrate buffer. Incubation with

the primary antibodies (EQPT antibody against SPANX-N and

mouse anti-human Ki67 (BD-550609, Pharmingen, San Jose, CA

USA), both at 1:100 dilution was performed overnight at 4uC.

EQPT antibody was omitted in the negative control. Secondary

fluorochrome-conjugated antibodies were from the Alexa series

(Invitrogen, Carlsbad, CA, USA).

Amplification and sequencing of the SPANX-N

genes
A total of 93 human individual genomic DNA samples were

obtained from the Coriell Institute for Medical Research. A

multibreed plate of 33 canine DNA samples was kindly provided

by Dr. Mark Neff (University of California, Berkeley). The

fragments containing SPANX-N sequences were PCR amplified

from human and canine genomic DNA samples using a set of

specific primers (Table S1). Sequence forward and reverse

reactions were run on a 3100 automated Capillary DNA

Sequencer (PE Applied Biosystems). DNA sequences were

compared using the GCG DNA ANALYSIS Wisconsin Package

(www.accelrys.com/support/bio/faqs_wis_pkg.htlm) and Nation-

al Center for Biotechnology Information BLAST. Accession

numbers of sequences are presented in Table S2.

Analysis of SPANX-N genes
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Electrophoretic mobility shift (EMSA) analysis
Overlapping fragments of SPANX-N and SPANX-A/D promoter

regions were synthesized by PCR with the specific primers (Table

S3). EMSA was performed as described earlier [16]. The luciferase

control as well as 11 ZF DNA binding domain of CTCF protein

were synthesized from the Luciferase T7 control DNA and

pET16b-11ZF construct, respectively [17,18], with the TnT

reticulocyte lysate coupled in vitro transcription-translation system

(Promega, Madison, WI, USA). Promoter-containing DNA

fragments were 32P-labeled, gel purified, and used as DNA probes

for gel mobility shift assays with equal amounts of in vitro translated

luciferase and CTCF proteins as described [17,18]. All the

fragments were cloned into TA vector and sequenced before their

analysis by EMSA. Binding reactions were carried out in buffer

containing standard PBS with 5 mM MgCl2, 0.1 mM ZnSO4,

1 mM DTT, 0.1% NP40, and 10% glycerol in the presence of

polydIdC and salmon sperm DNA. Reaction mixtures of 20 ml

final volume were incubated for 30 min at room temperature and

then analyzed on 5% nondenaturing PAGE run in 0.56 TBE

buffer. For electrophoretic mobility gel-shift assay (EMSA) with in

vitro methylated DNA probes, treatment with the SssI-methylase

was performed as previously described [16]. The extent of

methylation was verified by digestion overnight with Sau96I

restriction endonuclease.

Sequence analysis
The SPANX-N homologue in the dog genome was detected by

WISE2 searches (http://www.sanger.ac.uk/Software/Wise2/) us-

ing alignments of human and rodent SPANX-N copies as the

profile. Sequences were aligned with Dialign2 [19; http://bibiserv.

techfak.uni-bielefeld.de/dialign/ and MAVID [20; http://ba-

boon.math.berkeley.edu/mavid/]. Conservation profiles were

obtained using GeneDoc [21]. Phylogenetic trees were obtained

by PAML v. 3.13 [22; http://abacus.gene.ucl.ac.uk/software/

paml.html] after excluding all positions with gaps; the bootstrap

values were calculated using PHYML v2.4.4 [23; http://atgc.

lirmm.fr/phyml/] with default parameters.

Isolation of SPANX-A1 and SPANX-A2 containing loci

by TAR cloning in yeast
The TAR (transformation-associated recombination) cloning

method is described in [24,25]. Briefly, to isolate SPANX-A1 and

SPANX-A2 containing loci, the vector TAR-A was constructed

from basic vector pVC604. TAR-A contains 59 SacII/SpeI 156 bp

and 39 ClaI/SpeI 122 bp targeting sequences that were chosen and

amplified from the available human genome sequence and flank

the inverted copies of SPANX-A1 and SPANX-A2 in the human

genome. The 59 and 39 targeting sequences correspond to

positions 127,556–127,711 and 168,884–169,004 in BAC

AL121881. The TAR vector was linearized with SpeI before

TAR cloning experiments. Genomic DNAs from chimpanzee (Pan

troglodytes), gorilla (Gorilla gorilla) and bonobo (Pan paniscus) (Coriell

Institute for Medical Research, Camden, NJ) were used for TAR

cloning experiments.

RESULTS

SPANX-N homologs and their variation during early

and more recent evolution of primates
Previous studies suggest that the SPANX gene family is evolution-

arily young and is in the process of expanding in hominoid species

[13]. Here, bioinformatics and experimental approaches were

used to identify more SPANX-N homologs in other species. A

search for SPANX-N members in the draft chimpanzee genome

(March, 2006) detected five contigs with incomplete sequences on

the X chromosome. The complete coding regions of three of these

chimpanzee homologs, SPANX-N2, SPANX-N3, and SPANX-N5

were assembled by carrying out PCR against chimpanzee DNA

using primers for human SPANX-N genes. The chimpanzee

SPANX-N homologs encode proteins that share ,95% identity

with human SPANX-N proteins. A comparison of human and

chimpanzee SPANX-N2 coding sequences revealed four nonsynon-

ymous substitutions, two of which are in the conserved core (K43N

and Y55H) (Figure 1a and 1c). The chimpanzee SPANX-N3 gene

contains 10 nonsynonymous changes compared to human with

three in the conserved core (E18K, N21S, and K23E). There is

also a single deletion, del122K, and two synonymous changes.

