
sensors

Article

A New Methodology for a Retrofitted Self-tuned
Controller with Open-Source FPGA

Edson E. Cruz-Miguel , José R. García-Martínez , Juvenal Rodríguez-Reséndiz * ,
and Roberto V. Carrillo-Serrano

División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro,
Querétaro 76010, Mexico; ecruz30@alumnos.uaq.mx (E.E.C.-M.); jose.gm@uaq.mx (J.R.G.-M.);
roberto.carrillo@uaq.mx (R.V.C.-S.)
* Correspondence: juvenal@uaq.edu.mx; Tel.: +52-442-192-1200

Received: 27 August 2020; Accepted: 24 October 2020; Published: 29 October 2020
����������
�������

Abstract: Servo systems are feedback control systems characterized by position, speed,
and/or acceleration outputs. Nowadays, industrial advances make the electronic stages in these
systems obsolete compared to the mechanical elements, which generates a recurring problem in
technological, commercial and industrial applications. This article presents a methodology for the
development of an open-architecture controller that is based on reconfigurable hardware under the
open source concept for servo applications. The most outstanding contribution of this paper is the
implementation of a Genetic Algorithm for online self tuning with a focus on both high-quality servo
control and reduction of vibrations during the positioning of a linear motion system. The proposed
techniques have been validated on a real platform and form a novel, effective approach as compared
to the conventional tuning methods that employ empirical or analytical solutions and cannot improve
their parameter set. The controller was elaborated from the Graphical User Interface to the logical
implementation while using free tools. This approach also allows for modification and updates to
be made easily, thereby reducing the susceptibility to obsolescence. A comparison of the logical
implementation with the manufacturer software was also conducted in order to test the performance
of free tools in FPGAs. The Graphical User Interface developed in Python presents features, such as
speed profiling, controller auto-tuning, measurement of main parameters, and monitoring of servo
system vibrations.

Keywords: retrofitted; open-hardware FPGA; vibration analysis; genetic algorithm; instrumentation
and sensors; adaptive and predictive control; controller self-tuning

1. Introduction

In the last years, the demand for motion controllers has increased in industrial applications, such as
robot manipulators, computerized numerical control (CNC) machines and frequency converters [1,2].
In this context, efforts have been made by researchers to improve the performance of these control
systems. However, most control systems present limitations to modify or replace control algorithms [3].
These limitations are presented by the control system architecture that can be classified as: (1) closed
architecture, where it is not possible to access the control algorithm and communication protocols,
(2) hybrid architecture, where the control strategies cannot be modified, but it is possible to add
devices to the system, and (3) the open architecture, where both hardware and software and control
strategies can be modified [2,4]. Unlike the mechanical system, the electrical and software stages
become obsolete in less time, which represents an area of opportunity in servo systems [3]. The Field
Programmable Gate Arrays (FPGAs) are devices with a large number of programmable logic elements,
such as composite, flip-flops, and wires, and use hardware description language (HDL). Both the

Sensors 2019, 20, 6155; doi:10.3390/s20216155 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6450-875X
https://orcid.org/0000-0001-5773-6068
https://orcid.org/0000-0001-8598-5600
https://orcid.org/0000-0002-8246-8920
http://www.mdpi.com/1424-8220/20/21/6155?type=check_update&version=1
http://dx.doi.org/10.3390/s20216155
http://www.mdpi.com/journal/sensors

Sensors 2019, 20, 6155 2 of 21

portability of the cores developed between families and FPGA companies and the availability of these
in the market have made use of FPGAs proliferate in different areas of industry, aeronautics, robotics,
and automation [5–8]. However, each manufacturer provides its software for generating the bitstream
file and programming the FPGA, i.e., both the operation and distribution of logic resources are closed
architectures and only large companies know how their interior works. Fortunately, a project was
developed in order to synthesize and generate the bitstream file from the verilog language with free
tools, with which the concept of open hardware [9] arises.

On the other hand, the Proportional-Integral-Derivative (PID) control is the most used algorithm
in linear and non-linear control systems, because it provides simplicity, functionality and easy
implementation [10]. In addition, a correct adjustment of the motion controller is necessary to
implement speed profiling techniques that help to smooth the position, reduce sudden changes
in its acceleration and avoid discontinuities that are directly related to the quality of the product
developed, for example, millimeter detail of the pieces [11–13].

Reference [14] presented an experimental study that demonstrates the efficiency of using an FPGA
in the control loop of CNC for micro-machining. The main disadvantage is the use of platforms
that depend on external manufacturers and, therefore, on a specific system, such as LabVIEW.
The authors of [15,16] proposed a modular control architecture with open-source electronics (for an
educational manipulator robot and a CNC, respectively). One of the disadvantages is that these
components are susceptible to obsolescence and require a microcontroller (MCU) for each task, such as
communication, interpolation, and control loop, in addition to the dependence of the control software
for the manipulator robot (Matlab software).

The authors in [5] used an FPGA to control a self-balancing robot without taking into
account the analysis of robot dynamics, controller design, implementation, and tuning techniques.
FPGA family ICE40 was used, whose main feature is the possibility of programming from free tools.
However, the used FPGA has limitations due to its logical resources (lack of multiplying modules).
References [17,18] carried out torque control experiments in stepper motors with FPGA, where both
works used the Quartus software by Altera company. Nevertheless, these authors did not consider a
tracking control design due to the limitations of abrupt acceleration changes.

In the works [19,20], the authors developed controllers for robot manipulators with FPGA Xilinx
and digital signal processor (DSP) with the purpose of distributing tasks and not overloading the
DSP. The work that was developed in [21] performs a similar application combining the use of FPGA
and a MCU, where it uses the MCU as a bridge between the communication of the PC and FPGA,
while the FPGA is in charge of performing the control actions. The aforementioned works lead to the
increase of cost due to the use of two software owned by each digital device company. Reference [22]
performs a speed control of a permanent magnet synchronous motor (PMSM) based on FPGA of the
Xilinx family, where the development and simulation of cores were elaborated in Matlab. However,
the work remained in simulation without realizing the implementation of the system to measure its
real performance.

