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Introduction. Adipose-derived stromal cells (ASCs) are a promising resource for wound healing and tissue regeneration because of
their multipotent properties and cytokine secretion. ASCs are typically isolated from the subcutaneous fat compartment, but can
also be obtained from visceral adipose tissue. The data on their equivalence diverges. The present study analyzes the cell-specific
gene expression profiles and functional differences of ASCs derived from the subcutaneous (S-ASCs) and the visceral (V-ASCs)
compartment. Material and Methods. Subcutaneous and visceral ASCs were obtained from mouse inguinal fat and omentum. The
transcriptional profiles of the ASCs were compared on single-cell level. S-ASCs and V-ASCs were then compared in a murine
wound healing model to evaluate their regenerative functionality. Results. On a single-cell level, S-ASCs and V-ASCs displayed
distinct transcriptional profiles. Specifically, significant differences were detected in genes associated with neoangiogenesis and
tissue remodeling (for example, Ccl2, Hif1α, Fgf7, and Igf). In addition, a different subpopulation ecology could be identified
employing a cluster model. Nevertheless, both S-ASCs and V-ASCs induced accelerated healing rates and neoangiogenesis in a
mouse wound healing model. Conclusion. With similar therapeutic potential in vivo, the significantly different gene expression
patterns of ASCs from the subcutaneous and visceral compartments suggest different signaling pathways underlying their efficacy.
This study clearly demonstrates that review of transcriptional results in vivo is advisable to confirm the tentative effect of cell therapies.

1. Introduction

The wide-ranging applications of stem cells in regenerative
medicine have been scientifically described for decades [1].
Far more than a quarter of a million references will be listed
on PubMed in the spring of 2018 alone on the subject of stem
cells. In particular, the vast potential of adipose-derived stro-
mal cells (ASCs) from adipose tissue is extensively described
[2]. Due to their multiple therapeutic functions, ASCs are
attracting increasing attention, especially for their paracrine

activity [3] as well as their capacity for differentiation and
their potential for use in tissue engineering [4]. The spectrum
ranges from cardiac regeneration after infarction [5] via the
neovascularization of wounds [6], the regeneration of nerves
[7], and the healing of neurological systemic diseases [8] to
the treatment of osteoarthritis [9]. ASCs are also an option
for tissue regeneration after adjuvant radiotherapy [10].

The functionality of (re) implanted cells is influenced by a
variety of factors whose exact interactions are the subject of
numerous studies [4]. In the context of cell-assisted fat
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transplantation, it should be noted that the dose of the intro-
duced cells has a significant influence on the survival of the
transplant [11]. In addition, it has been shown that cellular
heterogeneity has an effect on the healing potential of stem cell
therapies [12]. The age, sex, and preexisting conditions of the
patients also influence the extent of the regenerative potential
[13]. The same is true for the extraction technique [14, 15] and
the type of cell application. The source of the therapeutically
used cells is discussed from various perspectives [16]. As a
general rule, ASCs are obtained from the subcutaneous fat
compartment, but it is also possible to isolate these cells from
visceral tissue. Previous research has suggested that S-ASCs
and V-ASCs have different properties [17]. Previous literature
is inconsistent with respect to the therapeutic potential of stem
cell populations from the subcutaneous and visceral compart-
ments as well as differences in donor dependence [18]. With
regard to the chondrogenic regenerative potential, for exam-
ple, better functionality was shown when using subcutaneous
tissue as a source for ASCs [9].

It is necessary to clarify the applicability of different stem
cell populations as therapeutics for different indications.
Therefore, the present work analyzes the gene expression
profiles of murine ASCs from the subcutaneous (S-ASCs)
and visceral (V-ASCs) compartments at single-cell level and
compares these cells with regard to their therapeutic poten-
tial in an established wound healing model of the mouse [19].

2. Material and Methods

2.1. Funding. This work was supported by the German
Research Foundation (DFG) and the Technical University
of Munich (TUM) in the framework of the Open Access
Publishing Program.

2.2. Single-Cell Gene Expression Analysis. The S-ASCs and V-
ASCs were obtained from the inguinal fat and omentum of 6
mice (C57BL/6, 3 months old, male) as previously described
[6], all experiments being performed in accordance with the
relevant guidelines and regulations. S-ASCs and V-ASCs
were isolated from SVF (stromal vascular fraction) using
the surface marker profile CD34+/CD73+/CD90+/CD105+
and CD45−/CD31− (to exclude hematopoietic and endothe-
lial cell contamination). The cells were sorted as single cells
using a Becton Dickinson FACSAria Flow Cytometer into a
96-well plate (one cell per well) with 6μl lysis buffer in each
well. Reverse transcription and low cycle preamplification
were performed using CellsDirect (Invitrogen) with TaqMan
primer sets (Applied Biosystems) as prescribed by the
manufacturer. cDNA was loaded on 96.96 Dynamic Arrays
(Fluidigm, South San Francisco, CA) for qPCR amplification
using Universal PCR Master Mix (Applied Biosystems) with
a specific TaqMan assay primer set [20].