Similar to human, all chimpanzee SPANX-N genes, except SPANX-

N4, contain 39 bp minisatellite repeats at their 39 ends (Figure 1e).

Because these repeats are also present in tamarin and rhesus

SPANX-N genes (Figure S1), they likely arose during early primate

evolution. SPANX-N genomic sequences were used to reconstruct

the probable scheme of evolution of these genes in primates

(Figure 2). Namely, that SPANX-N3 was the original locus, and

duplication of this chromosomal segment eventually produced

gene clusters and gene subfamilies. Phylogenetic relationship of

SPANX-N proteins in primates is shown in Figure S2.

Earlier a single SPANX copy was identified in mouse and rat

genomes [13]. We screened the genome database in search of the

canine SPANX-N locus. Two regions with significant similarity to

human SPANX-N genes were identified in the canine genome; one

of these regions is on the X chromosome and the other region is on

chromosome 31. The X-linked canine SPANX gene is likely

a pseudogene, because it has a stop codon in the middle of exon 2

and its expression is not detectable in testis by RT-PCR (data not

shown). In contrast, the canine SPANX-N gene on chromosome 31

is expressed at a high level in testis (Figure S3); however, it encodes

a protein that shares only 30% identity with human and mouse

SPANX-N proteins. One SPANX-N-related gene and one

pseudogene were also detected in the wolf genome. Sequence

analysis of the SPANX-N gene in 33 canine breeds revealed four

alleles that may be useful for pedigree analysis (Table S4A and

Table S4B). Two nonsynonymous changes were found in four

canine and two wolf alleles. Polymorphic positions in the human

and canine coding sequences are shown in Figure 1b. Phylogenetic

relationship of SPANX-N proteins in mammals is shown in

Figure 1d.

A previous analysis of organization of the SPANX-A/D genes in

African Great Apes has shown that two loci, SPANX-B and

SPANX-D, are present in apes, but SPANX-C is human specific

[5,13]. A search for SPANX-A sequences in the chimpanzee

genome draft (March, 2006) detected only one contig with a single

SPANX-A sequence on the X chromosome, while in human there

are two genes, SPANX-A1 and SPANX-A2, organized as an

inverted repeat. We isolated the SPANX-A1/A2 synthenic regions

from chimpanzee, gorilla and bonobo, as ,50 kb DNA segments,

using a TAR cloning technique (see Methods for details) and

demonstrated that organization of this locus in African Great Apes

is similar to human, i.e. the inverted repeats of the SPANX-A1/

SPANX-A2 genes embedded into segmental duplications. Collec-

tively, the results presented here and published elsewhere [5,13]

allowed us to reconstruct the evolutionary history of the SPANX

gene family in detail (Figure 3). The common ancestor of rodents,

canine, and primates apparently had a single SPANX-N subfamily

gene. Chimpanzee, orangutan and rhesus macaque have five, four

and three copies of SPANX-N genes, correspondingly. The

emergence of the SPANX-A/D gene subfamily is a more recent

Analysis of SPANX-N genes
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Figure 1. Comparison of mammalian SPANX-N proteins. (a) Alignment of the conserved core between human SPANX-N proteins and homologs in
non-primate mammals. With the exception of rat SPANX-N, the core starts immediately at the N-terminus. The plot highlights physiochemical
properties, and the sequence conservation is shown as a consensus at the bottom. (b) Polymorphic positions in the human and dog coding
sequences (only core shown). Two nonsynonymous changes, N21D and S79N (not shown), were found in the four dog and two wolf alleles analyzed.
The five compared SPANX-N2 alleles revealed a nonsynonymous change, T8I, and a synonymous polymorphism in codons 4, 80, and 151. One amino
acid replacement, K43N, was found in the two compared SPANX-N3 alleles. The two analyzed SPANX-N4 alleles revealed only one nonsynonymous
change, K48N. (c) Substitutions in chimpanzee SPANX-N2 and -N3 coding sequences compared to human homologs. Chimpanzee SPANX-N2
contains four nonsynomous substitutions, two of which are in the core (K43N and Y55H). In addition, there are three synonymous changes and
a 65 aa long deletion caused by the deletion of five 39 bp minisatellite units. Chimpanzee SPANX-N3 contains 10 nonsynonymous changes
compared to human SPANX-N3, with three in the conserved core (E18K, N21S, and K23E). There is also a single aa deletion, del22K, and two
synonymous changes. (d) Phylogenetic relationship of SPANX-N proteins in mammals obtained using the maximum likelihood method. (e)
Minisatellite variations in the C-terminal part of primate SPANX-N genes. With the exception of the human SPANX-N4 locus, the C-terminal regions
contain 39 bp minisatellite arrays (blue). In some cases, the translation termination codon (red) is located after the array, and the repeats encode the
C-terminal portion of SPANX-N genes.
doi:10.1371/journal.pone.0000359.g001