The development of a predictive control for direct current (DC) motors was proposed in [23],
where an FPGA development board was employed from National Instruments with LabVIEW software
in order to generate an industrial application. The work aims to show the ease of the graphic
programming tool, as well as that it is notorious that FPGAs are an appropriate alternative for
the design of control systems. It also highlights the use of electronic boards and programming software
of the companies and the raised cost of the system; therefore, the use has not been explored for free
tools for implementation of these systems and eliminate the dependence on design tools that become
obsolete over time due to the new devices that were launched by these companies. Another feature
that the aforementioned work described is the design of a methodology for the synthetization of
the systems, being mostly experimental, as [24] and, in other cases, they cannot improve all of the
parameters that are required for an optimal control.

Sensors 2019, 20, 6155 3 of 21

The main objective of this work is to develop a self-tuning open-architecture controller that is
based on open-source software and tools, thereby combating the susceptibility to obsolescence by the
modularity and portability characterization of the system since. These features allow both the easy
adaptation to other control applications and reduction of the retrofit costs.

The article is divided into the following sections. Section 2 describes the dynamic model of the
plant and employed motion profile. Section 3 presents the controller design as well as the methodology
for self-tuning servo system. Section 4 describes the implementation of the controller into a linear
platform. In Section 5, the results and discussion of the experimentation are presented and, finally,
in Section 6, the conclusions are given.

2. The Dynamic Model of a Servo System

Motors are widely used in industrial applications and control systems. Thus, it is necessary to
obtain a model that allows for a correct analysis. The dynamic model of this servo system depends on
the electrical and mechanical characteristics, as resistance R, inductance L, and inertia J of armature,
the counter-electromotive force ea, and the friction B [25]. Figure 1 shows the block diagram of the
DC motor model with a proportional current loop. Where K is a proportional gain of current loop,
Vi and I are the voltage and current applied to the armature, τ is the torque generated in the shaft of
the motor, Θ(s) and Ω(s) are the position and angular velocity of the shaft, and Kb and Km are the
constants of the counter-electromotive force and the torque, respectively. The electrical relationship is

1
Ls+R , while and mechanical relationship is given as 1

Js+B . (s) (s) (s) (s)
(s) + - - +

Figure 1. Block diagram of the simplified direct current (DC) motor model in a proportional current
control scheme.

In the case of this servo system, the velocity has to change following a characteristic shape in
order to achieve a desired position, where the movement must be less aggressive when compared to a
step input to avoid a high stress on the shaft of the motor. The velocity profiles consist on different
shapes, which depend on the motion; these can be triangular, trapezoidal, S-curve, or parabolic
functions [26]. The triangular and parabolic velocity profiles consist of accelerating and decelerating
DC motor sections without a constant velocity phase. The triangular profile is more aggressive in
movement than the parabolic profile, since it changes the velocity abruptly, while the parabolic profile
tends to increase and decrease the acceleration in a smoother way.

The S-curve velocity profile is a smooth trajectory compounded by a third-degree polynomial.
It permits delimiting the jerk into an interval proposed by the designer in order to ensure the durability
of the actuator [27]. A disadvantage presented in this kind of motion profiles is the computational
performance, since it requires different techniques of derivatives and integrals [11]. On the other hand,
the trapezoidal velocity profile is a second-degree polynomial that consists of an acceleration and
deceleration phase; here, the velocity increase its magnitude considerably; a constant velocity stage
is present in the middle of the acceleration-deceleration phases. The computational cost is suitable
for simple structure and fast response [28]. That is the main reason for which the trapezoidal profile
is one of the most used speed profiles in commercial controllers [11]. Its movements consist of an

Sensors 2019, 20, 6155 4 of 21

acceleration period t0 ≤ t ≤ t0 + Ta, followed by a constant speed period t0 + Ta ≤ t ≤ T − Ta and
finished with a deceleration period T − Ta ≤ t ≤ T. While the velocity profile has a trapezoidal shape,
as shown in Figure 2, the evolution of position θd(t) is represented using a second-order polynomial,
see Equation (1), which represents the general position.

ωmax

time

am
pl
itu
de

a(t)

ω(t)

θ
d
(t)

t0 + Tat0 T- Ta T

0

Figure 2. Trapezoidal velocity profile.

θd(t) =

a
2 t2 t0 ≤ t ≤ t0 + Ta

aT
3 t− 5aT2

18 t0 + Ta ≤ t ≤ T − Ta
−a
2 t2 + aTt− 5aT2

18 T − Ta ≤ t ≤ T

(1)

The maximum angular velocity ωmax and the desired angular position θd of the motor spur are
proposed and, with this, the total duration T of the movement and the acceleration a are calculated,
as follows [28]:

T =
3θd

2ωmax
(2)

a =
3ωmax

T
(3)

3. Controller and Tuning

The PID controller is the most widely used control strategy in industrial process, because of
remarkable effectiveness, simplicity of implementation, and broad applicability [10,21,29,30]. The PID
controller plays a vital role for the system performance by both minimizing the error and providing
better systems functional stability. Below is presented the Equation of a PID controller (4) in continuous
time [25].

id(t) = kpe(t) + ki

∫
e(t)dt + kd

d
dt

e(t) (4)

Sensors 2019, 20, 6155 5 of 21

where kp is the proportional gain, ki is the integral gain, kd is the derivative gain, e(t) is the error,
and id(t) is the control signal.

Using the backward Euler method, the discretization of the PID controller (5) was performed
with a sampling time Ts. In Equation (5) e[k], e[k − 1] and e[k − 2] represent the current error and
previous errors in discrete time; id[k] and id[k− 1] denote the current and the delayed output of the
controller [29], respectively.

id[k] = a0e[k] + a1e[k− 1] + a2e[k− 2] + id[k− 1] (5)

where:
a0 = kp + Tski +

kd
Ts

, a1 = −(kp + 2
kd
Ts

), a2 =
kd
Ts

The tuning process is fundamental in the design of controllers. If the model of the system is known,
then it is possible to apply control design techniques such as the locus of the roots or frequency response
to identify the required system specifications. However, there are also experimental techniques for
tuning the PID controller; one of these is the case of Ziegler–Nichols, where the system model is
not required. According to [24], the tendency on PID controllers is to solve multiple requirements,
specifications, and design objectives that conflict with each other. A robust PID controller can also be
solved through an optimization procedure.