2.3. In Vivo Wound Model. 12-week-old male C57Bl/6 mice
were randomized into three treatment groups: with S-ASCs
and V-ASCs seeded hydrogels (2× 105 ASCs) and one unab-
sorbed hydrogel control (n = 5 per group). As previously
described [21], two 6mm sores were placed on the back of
each mouse, with each of the wounds being kept open by

suturing on silicone rings to prevent wound contractions.
All wounds were occlusively dressed (Tegaderm, 3M, St.
Paul, MN). Digital photographs were taken on days 0, 3, 5,
7, 11, and 14. The wound area was measured using ImageJ
software (NIH, Bethesda, MD).

2.4. Immunohistochemistry (IHC). Histological samples of
the wounds were obtained after wound closure and immedi-
ately embedded in OCT (Sakura Finetek USA Inc.). To
evaluate neoangiogenesis, seven-micron thin sections were
immunohistochemically stained for CD31 (1°—1 : 100 Rb
αCD31, Ab28364, Abcam; 2°—1 : 400 AF547 Gt α Rb, Life
Technologies). Nuclei were stained with DAPI, and ImageJ
Software (NIH, Bethesda, MD) was used to binarize the
images. Intensity hurdles were used to quantify CD31 stain-
ing based on pixel positive areas per field.

2.5. Statistical Analysis. The results are presented as mean
± standard error (SEM). The data analysis was performed by
Student’s t-test. The results were considered significant from
p ≤ 0 05. For the single-cell expression analysis, a two-sample
Kolmogorov-Smirnov (K-S) test was used to compare the
empirical distribution: a strict cutoff at p < 0 01 according to
Bonferroni correction for several samples took place. Tran-
scriptionally defined subpopulations were selected using an
adaptive fuzzy c-means clustering algorithm and standard
Euclidean distance metric as described previously [20]. Each
cell was assigned a partiality to each cluster based on similar-
ities in its expression profile, with optimally partitioned clus-
ters averaged out and filtered by hierarchical clustering to
simplify the visualization of data patterns within and across
clusters. Canonical pathway calculations and network analy-
ses were performed using Ingenuity Pathway Analysis (IPA,
Ingenuity Systems, Redwood City, CA) based on significantly
overexpressed genes in the respective cellular subpopulation.

3. Results

3.1. Single-Cell Gene Expression Analysis. A gene expression
analysis established in previous studies was used [22] to eval-
uate the transcriptional profile of single cells simultaneously
for 96 genes in association with cell migration, proliferation,
and tissue regeneration [17] (Table S1). At the single-cell
level, S-ASCs and V-ASCs showed different transcriptional
fingerprints. In particular, this is illustrated by significant
differences in genes related to neoangiogenesis and tissue
remodeling (such as Ccl2, Hif1α, Fgf7, and Igf) (Figures 1(a)
and 1(b)).

Single cells can be reliably grouped by a clustering algo-
rithm according to their gene expression profile [23]. To
further investigate the differences in the expression profiles
of S-ASCs and V-ASCs, an algorithm for identifying specific
cellular subgroups was used [22]. As a result, four distinct
subpopulation clusters were discovered (Figure 1(c)). While
S-ASCs are mainly found in clusters 1 and 2, V-ASCs con-
centrated in clusters 3 and 4 (Figure 1(d)).

The cluster classification further sheds light on how
the origin of the subcutaneous or visceral compartment
influences certain key signaling pathways at the cellular level.
Using highly overexpressed cluster genes as a source,
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Figure 1: Continued.
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canonical signaling pathways were queried by Ingenuity
Pathway Analysis (IPA, QIAGEN, Redwood City, CA,
http://www.qiagen.com/ingenuity). Clusters 1 and 2 are
characterized by significant overexpression of genes

responsible for extracellular matrix remodeling and cell
recruitment (for example, matrix metalloproteinase 3
(Mmp3; p < 10−7), collagen 1a2 (Col1a2; p < 10−4), and
stromal cell factor 1 (Cxcl12/Sdf1; p < 10−3) (Figure 2(a))
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Figure 1: Single-cell transcriptional analysis of S-ASCs and V-ASCs. (a) At the single-cell level, S-ASCs and V-ASCs showed significant
differences in genes related to neoangiogenesis and tissue remodeling (such as Ccl2, Hif1α, Fgf7, and Igf). Gene expression is shown on a
color scale from yellow (high expression) to blue (low expression). (b) Whisker plots show qPCR cycle threshold for each gene. Individual
dots each represent a cell/gene qPCR reaction, (c) clustering of S-ASCs and V-ASCs based on their gene expression patterns. (d) Pie
charts represent the fractions of the ASCs that make up the respective clusters.
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Figure 2: Analysis of ASC subpopulation. ((a–d), above) Significantly increased expressed genes of the individual clusters. ((a–d), below) Top
Ingenuity Pathway Analysis (IPA) transcriptome networks based on the significantly overexpressed genes of clusters. These significant genes
are shown in red.