Figure 2. Evolution of SPANX-N genes. The probable scheme of evolution of the SPANX-N gene family is based on the pairwise alignments and
breakpoint analysis. The exons are marked red in colour, intron regions are marked in pink. Positions relative to the centromere (cen) and telomere
(qter) are shown. The numbers near duplication breakpoints indicate positions of the SPANX-N regions in the human genome (hg16; UCSC March
2006 genome version). The most likely scenario is that SPANX-N3 was the original locus.
doi:10.1371/journal.pone.0000359.g002
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event, subsequent to the separation of the hominoid lineage from

orangutan and rhesus macaque. Apparently, this subfamily

evolved via duplication of one of the SPANX-N genes accompanied

by deletion of the distal part of exon 2 (minisatellites) and rapid

divergence. Notably, African Great Apes have four members of

the SPANX-A/D subfamily, whereas duplication of SPANX-C and

amplification of SPANX-B genes appears to be human lineage

specific.

Analysis of genetic variations in SPANX-N genes in

human population
Previous studies revealed a high frequency of genetic variations in

SPANX-A/D genes. Most of them resulted from gene conversion

events between the genes [5]. In the present study we analyzed

sequence variations in SPANX-N1, -N2, -N3, -N4 and -N5 genes

from 93 normal human individuals. Exons 1 and 2 and flanking

regions were PCR amplified using specific primers (Table S1), and

the amplified DNA fragments were sequenced. The results are

summarized in Table 1 and Table S2. Sequence analysis identified

four alleles of SPANX-N1, five alleles of SPANX-N2, and two alleles

each of SPANX-N3, SPANX-N4 and SPANX-N5. None of the four

SPANX-N1 variants contained mutations resulting in amino acid

substitutions. The five SPANX-N2 alleles included one nonsynon-

ymous change, T8I, in exon 1 and four synonymous substitutions

in codons 4, 80, and 151. One amino acid replacement, K43N, in

exon 2 was found in the two SPANX-N3 alleles. The two SPANX-

N4 alleles revealed one nonsynonymous change, K48N in exon 2.

All other variants had single synonymous missense mutations.

SPANX-N5 variants had only synonymous mutations in exon 2.

In addition, SPANX-N1 and SPANX-N5 genes keep a C to T

mutation in exon 2 in all DNA samples analyzed, which causes

generation of the premature stop codon. In contrast to the SPANX-

A/D subfamily, none of the SPANX-N variants was due to gene

conversion events. DNA sequence analysis revealed five, seven,

four and five copies of the 39 bp minisatellite repeat in SPANX-N1,

SPANX-N2, SPANX-N3, and SPANX-N5, respectively. In SPANX-

N1 and SPANX-N5, the minisatellite is located after the stop codon.

In SPANX-N2 and SPANX-N3, the minisatellite repeats are in

frame with exon 2 and encode the C-terminus of the protein. DNA

sequence analysis revealed no polymorphism in the SPANX-N

minisatellites (data not shown).

To summarize, in contrast to the SPANX-A/D subfamily where

frequent gene conversion events are a driving force of SPANX-A/D

Figure 3. An evolutionary history of the SPANX gene family. The common ancestor of rodents, canine, and primates apparently had a single SPANX-N
subfamily gene. An extensive search for potential divergent members of the SPANX-N family in the mouse, rat, dog and wolf genomes failed to detect
any. A single SPANX gene is marked as a grey box. Orangutan and rhesus macaque have three and four copies of SPANX-N genes, correspondingly
(boxes in blue). The emergence of the SPANX-A/D gene subfamily (boxes in red) is a more recent event, subsequent to the separation of the hominoid
lineage from orangutan and rhesus macaque. Apparently, this subfamily evolved via duplication of one of the SPANX-N genes accompanied by
deletion of the distal part of exon 2 (minisatellites) and rapid divergence. SPANX-A/D genes are impeded in segmental duplications (boxes in yellow).
African Great Apes (bonobo, chimpanzee and gorilla) have four members of the SPANX-A/D subfamily. Notably, duplication of SPANX-C and
amplification of SPANX-B genes from 1 to 14 copies appears to be human lineage specific.
doi:10.1371/journal.pone.0000359.g003
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gene variantion in human populations [5], a normal poly-

morphism is characteristic for the evolutionary old SPANX-N

subfamily. This difference may be explained by a higher level of

divergence between SPANX-N genomic regions compared to the

recently amplified SPANX-A/D loci.