A Genetic Algoritms (GA) is heuristic algorithm whose function is to evolve a set of individuals
(population) and make these individuals approach the optimal solution with the passage of
each generation (algorithm iteration). The main operators of GA are crossover and mutation.
The individuals of the populations are improving through both the generations with these operators
and selection processes. A characteristic that differentiates GA is the way of representing the problem,
since it raises the modification of each individual through their chromosomes. In this case, it is
represented through binary numbers. Figure 3 shows the iterative processes that are involved in GA.
A mono-objective algorithm is proposed, since it requires, in addition to a zero steady-state error,
that the establishment time of the system is short and that the controller response is smooth, so that
the system is not saturated.

Unlike works [31–33], our algorithm does not run in simulation. However, it is a process that
runs in line from the developed Graphical User Interface (GUI). By integrating an accelerometer in the
servo system, it is also possible to measure the amplitude and corresponding frequency components
of the vibrations. This allows for the incorporation of these signals as inputs to the GA in the form of a
restriction. The objective function is composed of three convex cost functions: the Integral Absolute
Error (IAE) Equation (6) as an indirect measure of overshoot and Total Variation (TV) Equation (7)
to evaluate changes in the control signal id(t). These equations are minimized by the GA algorithm.
As a result, the maximum overshoot is limited and the settling and error times are minimized via a
smooth control signal. Nevertheless, in order to minimize the complexity and convergence time of the
algorithm, Jm Equation (8) is described as a weighted objective function of the described equations.
Moreover, α, β, and γ are the penalty parameters and their function is to control the search region
by penalizing the restriction function. These values are modified through the restrictions, e.g., when
a restriction leaves the search region, the objective function is strongly penalized, and, as these
restrictions are met, the values of α and β remain 1, while γ remains 0.

IAE =
∫ ∞

0
|e(t)|dt (6)

TV =
∫ ∞

0
|id(t + 1)− id(t)|dt (7)

min(Jm = αIAE + βTV + γ) (8)

with restrictions:

Sensors 2019, 20, 6155 6 of 21

0 < kp ≤ 100 ; 0 < ki ≤ 200 ; 0 < kd ≤ 10

µp ≤ 5%

0.2 < |nF| < 1

1 0 1 0 1

1 0 0 0 1

0 0 1 0 1

1 0 0 0 1

1 0 1 0 0

Population
1 0 1 0 1

1 0 0 0 1
0 0 1 0 1

1 0 0 0 1

1 0 1 0 0

Selection

Evaluation
O

perator

Crossover

1 0 1 0 1 1 0 0 0 1

0 0 1 0 11 0 1 0 0

1 0 1 0 11 0 0 0 11 10

1 0 1 0 00 0 1 0 0 1 0 11 0 1

Operator

Mutation
1 0 1 0 11 0 1

1 11 10

1 0 1 0 01 0 1

0 0 1 0 11 0 0
G

eneration t+1

Figure 3. Flow chart for Genetic Algoritms (GA) process.

4. Reconfigurable Hardware Description

The FPGAs were developed by the company Xilinx in 1984, with the purpose of creating chips
that acted as a blank tape, allowing for users to program the technology themselves. The concept
was successful and other companies developed FPGAs due to its reconfigurable design and parallel
processing. However, as it is a new technology, each manufacturer keeps the internal performance
secret, so the user has to acquire software from the manufacturer in order to perform the synthesis and
program them [7]. A further drawback occurs when these companies develop a new product, so the
software used is obsolete, not to mention that they need a specific processor to run these software.
Until a few years ago, the IceStorm project was introduced, in which reverse engineering was carried
out to obtain the bitstream of a specific family of FPGA (Lattice iCE40). This enalbed the obtainment
of both the operation and internal distribution [9], thus completing the development flow from the
descriptive language Verilog to the creation of the bitstream [7,8] based on free cross platform tools.

The structure of the IceStorm project is depicted with a flow chart in Figure 4. In [9], it is observed
that IceStorm is an open-source project that is integrated by different tools: (1) Yosys is a synthesis
tool similar to the one used by the manufacturer that converts Verilog code to a different format,
such as FLIG, EDIF, BTOR, SMT-LIB, and RTL with Verilog 2005 stand. Moreover, (2) Arachne-PNR
is a tool that implements the hardware build process place and route using BLIF files and generates
the IceStorm TXT file. Arachne-PNR is currently unsupported and the NextPNR tool became a full
functional replacement with significant enhancements. Finally, (3) IcePack converts TXT file into
bitstream [9,34].

Sensors 2019, 20, 6155 7 of 21

Verilogcode
Yosis

Synthesis
BLIF file

Arachne-pnr

Constraint

Place & route

IceStorm
TXT file

IcePack
FPGA

bitstream

File

Tool

Figure 4. IceStorm design flow.

The implementation of the cores was developed in Verilog language through the IceStorm tool.
An FPGA ICE40UP5K from the Lattice family was used with a clock frequency of 24 MHz. Figure 5
shows modules implemented in FPGA for both real-time control and monitoring. The UART module is
responsible for communication between the FPGA and the Python GUI. Communication is initialized
through the GUI in a format with the following 6-byte structure for the earnings a0, a1, and a2 of
the discrete PID controller, respectively, followed by a byte of actuator configuration (Digital Analog
Converter or PWM module), while using 2 bytes for the number of points of the desired path and finally
the points of the path to be executed. The FPGA executes the monitoring with 0.1 ms sampling time and
sends a frame to the GUI every 5 ms, which contains 2 bytes for monitoring motor current, 2 bytes for
X axis accelerometer data, 2 bytes for current position of the servo system, and 1 byte of the PID control
signal. All of the information received by the GUI (current position, current consumed, amplitude,
and vibration frequencies) are shown by means of graphs. The first 9 bytes, which correspond to the
gain configuration, the PID controller output and the number of points in the path, are stored in a
register bank. The next desired path bytes are stored in the RAM. The PID controller begins executing
the control action when all points on the path are received. The communication is transmitted at a
rate of 115,200 bits per second and 8 bits of data without parity. A module was developed for reading
the encoder whose sampling is 41.6 ns and is stored every 0.1 ms in a register, the resolution of the
encoder is 16 bits.

The main feature of the design is modularity, which is, if more degrees of freedom (DOF) need to
be added, it is possible to clone the first DOF until the required drivers are obtained, just like the other
modules. Internally, a First Input First Output (FIFO) stack module was developed to control the data
flow of each of the peripherals, where each data packet is made up of a byte of control and address of
the peripheral, 2 addressing bytes, and 2 bytes of information, to be able to add in the future, modules
in a faster and more generic way. The MCP3208 ADC and MCP4921 DAC drivers use a separate Serial
Peripheral Interface (SPI) protocol to use parallel processing. In addition, an Inter-Integrated Circuit
(I2C) communication module was implemented to perform mechanical vibration monitoring with the
MPU6050 sensor.