5Stem Cells International



as well T cell and complement activation (dipeptyl-peptide4
(Dpp4/Cd26; p < 10−7) and Cd55; p < 10−6) (Figure 2(b)). In
contrast, cluster 3 is characterized by significantly increased
expression of other trophic factors, such as insulin-like
growth factor 1 (Igf1; p < 10−4) (Figure 2(c)). Cluster 4 is
rather inexplicitly defined by Mmp3, p < 10−1 (Figure 2(d)).

3.2. In VivoWound Healing Model.Having demonstrated that
S-ASCs and V-ASCs represent heterogeneous cell populations

and that profound differences in the distribution of stem cell
subpopulations exist between these tissue sources, we next
investigated to what extent the origin of ASCs affects tissue
repair in vivo. Despite marked differences in gene expression
profiles, the use of S-ASCs and V-ASCs alike resulted in an
accelerated healing rate in an established murine wound
healing model compared to the control group (10.4 days to
wound closure compared to 11.9 days; p < 0 05) without sig-
nificant differences between treatment groups (Figure 3). The
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Figure 3: The application of both S-ASCs and V-ASCs improves wound healing (time to complete reepithelialization) in an in vivo model. (a)
An illustrative schematic of the wound healing model showing the hydrogel scaffolds on the left and the mouse wounds in detail on the right.
E, epidermis; D, dermis; H, hypodermis; asterisk, panniculus carnosus. Modified with permission from “The Journal of Investigative
Dermatology” and the Journal “Plastic and Reconstructive Surgery.” (b) Wound area was measured at days 3, 5, 7, 9, 11, and 14. Both
S-ASC- and V-ASC-treated wounds showed significantly enhanced wound closure at each time point (∗p ≤ 0 05).
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histological evaluation of the neoangiogenesis induction in
the healed wounds also showed comparable results for both
cell types and a significantly increased neoangiogenesis com-
pared to the control group without cells (Figure 4).

4. Discussion

Stem cell therapy for the catalysis of healing processes has
been extensively studied and described as a pathway into
the future [24, 25]. In particular, the use of fat tissue-
based stromal cells to accelerate wound healing has been
extensively examined [26, 27]. With regard to the chondro-
genic potential, the literature shows a better functionality
when using subcutaneous adipose tissue [9]. Differences in
terms of proliferation and colony-forming capacity are
described with regard to cardiac muscle function after
infarction and subsequent treatment with subcutaneous
and visceral ASCs, but a positive effect on myocardial con-
tractility without significant difference was found for both
treatment groups [5].

V-ASCs showed an increased expression of gene clus-
ters with respect to lipid biosynthesis and metabolism.
These differences were thus dependent on the provenance
of the cells. In contrast to the present study, the V-ASCs
and S-ASCs were previously often examined in bulk by
means of microarray or PCR, which, however, is inferior
to the granularity of the single-cell method described
herein [17].

Neovascularization as an important mechanism for the
promotion of wound healing by ASCs has been scientifically
described. The paracrine secretion of numerous addition, an
increase in both recruitment and functionality of progenitor
cells from the blood to the wound, could be demonstrated
by ASC therapy [6]. The model of the mouse wound for the
evaluation of cell therapeutic effects has long been established
[28], and the positive effect of ASCs on wound healing has
already been demonstrated several times. The ASC therapy
was able to positively influence wound healing in the murine
model even in the context of diabetes mellitus type II and
obesity [29]. To date, however, there is still a lack of studies
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with a specific focus on the possible influence of the cell har-
vesting site on the treatment success [30].

The data presented here show that both subcutaneous
and visceral ASCs have a positive influence on wound heal-
ing. Despite comparable therapeutic potential, gene expres-
sion of V-ASCs and S-ASCs is quite different. Through a
cluster model, different cell subpopulations could be
detected, which differed by their genetic fingerprint. Cluster
2 in particular comprises a selection of highly potent, regen-
erative genes and, with its surface marker profile (CD26/
CD55), is comparable to a particularly functional cell popula-
tion already described [12]. This cluster is mainly associated
with S-ASCs. Interestingly, the visceral reservoir for wound
healing also offers a relevant alternative. This suggests that
more than the 96 genes we studied might influence wound
healing. Our results also show that no clear indication of
the functionality of cells can be derived from the genetic fin-
gerprint alone. To correlate gene expression results with
in vivo data is essential to verify the functionality and utility
of the respective cells.

Further studies are needed to explore in detail the impact
of gene expression on wound healing in terms of interacting
proteins. Further investigations must analyze the specific
cytokines and their effect on the local wound environment
in detail. While there have been demonstrated large differ-
ences in chondrogenic healing [9], we are unable to show dif-
ferences in wound healing comparing S-ASCs and V-ASCs.
This further suggests that specific cell therapeutic indications
require independent preclinical evaluations for cell therapy
effectiveness.

5. Conclusion

The present study shows a high degree of heterogeneity in the
gene expression profile of ASCs from the subcutaneous
compartment compared to the visceral compartment. With
similar therapeutic potential in the wound healing model,
the significantly different gene expression patterns of ASCs
suggest different mechanistic signaling pathways. This study
clearly demonstrates that review of transcriptional results
in vivo is advisable to functionally confirm potential effects
of cell therapies.
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