Development of SPANX-N specific antibodies
To determine the localization of SPANX-N proteins, we

generated a polyclonal rabbit antibody EQPT against a chemically

synthesized SPANX-N peptide (see Methods for details). Based on

the peptide sequence chosen from the conservative N-terminus of

SPANX-N3, the EQPT antibody should recognize at least three

SPANX-N proteins (SPANX-N1, -N2, and -N3). To check

a specificity of Abs, we expressed all five SPANX-N genes in E.

coli cells. Western blot analysis with five recombinant SPANX-N

proteins showed that the affinity-purified anti-EQPT-antibody

recognizes equally well all five individual SPANX-N proteins

(Figures S4a and S4b). Apparent molecular weight of recombinant

proteins expressed in E. coli cells is 13 kDa, 27 kDa, 23 kDa,

17 kDa and 13 kDa for SPANX-N1, -N2, -N3, -N4, and –N5,

respectively (Figure S4c). Notably, mobility of SPANX-N proteins

is approximately 6 kDa higher than that predicted from their

coding regions (8 kDa, 20 kDa, 16 kDa, 11 kDa and 8 kDa for

SPANX-N1, -N2, -N3, -N4 and –N5, correspondingly). A

comparably slower mobility in acrylamide gels was previously

described for SPANX-A/D proteins [3,6] and is likely due to

clustering of charged amino acid residues.

SPANX-N proteins localize to the acrosome in

spermatozoa
Immunofluorescence localization revealed intense staining in the

acrosome of formaldehyde-fixed, methanol-permeabilized, human

spermatozoa with postimmune EQPT antisera and the affinity

purified antibodies (Figure 4). Spermatozoa incubated with

preimmune sera or with EQPT peptide exhibited no fluorescence.

These data indicate that the SPANX-N genes encode acrosomal

proteins. Their localization is different from that of SPANX-A/D

proteins based on immunostaining with previously reported

polyclonal antibodies [6]. Because specificity of the polyclonal

antibodies to individual SPANX-A/D isoforms was not de-

termined, we repeated the immunostaining of spermatozoa with

newly developed polyclonal antibodies, SNEV and ANEA, specific

to SPANX-C and SPANX-B proteins, respectively (see Methods

for details). Our results confirmed localization of SPANX-B and

SPANX-C proteins in the nuclear craters and cytoplasmic droplets

(Figure S5c). It is worth noting that the EQPT antibody detects

Table 1. Nucleotide variations in the human SPANX-N1-, -N2,
-N3, -N4 and -N5 genes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SPANX-N1 SPANX-N2 SPANX-N3 SPANX-N4 SPANX-N5

C/A (50%)* G/C (2%) C/G (18%) A/T (2%) G/C; T/C (59%)

552 nc 12 ex1 129 ex2 144 ex2 1016 ex2, 1091 nc

G/A (9.5%) C/T (2%)

292 nc 23 ex1

CT/GT (2.5%) C/A (16%)

608, 609 nc 240 ex2

C/T (58%)

453 ex2

*In parenthesis - the frequencies of sequence variants. Positions of nucleotide
changes either in exon 1 or exon 2 (ex1 and ex2) are shown below the
nucleotide changes.

nc – noncoding region.
In red – the nucleotide changes leading to amino acid substitutions.
Complete SPANX-N sequences are listed in Table S2.
doi:10.1371/journal.pone.0000359.t001..
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Figure 4. Indirect immunofluorescent staining of fixed, permeabilized
swim-up spermatozoa with antibodies against SPANX-N proteins (in
green). The SPANX-N immunofluorescence is observed in the acrosome
of spermatozoa. The SPANX-A/D immunofluorescence is observed in
association with nuclear craters in the cytoplasmic droplet at the
posterior sperm head, or in both (red dots). DNA staining with DAPI is in
blue.
doi:10.1371/journal.pone.0000359.g004
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SPANX-N proteins in greater than 90% of human spermatozoa.

In contrast, staining with SNEV and ANEA antibodies confirmed

the previous observation that SPANX-A/D proteins are present in

only half of ejaculated spermatozoa [4,6]. Thus, rapid evolution

and expansion of the SPANX gene family resulted in generation of

two classes of proteins with presumably different functions in

spermatogenesis.

SPANX-N are expressed postmeiotically
To detect the stage specificity of SPANX-N gene expression, we

performed localization of SPANX-N on normal human testis

sections. The staining was positive only in late spermatids and

spermatozoa within seminiferous tubules (Figures 5a and 5b) and is

specific, as indicated by its absence in the negative controls

(Figures 5c and 5d) both at low (Figures 5b and 5c; bar: 200 um)

and high magnification (Figures 5a and 5d; bar: 40 um). These

data suggest that SPANX-N protein translation occurs postmeio-

tically, as observed for SPANX-A/D [6,26].

SPANX-N genes are transcribed in normal

nongametogenic tissues
Previously it was shown that expression of SPANX-A/D genes is

restricted to the normal testis and certain tumors [2–4]. In the

present study, expression of SPANX-N genes was examined in

normal adult tissues as well as a variety of tumor specimens and

tumor lines.