Reference [35] presents a methodology for the efficient application of control laws with one-bit
signals at the input and output. The signal is directly applied to physical systems, through pulse
density modulation. The main advantage is that the need for multipliers is eliminated in the control
algorithm; however, the quantization levels depend on the sampling time. This methodology is an
interesting option for FPGAs that not have multiplier resources. For this project, it is proposed to
use the DSP resources of the FPGA ICE40UP5K. The implementation of the PID module in FPGA is
obtained according to Section 3, see Equation (5). Therefore, 2 registers are used at the input of the error
to make the delays of this signal. A state machine controls and synchronizes the described modules
and a counter is responsible for making the appropriate changes to the multiplier input. In order to
use high resolution control signal, an accumulator (register with adder) is added to the output of the
DSP block. This way the output is obtained with greater sensitivity and it is not necessary to cut the
length of the control signal. Thus, the number and features of the built-in multipliers or DSP segments
that the device possesses is an important aspect to consider. Most FPGAs that are available in the
market have multipliers with a fixed bus width, e.g., 18 × 18 bit lengths. If a custom bus width is
used, then the synthesis tool will use logical resources to build a custom multiplier instead of using the

Sensors 2019, 20, 6155 8 of 21

available hardware-based modules. Therefore, the error signal and the controller gains must have a
bus width that matches with the available built-in multipliers. In this work, multipliers of 16 × 16 bits
were used. The signal error has a fixed point format of 16.0 and the gains have a fixed point format of
8.8. The e signal represents the error signal, which is the difference between the reference point and
the feedback data. Similarly, the signals a0, a1, and a2 are the gains of PID controller, and their value
depends on kp, ki, kd, and Ts.

PID
CONTROLLER

GAIN

REF

POS ENA_PID

SC

SATURATOR

PWM_20KHz

ENA_O2

U_in

PWMS

DIR

DAC_SPI

ENA_O1

U_in

MOSI_1

DCLK_1

CS_1

ADC_SPI

ENA_ADC

DATA_2

CH

MISO_2

MOSI_2

DCLK_2

CS_2

UART

ENA_Tx

Tx

Rx

DATA_Rx

INTR

DATA_Tx

FIFO
CONTROLER

DATA_S

ENA_Tx

DATA_1IN

DATA_2IN

DATA_3IN

DATA_4IN

ACCELEROMETER
I2C

ENA_I2C

DATA_1

SDA

SCL

TIMER
100us

ENA_T INT1

FSM TOP
CONTROL

STP

INT1

EO_PID

ENA_E

ENA_PID

ENA_I2C

ENA_ADC

ENA_O1

ENA_O2

ENA_T

STP

INT1

EO_PID

ENA_E

ENA_PID

ENA_I2C

ENA_ADC

ENA_O1

ENA_O2

ENA_T

ENA_I2C

ENA_ADC

ENA_O1

ENA_T

ENA_O2

INT1

ENCODER

ENA_E

chA

chB

Q

ENA_Tx

ENA_Tx

REGISTER

Din

ENA_R

Dout

ENA_R

RAM

Din

WE_RAM

Dout

ADDR

WE_RAM

ENA_E

SDA

SCL

MISO_2

MOSI_2

DCLK_2

CS_2

MOSI_1

DCLK_1

CS_1

PWMS

DIR

Tx

Rx

chA

chB

FPGA CONTROLLER

Q

Q

MEMORY
CONTROL

INTR STP

ENA_R

WE_RAM

ADDR

INTR
STP

ENA_R

WE_RAM

ADDR

rst

clk

ENA_PID

Figure 5. Modules implemented in the Field Programmable Gate Arrays (FPGA).

On the other hand, the Ik signal is the filter output, which is sent forward to the actuator. Moreover,
CLK, RST, ST_PID, and EO_PID denote the clock signals and master reset, process start, and process
end, respectively. It should be noted that free tools do not perform an optimal inference of the DSP
blocks contained in the FPGA ICE40UP5K. For this reason, an internal DSP module is used to make
the PID structure as depicted in Figure 6 and is configured to perform signed multiplications and
accumulate at the output of the multipliers; these sums are unsigned. Figure 6 presents the C1 and
C2 parameters that are used to pass the controller error and gains through a parallel register, and C7
enables the use of a 32-bit register for multiplier output, taking them to high level. Bits C11, C10,
and C18, C17 enable the high part (16 most significant bits) and low part (16 least significant bits) to be
the input of the internal adder and they are configured taking C11 and C18 high, and C10 and C17 low.
Bits C12 and C19 are kept low in order to configure the DSP block as accumulator. Bits C9, C8, and C16,
C15 provide the output as a registry output that has the accumulator function. These are configured
by taking the C9, C16 bits low and the C8 and C15 bits high. Bits C24 and C23 are raised high to
configure a signed multiplier. In addition to the configuration of the DSP block, the state machine is a
fundamental part for the correct operation of the PID controller. One of the advantages of free tools is
the possibility of configuring in ways that the tools of manufacturer do not allow.

Sensors 2019, 20, 6155 9 of 21

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

A[15:0]

B[15:0]

ORSTTOP

ORSTBOT

OHOLDTOP

OHOLDBOT

OLOADTOP

OLOADBOT

ADDSUBTOP

ADDSUBBOT

OUT[31:0]

OUT[31:0]

hh

cl c

cl c

ha

ha

h

a0

a1

a2

e

FSM
FILTER

STP

EO_PID

R

h

ha

clc

opc

ST_PID

EO_PID

h

ha

clc

opc

COUNTER
opc

R

qopc q
1’ b0

1’ b0

1’ b0

1’ b0

Ik

CLK

RST

PID
CONTROLLER

q

q

Figure 6. Proportional-Integral-Derivative (PID) controller implemented in the FPGA.

5. Results and Discussion

In order to observe the performance of the open source synthesizer for the FPGA, Table 1 shows
a comparison with the logic resources used by the FPGA in similar controllers and the proposed
open source tool (IceStorm project) was made when implementing the design of the controller in the
Lattice family of the ICE40UP5k model. This comparison presents that the open source tool is a good
alternative for reconfigurable digital design in control applications, such as servo systems.

Table 1. Logic resources used.

Work Manufacturer Device Flipflops LUTs Multipliers/DSP SPRAM256K HFOsc Minimum Period

Proposed Lattice ICE40UP5k 963/5280 821/5280 1/8 2/4 1 37.2 ns
[1] Xilinx Spartan-3 2998/15,360 3792/15,360 24/24 - - 12.174 ns
[2] Xilinx Spartan-3 - - - - - -
[3] Altera Cyclone II DE2 1788 998 35/70 - - -
[5] Lattice ICE40hx4k - - - - - -

[11] Xilinx Zynq XC7Z01 - - - - - -
[14] Xilinx Spartan-3 - - - - - -
[17] Altera Max10 3079 5017 6 - - -
[26] Xilinx Zynq 7 - - - - - -

It is necessary to perform a simulation in GTKWave that allows for the debugging of the design
when processing in hardware is evaluated. Figure 7 presents the simulation results of a good
performance in reconfigurable digital design. In this simulation, the position control of a servo system
is shown, the reference signal is observed (refp[15:0]), the position followed by the system (theta[15:0]),
the error calculated by the system (ek[15:0]), and the controller output (ik[23:0]). This simulation
demonstrates that the processing units or blocks function correctly and that the formats of the fixed
point units were selected properly.

Table 1 shows the logical resources of the total system implementation. The last column also
highlights the minimum periods (maximum frequency) of operation of the controller. The proposed
system has a main clock source of 24 MHz and the sampling time is 0.1 ms. The time analyzer of the
synthesis tool (synthesized hardware and hardware routing) showed that the most critical path has a
latency of 32 ns; therefore, the system executes the control algorithms without difficulties.

Sensors 2019, 20, 6155 10 of 21

0 100 ms 200 ms 300 ms 400 ms 500 ms 600 ms 700 ms

101.0390625
-197.984375
97

Time
rst

clk

stp

eop

a0[15:0]

a1[15:0]

a2[15:0]

imax[23:0]

imin[23:0]

refp[15:0]

theta[15:0]

ek[15:0]

ik[23:0]

Figure 7. PID controllers simulation with open source tool.

The industrial linear actuator that was used in this research work was disposed from a factory and
acquired by Universidad Autónoma de Querétaro as a second-hand industrial system, and no control
unit was included with the purchase. Therefore, the aim of this project was to design a new control
system based-on open source modern technology. Within the project three primary requirements were
defined: low cost, open architecture, and the path tracking error should be lower than 2% velocity of
200 mm

s . The proposed architecture is comprised of a standard PC or micro-PC and an FPGA-based
development board. The FPGA is responsible for decoding feedback position data, computing the
control output and commutation signals, and transmitting data to the actuator, whereas the PC
interpolates movements, and transmits the position reference, while it receives its current and position.
In Table 2, the parameters of both the brushless motor and analog servo drive are shown. The servo
driver requires one analog current reference. Current reference is given as voltage. A set point of +10 V
represents a current of 6 A at a given motor coil. An analog converter MCP4921 is used to generate
such current references. However, the DAC output ranges from 0 to 5 V. Therefore, the PCB include a
set of operational amplifiers to rearrange the output from −10 V to +10 V.

Sensors 2019, 20, 6155 11 of 21

Table 2. Parameters of test bench.

BLM-N23-50-1000-B Brushless Motor B12A6 Advanced Motion Control Analog Servo Drive

Parameter Value Unit Parameter Value Unit

Torque Constant 0.08 Nm
A DC Supply Voltage Range 20–60 V

Continuous Torque 0.39 Nm Maximum Peak Output Current 12 A
Peak Torque 0.83 Nm Maximum Continuous Output Current 6 A
Continuous Current 4.9 A Maximum Continuous Output Power 342 W
Peak Current 10.4 A Maximum Power Dissipation 18 W
Moment of Inertia 2.5 × 10−5 kgm2 Switching Frequency 33 kHz
Recommended Supply Voltage 48 V Command Sources ±10 V
Maximum Speed 523.6 rad

s Modes of Operation current A
Encoder Resolution 1024 PPR

The analysis of vibrations allows for identifying physical problems in the components of rotating
machines. These issues can be detected by means of a series of non-destructive techniques of
data collection. Vibration sensors, such as the accelerometer, are suitable for different industrial
applications [36]. When the vibration signal is monitored, it is presented in the form of simple harmonic
movement that is, in terms of variation, in the amplitude of the vibration signal [37]. To interpret the
signal, different processing techniques have been used, such as the Fast Fourier Transformation (FFT)
and the spectrogram algorithms [38]. With these techniques, it is possible to observe the state of a
rotary machine, i.e., the failure of cracks and seizures can be identified based on the main frequency
range of the machine engine [36,39–41].

The GUI developed in Python executes the calculations for the trapezoidal velocity profile.
This interface is responsible for modifying the discrete PID controller gains and sending these values
θd, a0, a1, and a2 via the serial port to the FPGA. The GA is executed in the GUI as well. In addition,
the GUI is responsible for receiving the information from the FPGA, the values of the X axis of the
sensor, the current position of the motor, the error, and the control signal. These variables are plotted
to observe the behavior and performance of both the controller and translational mechatronics system.
The data can be stored by date at each start-up of the system. Figure 8 shows the proposed control and
self-tuning scheme. The Algorithm 1 presents the steps for the implementation of the GA.

Genetic
Algorithm Tuning

Motion
Controller

Digital-Analog
interface

Sensors

Velocity
profile

∓

GUI

FPGA

Figure 8. Methodology for control and self-tuning.

Sensors 2019, 20, 6155 12 of 21

Algorithm 1: Pseudocode of the GA.

Set initial parameters;
Define the size of population P = 10;
Restrict the gain values 0 ≤ kp ≤ 100 ; 0 ≤ ki ≤ 200 ; 0 ≤ kd ≤ 10;
Creation of the initial population: G[kp ki kd];
Encode each element of the initial population in a fixed point format 8.8;
while J < 70 do

Select P couples of random parents ;
Perform the crossover operator with the generated pairs to obtain a population Gh;
Generate a random mutation probability pm ;
Perform the mutation operator with the population Gh;
if pm < 0.12 then

Perform the mutation operator with the population Gh;
end
for each element of G and Gh do

Send by USB to FPGA a triple of gains G[i];
Receive by USB from FPGA position θ, error e, control signal id and accelerometer;
Perform TA and TV calculations;
Compute the FFT with accelerometer data;
Evaluate the constraints and the objective function J;

end
Apply the selection operator by elitism;
Generate the new population;

end

Figure 9a shows the response of the servo system θ, where the control signal is ic, while the
reference that follows the system is denoted with θd and its value is 5π radians, which is equivalent
to 50 mm of advance applied to the GA for autotune. Figure 9b shows the response of the objective
function through the different generations. According to the configuration proposed, the number of
generations is 50; however, it is observed that from generation 20 a minimum value constant of the
objective function is reached and the response of the servo system is as desired according to Figure 9a.
This means that the servo system establishment time is smaller than 200 ms, the steady state error is
zero, and the maximum overshoot is 1.6%. In addition, the response of the control signal is smooth
and not saturated.