Expression of SPANX-N genes was examined in eighteen normal

tissues by RT-PCR with a pair of primers that recognize all five

SPANX-N genes (Table S1). The predicted size of spliced SPANX-N

transcripts was not detected in brain, liver, skeletal muscle, spleen,

heart, lymphoma, lymph node, and kidney. Unexpectedly, in

addition to expression in the testicular tissue, qualitative RT-PCR

showed a weak expression of SPANX-N in breast, cervix, prostate,

lung, ovary, placenta, proximal and distal colon, stomach, and

uterus. Quantification of gene expression revealed that the

expression level of SPANX-N mRNA in these tissues was 50–100

times lower than that in testis. SPANX-N expression in several

nongametogenic tissues (breast, cervix, prostate, lung and ovary) is

shown in Figure 6a (lanes, 2, 4, 6, 8 and 10). The coding regions

have a 180 bp nucleotide sequence specific for each SPANX-N

gene. Cloning of RT-PCR products into a TA vector and

sequencing of the inserts from individual colonies allowed us to

verify the specificity of a PCR reaction and to clarify if all five

SPANX-N gene family members or only some are expressed in

a certain tissue. The pattern of expression of SPANX-N genes

seems to be different in different tissues. All five transcripts were

detected only in testis. In most SPANX-N positive tissues, only one

Figure 5. Immunostaining of SPANX-N (a, b) and the negative control (c, d) at low (a, c) and high magnification (b, d) on normal human testis
sections (bars indicated). The staining is clearly specific for late spermatids and spermatozoa (in pink, a, b). Autofluorescence (i.e., non-specific signal,
a, b) is also detectable in red blood cells and can be recognized by the overlapping signals in the green and red wavelengths. Nuclei are
counterstained with DAPI (in blue).
doi:10.1371/journal.pone.0000359.g005
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or two SPANX-N members are predominantly expressed (Table 2).

To conclude, in contrast to SPANX-A/D that exhibits testis-specific

expression, SPANX-N genes are expressed at a low level in a variety

of normal adult tissues.

Expression of SPANX-N proteins in normal

nongametogenic tissues
Using a polyclonal rabbit antibody against the synthetic peptide

EQPT, expression of SPANX-N proteins was examined in

nongametogenic tissues. Figure 6b shows Western blot analysis

of protein extracts from several human normal tissues that were

identified as positive for SPANX-N transcripts by RT-PCR (lung,

testis, prostate, and placenta). In each tissue, the affinity-purified

EQPT antibody detects at least one band, the mobility of which

corresponds to that of the SPANX-N protein expressed in E. coli

cells. Two bands on Western blots (27 kDa and 23 kDa) co-

migrate with the SPANX-N2 and SPANX-N3 recombinant

proteins. Additional bright bands on the Western blot (16 kDa

and 40 kDa) are probably due to post-translational modification of

the SPANX products or to protein complexes. Notably, similar

extra-bands were previously detected by Western blot analysis of

SPANX-A/D proteins in cancer cells [3,6,26]. Therefore, it is

possible that there are common steps in post-translational

modification of SPANX proteins. Bands with the mobility of

13 kDa and 17 kDa (corresponding to SPANX-N1, SPANX-N5

and SPANX-N4 proteins) were not observed. A failure to detect

an immunoreactive band of 13 kDa is likely to indicate that

SPANX-N1 and SPANX-N5 proteins are not translated at all.

This is supported by the presence of a frameshift mutation in the

exon 2 sequence of these genes that generates a premature STOP

codon that may destabilize mRNA by nonsense-mediated mRNA

decay (NMD), as has been shown for some other mRNA [27].

Therefore, these two genes are likely pseudogenes. A lack of the

band of 17 kDa corresponding to SPANX-N4 may be due to a low

level of the protein or its instability in the analyzed tissues. Thus, at

least two proteins, SPANX-N2 and SPANX-N3, are expressed in

some nongametogenic tissues.

Expression and localization of SPANX-N in cancer

cells
Expression of SPANX-N genes was also examined in cancer

specimens and cancer cell lines. In total, 18% of primary ovarian

and uterine cancers and 51% of the cancer cell lines analyzed

(melanoma, ovarian, endometrial, colorectal, prostate, lung, cervix

Figure 6. (a) RT-PCR analysis of the SPANX-N gene subfamily in normal adults tissues and cancer cell lines. cDNA was prepared from a panel of human
tissue mRNAs and cell lines. Oligonucleotides were designed within exons 1 and 2 to amplify putative transcripts. The observed bands of the
expected size 180 bp were sequenced and confirmed to correspond to SPANX-N genes. The strongest expression of SPANX-N genes was observed in
the normal testis (lanes 12 and 17) and in the LOXIMV1 melanoma cell line (lanes 13 and 18). Lanes 2–11 correspond to normal and tumor pairs of
breast, cervix, prostate, lung and ovary; lanes 19–21 correspond to 938MEL, 888MEL, SKMEL28 melanoma cell lines; lane 22 corresponds to the SKOV3
ovarian cell line; lanes 1, 15, 16, 24 – ladder; lanes 14 and 23 - water. The cDNA templates used were normalized using actin, as shown at the bottom
of the panel. (b) Western blot analysis of lysates from normal tissues using an anti-EQPT antibody. Lane 1 - lung, lane 2 - testis, lane 3 - placenta and
lane 4 – prostate. Lanes 5–9: full-size SPANX-N proteins expressed in the pET-11d in Bl21 cells. The mobility of SPANX-N proteins produced in E. coli
cells is 13 kDa for SPANX-N1, 27 kDa for SPANX-N2, 23 kDa for SPANX-N3, 17 kDa for SPANX-N4 and 13 kDa for SPANX-N5.
doi:10.1371/journal.pone.0000359.g006
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and breast) were positive for the presence of SPANX-N transcripts