During the experiment, 15 replicates were carried out, consisting of the estimation of the
parameters a0, a1, and a2 of the discrete PID controller using the proposed GA. The replicates record
a certain number of iterations before the algorithm stopped due to the established stop condition.
The values reached the objective function, and the restrictions posed, as well as an indicator of whether
a desirable, feasible, or no solution was found. It is desired to achieve the setting time lower than
200 ms and with less than 5% overshoot. First, a statistical analysis of the completion of the algorithm
was performed. Figure 10a depicts the distribution of the number of iterations that are required
before the algorithm stopped by the magnitude of the objective function less than 70, according to the
literature. Because there is a bias to the right, the median is a useful statistic tool for describing the
centrality of the observations, which can be interpreted as the number of iterations required for the
algorithm convergence.

Sensors 2019, 20, 6155 13 of 21

0 0.05 0.1 0.15 0.2 0.25 0.3
-2

0

2

4

6

8

θ [rad]

d

i [A]d

e [rad]

Time [s]

θ [rad]

P
os

iti
on

 [r
ad

]

(a)

0 2 4 6 8 10 12 14
0

500

1000

1500

2000

J

IAE

TV

Generation

A
m
p
lit
u
d
e

(b)
Figure 9. Response of GA self-tuning PID controller. (a) Angular position, current and error of test
bench. (b) Objective function through generations.

Sensors 2019, 20, 6155 14 of 21

(a) (b)

(c) (d)

(e) (f)

(g)
Figure 10. Statistical analysis of the proposed GA (a) distribution of the number iterations, (b) analysis
of not feasible (NF), feasible (F) and feasible and suitable solution (F&S), (c) estimated standard
deviation of the objective reached, (d) obtained values of the objective function, (e) change of the
objective function, (f) change of the Integral Absolute Error (IAE) restriction, and (g) change of the
TV restriction.

Sensors 2019, 20, 6155 15 of 21

In this sense, the median of the necessary iterations was found to be 26 iterations, and using
Bootstrap the normal asymptotic confidence interval was estimated at 95% of this statistic; it turned
out that the average number of iterations required for convergence was between 19 and 33 iterations
(the exact interval was 19.29 to 32.71). Another interesting remark is that, even if the algorithm stops
due to an established stop condition, this does not guarantee at any time that a feasible or desirable
result will be found. In addition, it was found that the algorithm did not find a viable solution 3.22%
of the time, 44.84% a feasible but unwanted solution was found, and 54.84% of the time, a possible
and desired solution was reached (Figure 10b). According to the replicas, the 95% confidence intervals
were calculated for the event where an at least feasible solution was found and another for the event,
where an achievable and desired solution is found. In this way, the algorithm obtains a 95% confidence
and the desired solution between 36.30% and 72.22% of the time, and at least a feasible solution
between 81.49% and 99.83% of the time.

Regarding the objective functions, Figure 10c shows that the set of feasible and desirable solutions
achieves highly variable objectives, since the estimated standard deviation of the aim achieved in this
type of solution is 9.3468 units. While the other types of solutions have smaller variations, furthermore,
Figure 10c shows that the cube of solutions that limits the set of feasible and desirable solutions
contains in its way only possible solutions and not viable solutions. Additionally, Figure 10d highlights
the values that were reached by the objective function in the first generation of the algorithm and the
last age of the algorithm. It can be observed that the algorithm’s solutions are more variable at the
end of its execution and that the range of the initial objective is contained in the final goal, which may
be an explanation of the rapid convergence of the algorithm for this particular case. In this sense,
Figure 10e displays the change between the value of the objective function at the beginning of the
algorithm and at the end of it, where it can be shown that most of the changes are concentrated around
0. Thus, when applying a paired t-test to contrast the hypothesis that statistically, the algorithm does
not generate the value of the objective function with the assumption that if there is a statistically
significant change, it was found that the mean estimated change was −1.8288 units; but there is not
enough statistical evidence to rule out the hypothesis that statistically the algorithm does not generate
the value of the objective function (where the calculated t-statistic was −0.6733 with 14 degrees of
freedom and a p-value of 0.5117). However, this was not repeated in both restrictions.

Figure 10f shows that the ranges of the IAE restriction reached by each objective are mutually
exclusive. At the same time, Figure 10g depicts that the behavior observed by the restriction TV was
similar to that observed in the objective function, where it is also observed that the cube of solutions
that limits the set of feasible and desirable solutions contains in its way the only possible solutions and
not viable solutions. Nonetheless, as in the case of the objective function, it was not found that there
was a statistically significant change in the restrictions before and after the algorithm. In the case of
the IAE restriction, a mean shift in −1.9892 was estimated with an associated t statistic of −0.6256 of
14 degrees of freedom with a p-value of 0.5417; and, for the case of the TV restriction, a mean change of
0.1603393 was estimated with an associated t statistic of 0.0618 of 14 degrees of freedom and a p-value
of 0.9516.

The algorithm did not find a feasible solution 3.22% of the time, as shown in the aforementioned
statistical analysis. In case the algorithm is not converging, the outcome is visually manifested, since
both large energy consumption and vibrations present in the system. Therefore, it is possible to
implement an emergency stop function in the GUI for safety as in any control system.

The validation with the simulation was conducted once the operation of the controller was
implemented in the FPGA. Two tests were performed to observe the behavior of the sensor when steps
with a certain magnitude are supplied as inputs without GA. Finally, the behavior is compared to the
case when the input is supplied via trapezoidal speed profiles with GA. Figure 11a shows the response
of the system; the reference values applied in the control were 25π, −25π, and 0 rad equivalent to
250 mm, −250 mm, and 0 mm. It is observed that the system is able to reach the reference values;
however, it suffers from very abrupt changes, which can be seen in Figure 11c. Figure 11b shows

Sensors 2019, 20, 6155 16 of 21

the desired speed and angular velocity that were generated by the system. Moreover, Figure 11d
highlights the system error when both step inputs and control signal were supplied to the system.

0 5 10 15

Time [s]

-250

-200

-150

-100

-50

0

50

100

150

P
os

iti
on

 [r
ad

]

 [rad]

 [rad]

𝜃

𝜃d

(a)

0 5 10 15

Time [s]

-4

-3

-2

-1

0

1

2

V
el

oc
ity

 [r
ad

/s
]

×104

𝜔
𝜔d

rad
s[]

rad
s[]

(b)

0 5 10 15

Time [s]

-140

-120

-100

-80

-60

-40

-20

0

20

A
m

p
lit

u
d
e

acelerometer X axis

(c)

0 5 10 15

Time [s]

-200

-150

-100

-50

0

50

100

150

A
m

pl
itu

de

e [rad]
id [A]

(d)
Figure 11. Response of test bench with a step input applied without GA applied. (a) Angular position
and reference. (b) Angular and desired velocity. (c) Accelerometer X axis. (d) Error and control signal.

In the following test, the trapezoidal velocity profile of three points (25π, −25π and 0 rad
equivalent to 250 mm, −250 mm and 0 mm) with a maximum speed of 20π rad

s were applied.
Figure 12a,b show the system behavior when the reference in position and speed are applied,
respectively. It is also observed in Figure 12a that the magnitude of the error decreased considerably
when compared to the previous test. The control signal is kept at desired low levels, taking into
account that the maximum current is 4.9 A. Figure 12d provides important information regarding the
smooth movements generated by the proposed velocity profile.

Sensors 2019, 20, 6155 17 of 21

0 1 2 3 4 5 6 7 8

Time [s]

-80

-60

-40

-20

0

20

40

60

80

P
os

iti
on

 [r
ad

]

[rad]
 [rad]

𝜃

𝜃d

(a)

0 1 2 3 4 5 6 7 8

Time [s]

-80

-60

-40

-20

0

20

40

60

80

V
el

oc
ity

 [r
ad

/s
]

𝜔

𝜔d

rad
s[]

[]rad
s

(b)

0 1 2 3 4 5 6 7 8
Time [s]

-8

-6

-4

-2

0

2

4

6

8

Am
pl

itu
de

acelerometer X axis

(c)

0 1 2 3 4 5 6 7 8

Time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de

e [rad]
id [A]

(d)
Figure 12. Response of test bench with a trapezoidal velocity profile and GA applied. (a) Angular
position and reference. (b) Angular and desired velocity. (c) Accelerometer X axis. (d) Error and
control signal.

Figure 13a,b show the frequency analysis via the FFT algorithm output when step inputs
and trapezoidal velocity profile were applied, respectively. When the system presents step inputs,
the vibrations of the system increase, which may cause failures in the future.

0 10 20 30 40 50 60 70 80 90 100
f (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

|X
(f)

|

(a)

0 10 20 30 40 50 60 70 80 90 100
f (Hz)

0

0.5

1

1.5

2

2.5

|X
(f)

|

(b)
Figure 13. Response of accelerometer with the Fast Fourier Transformation (FFT) applied. (a) Input
step without the GA. (b) Trapezoidal velocity profile applying the GA.

Sensors 2019, 20, 6155 18 of 21

When a speed profile is applied these vibrations tend to decrease considerably. This way, greater
performance is supported and a longer life time is provided for the translational mechatronics system.
According to the tests, the first case employed conventional tuning method. However, only trajectory
tracking of servo systems is not sufficient for control purposes (i.e., reaching the reference in a short
time), since, if large displacements are desired, then the settling times are affected between 1 and
3 s, moreover, the overshoot becomes 75% and even 160% during direction changes (see Figure 11a).
Figure 11d highlight that increased speeds and accelerations generate jerks, so the energy consumption
increases significantly and sometimes demands 100% power supply (saturation 4.9 A and −4.9 A).
Nevertheless, if the proposed auto-tuning algorithm is implemented and a movement profile is applied
to limit the maximum speeds of the system, then the maximum error of reference tracking is 0.15 rad or
0.17%, as shown in Figure 12a. In this case, the system speed is limited to the defined maximum speed
ωmax = 20π rad

s and follows the velocity profile reference with an overshoot less than 2%, as shown
in Figure 12b. This reduces the maximum current draw by 92% (0.4 A and −0.4 A), as shown in
Figure 12d. Based on the response of the accelerometer, a comparison between the tests were carried
out in Figure 13. The frequencies that were greater than 60 Hz were eliminated by applying the tuning
algorithm and movement profiles. The 55 Hz frequency component of 0.4 magnitude found in the first
spectrum was also eliminated. Moreover, the low frequency components (i.e., between 1 and 60 Hz) of
magnitude less than 0.2 were also significantly attenuated in the spectrum.

6. Conclusions

This paper presents the development and update of a control system employed for a translational
mechatronics apparatus (servo system) based-on open source software and hardware tools. The work
shows the complete development and analysis of the servo system model, from the validation of
the correct operation of the controller through simulation, to solutions for the implementation of
the designed controller. Furthermore, a methodology was developed for the auto tuning of the
employed PID controller for efficient trajectory tracking in the analyzed linear movement system.
The control system was implemented in a low-cost FPGA ICE40UP5k of the Lattice family. All of
the proposed modules are portable for any FPGA manufacturer. According to Table 3, a count was
made of the control applications where an update of the control system was performed, showing that
this is one of the first works where open source tools were used for programming FPGA. In addition,
such methodology was elaborated, which performs on-line auto-tuning of the servo system with
vibration monitoring.

Table 3. Background of open controllers.