(data not shown). Intensity of PCR products was found to be

heterogeneous, and some specimens yielded only faint amplicon

bands. These were scored positive if the results could be

reproduced by a repeated RNA extraction and specific PCR

from the same tumor specimen resulting in clear bands. SPANX-N

m RNA expression in breast, cervix, prostate, lung and ovary

cancer tissues is shown in Figure 6a (lanes 3, 5, 7, 9 and 11). The

highest level of SPANX-N expression comparable with that in testis

was detected in some melanoma cell lines (for example, LoxIMV1

and 938MEL) (Figure 6a). Interestingly, 92% of the sequenced

RT-PCR products from different tumors and cancer cell lines

corresponded to SPANX-N1 while only 3.3% of the clones from

normal tissues corresponded to SPANX-N1 (mostly in testis),

suggesting preferable expression of this gene in malignant tissues

(Table 2). The differential activation of SPANX-N1 in cancer

tissues suggests that it might be a new diagnostic marker for

cancer. To examine the localization of SPANX-N proteins in

tumor cells, immunocytochemical analysis was performed on the

938MEL melanoma cell line. Immunocytochemistry detected

homogeneous SPANX-N expression (Figure 7, green) in the

nucleus and cytoplasm of all cells independently of the cell cycle (as

indicated by variable degree of co-immunostaining with Ki67)

(Figure 7, red). Thus, the localization of SPANX-N in cancer cells

is congruent with that of SPANX-A/D [3]. We also addressed

a question of whether expression of SPANX-N genes in cancer cells

correlates with activation of SPANX-A/D genes. Analysis of three

melanoma cell lines (938MEL, 537MEL and LoxIMV1), SPANX-

N positive, revealed the presence of SPANX-A/D transcripts also

(data not shown).

Analysis of promoter sequences of SPANX-N and

SPANX-A/D genes
To shed light on the potential mechanism of differential expression

of the SPANX-A/D and SPANX-N gene subfamilies in nongameto-

genic tissues, we carried out a detailed analysis of highly conserved

59 UTR noncoding sequences.

Here, the transcription start points for the SPANX-N and

SPANX-A/D genes were determined by RT-PCR using a set of

nested primers (Table S1). For SPANX-N and SPANX-A/D genes,

transcription starts at -193 and -204 nucleotides from the initiation

codon, respectively (Figure 8). Our mapping results are in

agreement with the recent work of Wang and co-authors [28]

who identified the SPANX-B promoter region using a functional

test. Further sequence analysis indicates that SPANX-A/D

promoters include 16 CpG dinucleotides, 14 of which are mutated

within SPANX-N promoters (Figure 8). Given the well-known link

between CpG island methylation and gene expression [29–31], it

is possible that the presence or absence of CpG dinucleotides may

influence patterns of SPANX-A/D and SPANX-N genes in

nongametogenic tissues. We suggest that methylation-mediated

inactivation of SPANX-A/D genes is more efficient compared to

SPANX-N genes. The Sp1-binding site found within the promoter

sequence of four SPANX-N genes (Figure 8) may result in an even

greater difference in promoter methylation because binding of the

Sp1 transcription factor may prevent DNA methylation [32,33].

Collectively, these observations suggest that expression of the

SPANX gene family is generally regulated through promoter

demethylation. The evolutionary old group of genes, SPANX-N,

may partially escape this regulation possibly due to a lower density

of CpG dinucleotides that leads to transcription of these genes in

some nongametogenic tissues.

CTCF binds to promoter regions of SPANX-N and

SPANX-A/D genes
To elucidate a molecular mechanism of activation of SPANX-A/D

and SPANX-N genes in testis and a complete or partial block of

transcription in nongametogenic tissues another experiment was

carried out. Recent publications indicate that reciprocal binding of

the transcriptional factors, CTCF or BORIS, to a promoter

sequence may be a general mechanism of regulation of the cancer-

testis (CT) specific genes, expression of which is restricted to male

germ cells [34–36]. CTCF and BORIS genes encode for 11 zinc-

finger DNA binding proteins that recognize the same target

sequence but exhibit different expression profiles [37–39]. CTCF

protein is expressed in nongametogenic tissues and its binding to

a promoter of CT genes induces a transcription silencing. BORIS

is expressed exclusively during spermatogenesis and functions as

Table 2. RT-PCR analysis of SPANX-N expression in normal and
tumor tissues and cell lines

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tissues/Cell lines SPANX

N1 N2 N3 N4 N5

Normal tissues

Testis + + + + +

Prostate 2 + + + +

Cervix + + 2 2 2

Placenta 2 + 2 2 +

Lung 2 2 + 2 2

Distal colon 2 2 + 2 +

Proximal colon 2 2 2 2 +

Brain 2 2 2 2 2

Liver 2 2 2 2 2

Skeletal muscle 2 2 2 2 2

Spleen 2 2 2 2 2

Heart 2 2 2 2 2

Kidney 2 2 2 2 2

Lymphoma 2 2 2 2 2

Lymph node 2 2 2 2 2

Primary uterine tumors

Tumor 2952 + 2 2 2 2

Tumor 3017 + 2 2 2 +

Tumor 3047 + 2 + 2 2

Tumor cancer cell lines*

SKOV3 + 2 + 2 +

HeLa + 2 + + 2

Melanoma cell lines

LoxIMV1 + 2 2 2 2

537 MEL + 2 2 2 2

938 MEL + 2 + 2 2

888 MEL + 2 + 2 2

*SKOV3- ovarian; HeLa-cervix. Each RT-PCR product was cloned in TA vector.
From 5 to 40 individual E. coli clones obtained for each sample were analyzed
by sequencing. Cloning and sequencing of RT-PCR products determined the
gene-specific transcripts in each tissue or cell line. 95 of 103 sequenced clones
from different tumor tissues and cancer cell lines corresponded to SPANX-N1.
Four of 120 sequenced clones from normal tissues corresponded to SPANX-N1.
Expression of SPANX-N2 and SPANX-N3 proteins in lung, testis, placenta and
prostate was confirmed by Western blot (Figure 6b).

doi:10.1371/journal.pone.0000359.t002..
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a transcriptional activator of cancer-testis (CT) genes. We explored

the possibility that the promoter regions of SPANX genes contain

CTCF/BORIS-binding sites. In vitro binding of the promoter

fragments of SPANX-N and SPANX-A/D genes to the full-length

CTCF protein was tested by EMSA. The promoter fragment

corresponding to 2195 to 243 bp common to both subfamilies

was positive for CTCF-binding (Figures 9a and 9b). Mobility shifts

were not observed with other promoter regions tested (for

example, with the fragments corresponding to positions 2490 to

2246 bp or 2336 to 2167 bp from the ATG codon in the

promoter sequences) (Figure 9b). These results demonstrated that

CTCF binds in vitro to promoter regions of SPANX genes upstream

of a translation start site. EMSA experiments also demonstrated

that binding of CTCF to SPANX promoter sequences in vitro is not

inhibited by methylation (data not shown) as it was shown for

other genes with exclusive expression in testis [35,36,40,41].

Detection of CTCF binding sites in the promoter region of SPANX

genes suggests that their regulation is similar to that for other genes

with a preferential expression in male germ cells [34–36]. Taken

together, CTCF/BORIS binding and a lower density of CpG

dinucleotides in the promoter region of SPANX-N genes provide

a reasonable explanation of activation of these gene subfamilies in

testis and their differential expression in nongametogenic tissues.

DISCUSSION
Genes involved in reproduction have long been noted to evolve

relatively rapidly (for example in [13,42–45]), often through the

agency of duplication and divergence [46]. Our analysis of

SPANX-N gene evolution, variation, and expression provide

a prime example. For example, SPANX-N proteins are targeted

to the acrosomal region, suggesting that they may play a particular

role in fertilization [47]. By contrast, the SPANX-A/D genes

derived from them evolutionarily encode nuclear envelope

proteins in spermatozoa, with a presumably altered function.

In addition to SPANX-N, several other acrosomal antigens have

been identified [48]. They include SPAG9 [49], SP-10 [50], SAMP32

and SAMP 14 [51–53], ESP [53] and SPAM1 [54]. Only SPAM1

has a suggested role, in secondary zona binding. For SPANX-N, the

existence of several expressed genes complicates functional studies. If

there is a major conserved function, it could likely be identified in

rodents, which have only a single SPANX gene, using knockout and

co-immunoprecipitation technologies; but there would be no avail-

able models to look for the effects of selective ablation of the SPANX-

A/D and additional SPANX-N genes in primates.

This study also shows that in contrast to SPANX-A/D, SPANX-N

genes are expressed, though at low levels, in several nongameto-

genic tissues, including placenta, prostate, colon, cervix, stomach,

uterus and lung. Sequencing of cDNA clones and Western blot

analysis revealed that at least two gene family members, SPANX-

N2 and SPANX-N3, are expressed in proteins in these tissues as

well as testis. It remains possible that SPANX-N proteins have

some functions there, but the low expression levels may instead

only represent leakage of transcription expression.

The expression pattern of SPANX genes may be related to the

action of CTCF at its binding site in the promoter. CTCF binding

in promoter regions is usually associated with CpG methylation

and gene silencing [37,38], as in the MAGE-A1 and NY-ESO-1

genes that also exhibit testis-specific expression [35,36]. The

somewhat higher expression of SPANX-N genes compared to

SPANX-A/D genes in nongametogenic tissues could correlate with

their lower level of CpG dinucleotides. In addition, SPANX-N

promoters contain a potential recognition site for the transcription

factor Sp1 that can protect CpG islands from de novo methylation

[32,33] leading to lesser gene silencing. As for the specific

Figure 7. Immunocytochemical detection of SPANX-N in the melanoma cell line. 938MEL melanoma cell line (green; middle and right panels); co-
immunostaining for the cell multiplication marker Ki67 (red; left and right panels; overlap with SPANX-N appears as yellow). Upper panels show the
test samples, whereas bottom panels provide the negative control for SPANX-N (primary antibody omitted).
doi:10.1371/journal.pone.0000359.g007
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activation of SPANX genes in spermatogenesis, it is likely to be

linked to demethylation of the entire promoter. The activation

could be mediated by the programmed replacement of CTCF in

the testis by its testis-specific paralogue BORIS [35,36].

In contrast to restricted expression in other tissues, SPANX-N

transcripts were found in a wide range of tumors. Dysregulation of

SPANX-N in malignant tissues is intriguing because the SPANX

gene cluster is co-localized with two cancer susceptibility loci:

TGCT, encoding a testicular germ line cell tumor susceptibility

gene [55], and HPCX, encoding a susceptibility gene for familial

prostate cancer [56]. Regardless of a possible link between SPANX-

N and carcinogenic process, their expression pattern infers that

SPANX-N are CT (cancer testis) antigen genes. There is no

explanation at present of the enrichment of CT genes on the X

chromosome, where 22 of the 44 distinct reported families map

[57]. It remains to be seen if its relatively specific association with

tumors makes SPANX-N1 a useful diagnostic marker to distinguish

between normal and neoplastic tissues, or if it has any mechanistic

connection to carcinogenesis that would make it a conceivable

target for immunotherapy.

Figure 8. Comparison of human SPANX-A/D and SPANX-N promoters. Detected transcription starts are marked in yellow, the translation initiation
codons ATG are marked in green. Noncoding sequences are in lowercase. SPANX-N copies differ from SPANX-A/D genes by the almost complete lack
of all CpG dinucleotides in the promoter regions (in orange); however, these CpGs are perfectly preserved in all of the SPANX-A/D copies. CpG sites
are marked only on one strand. Sp1 binding consensus in four SPANX-N copies is marked in blue. CTCF-binding sites are marked by red boxes.
doi:10.1371/journal.pone.0000359.g008
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SUPPORTING INFORMATION

Figure S1 Alignment of primate SPANX-N proteins. The

chimpanzee SPANX-N3 contains 4 minisatellite repeats in frame.

The chimpanzee SPANX-N2 contains 2 minisatellite units while

human SPANX-N2 contains seven 39 bp units. The chimpanzee

SPANX-N5 has 5

Found at: doi:10.1371/journal.pone.0000359.s001 (6.19 MB TIF)

Figure S2 Phylogenetic relationship of SPANX-N proteins in

primates. The tree topology was obtained using PHYML v2.4.4

using default parameters and 100 replicates.

Found at: doi:10.1371/journal.pone.0000359.s002 (0.32 MB TIF)

Figure S3 RT-PCR analysis of the canine SPANX-N expres-

sion. cDNA was prepared from the testis tissue using oligonucleo-

tides designed within exons 1 and 2 to amplify a putative

transcript. A 271 bp band of the expected size was observed. DNA

sequenc

Found at: doi:10.1371/journal.pone.0000359.s003 (0.37 MB TIF)

Figure S4 EQPT antibodies recognize all five SPANX-N

isoforms.

Found at: doi:10.1371/journal.pone.0000359.s004 (0.56 MB

TIF)

Figure S5 Immunostaining of human spermatozoa with affinity-

purified anti-EQPT, ANEA and SNEV antibodies.

Found at: doi:10.1371/journal.pone.0000359.s005 (1.09 MB TIF)

Table S1 Primers used for amplification of the SPANX genes

and their expression analysis

Found at: doi:10.1371/journal.pone.0000359.s006 (0.07 MB

DOC)

Table S2 Accession numbers of SPANX-N sequences

Found at: doi:10.1371/journal.pone.0000359.s007 (0.05 MB

DOC)

Table S3 Primers used for EMSA analysis

Found at: doi:10.1371/journal.pone.0000359.s008 (0.03 MB

DOC)

Figure 9. In vitro interaction of CTCF with the promoter sequences of SPANX genes. (a) EMSA was carried out with either control lysate (2) or lysate
containing the in vitro translated 11 ZF DNA binding domain of CTCF protein (+). The positions of the bound CTCF-DNA complexes, containing the
11ZF domain, are indicated on the left by arrow (shift). Free DNA probe is also indicated (free). Control: a positive control (c-myc promoter) of the
EMSA reaction. (b) A schematic representation of the overlapping fragments of the SPANX-N promoter DNA sequences used in EMSA. The 2195 to
243 bp is the smallest fragment showing retarded migration (red box). The ATG is considered as +1. On the right is CTCF binding of the fragments (+
positive; 2 negative).
doi:10.1371/journal.pone.0000359.g009
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Table S4 Nucleotide and amino acid variants in the canine

SPANX-N coding region

Found at: doi:10.1371/journal.pone.0000359.s009 (0.07 MB

DOC)
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