Work Controller Manufacturer Programming Tuning Sample Time

Proposed FPGA ICE40 UltraPlus 5k Lattice Open tool GA 0.1 ms
[1] FPGA Spartan-3 Xilinx ISE-Xilinx Empiric 1 ms
[2] FPGA Spartan-3 Xilinx ISE-Xilinx - -
[3] FPGA Altera MATLAB/Simulink - -
[5] FPGA ICE40hx4k Lattice Open tool Empiric -

[11] Raspberry Pi-FPGA ZYNQ 7 Xilinx Vivado-Xilinx - -
[14] FPGA Spartan-3 Xilinx LabVIEW NI Empiric 0.1 ms
[15] PC-Arduino Arduino MATLAB/Simulink pole assignment 60 ms
[16] PC-Launchpad-Arduino Texas Instruments - - 50 ms
[17] FPGA Max10 Altera NiosIIsoft - 0.2 ms
[26] Raspberry Pi-FPGA ZYNQ 7 Xilinx Vivado-Xilinx Fuzzy 5 ms

According to Table 1, it is also observed that open source tools have a higher performance,
because of distribution and management of logical resources. Additionally, it has the advantage
of being multiplatform, that could be executed on Linux, Windows or MAC OS operating systems.
A free code GUI was developed in Python for the monitoring of both system variables and vibrations
generated by the mechanical system. This GUI is also responsible for both configuring the gains
through serial communication and calculating the trapezoidal velocity profiles. The profile calculation

Sensors 2019, 20, 6155 19 of 21

algorithm can be easily replaced to test different velocity profiles. The cost of control board is around
$25 dollars. Figure 12 shows that the PID controller is able to follow any path for the translational
mechatronics system with an error less than 0.2%. The vibration monitoring system offers an alternative
for detecting faults in the operation of the translational mechatronics system. This feature can be used
as a type of predictive maintenance. As future work, we are working on implementing two more axes
to complement the control of the coordinate table and implement GA on FPGA for different lineal
control techniques.

Author Contributions: Conceptualization, E.E.C.-M. and J.R.-R.; Methodology, E.E.C.-M. and R.V.C.-S.; Validation,
E.E.C.-M., R.V.C.-S. and J.R.G.-M.; Formal analysis, E.E.C.-M., and J.R.-R; Investigation and Visualization,
E.E.C.-M., J.R.G.-M., and J.R.-R.; Data curation, E.E.C.-M., J.R.G.-M., and R.V.C.-S.; Writing—original draft
preparation; Writing—original draft, review & editing, all the authors. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the “Consejo Nacional de Ciencia y Tecnología (CONACYT)” and also to
“Programa para el Desarrollo Profesional Docente” (PRODEP).

Acknowledgments: We would like to thank the Graduate Studies Division from the Faculty of Engineering at
Universidad Autónoma de Querétaro for their support throughout the Ph.D. studies. We are very thankful with
Ákos Odry for the support in this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PID Proportional-Integral-Derivative
CNC Computerized numerical control
DC Direct Current
PMSM Permanent Magnet Synchronous Motor
RPM Revolutions Per Minute
PPR Pulse Per Revolution
MCU Microcontroller
FPGA Field Programmable Gate Array
HDL Hardware Description Language
GUI Graphical User Interface
GA Genetic Algorithm
IAE Integral Absolute Error
TV Total Variation
FIFO First Input First Output
PWM Pulse Width Modulation
UART Universal Asynchronous Receiver-Transmitter
RAM Random-Access Memory
DAC Digital-Analog Converter
DOF Degree Of Freedom
SPI Serial Peripheral Interface
I2C Inter-Integrated Circuit
DSP Digital Signal Processor
FFT Fast Fourier Transform

References

1. Martínez-Prado, M.A.; Rodríguez-Reséndiz, J.; Gómez-Loenzo, R.A.; Herrera-Ruiz, G.; Franco-Gasca, L.A.
An FPGA-based open architecture industrial robot controller. IEEE Access 2018, 6, 13407–13417. [CrossRef]

2. Morales-Velazquez, L.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R.A.; Herrera-Ruiz, G.; Cabal-Yepez, E.
Open-architecture system based on a reconfigurable hardware–software multi-agent platform for CNC
machines. J. Syst. Archit. 2010, 56, 407–418. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2797803
http://dx.doi.org/10.1016/j.sysarc.2010.04.009

Sensors 2019, 20, 6155 20 of 21

3. Jokić, D.; Lubura, S.; Rajs, V.; Bodić, M.; Šiljak, H. Two Open Solutions for Industrial Robot Control: The Case
of PUMA 560. Electronics 2020, 9, 972. [CrossRef]

4. Pritschow, G.; Altintas, Y.; Jovane, F.; Koren, Y.; Mitsuishi, M.; Takata, S.; Van Brussel, H.; Weck, M.;
Yamazaki, K. Open controller architecture—Past, present and future. CIRP Ann. 2001, 50, 463–470.
[CrossRef]

5. Ordóñez Cerezo, J.; Castillo Morales, E.; Cañas Plaza, J.M. Control system in open-source FPGA for a
self-balancing robot. Electronics 2019, 8, 198. [CrossRef]

6. Brant, A.; Lemieux, G.G. ZUMA: An open FPGA overlay architecture. In Proceedings of the 2012 IEEE 20th
International Symposium on Field-Programmable Custom Computing Machines, Toronto, ON, Canada,
29 April–1 May 2012; pp. 93–96.

7. Romanov, A.; Romanov, M.; Kharchenko, A. FPGA-based control system reconfiguration using open source
software. In Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and
Electronic Engineering (EIConRus), St. Petersburg, Russia, 1–3 February 2017; pp. 976–981.

8. Monmasson, E.; Cirstea, M.N. FPGA design methodology for industrial control systems—A review.
IEEE Trans. Ind. Electron. 2007, 54, 1824–1842. [CrossRef]

9. Wolf, C.; Lasser, M. Project Icestorm. 2015. Available online: Http://www.clifford.at/icestorm (accessed on
20 August 2019).

10. Emre, S.; Haoyong, Y.; Kouhei, O. A Practical Tuning Method for the Robust PID Controller with Velocity
Feed-Back. Machines 2015, 3, 208–222.

11. García-Martínez, J.R.; Reséndiz, J.R.; Prado, M.Á.M.; Miguel, E.E.C. Assessment of jerk performance s-curve
and trapezoidal velocity profiles. In Proceedings of the 2017 XIII International Engineering Congress
(CONIIN), Santiago de Queretaro, Mexico, 15–19 May 2017; pp. 1–7.

12. Biagiotti, L.; Melchiorri, C.; Moriello, L. Optimal trajectories for vibration reduction based on exponential
filters. IEEE Trans. Control Syst. Technol. 2015, 24, 609–622. [CrossRef]

13. Yoon, H.; Chung, S.; Kang, H.; Hwang, M. Trapezoidal Motion Profile to Suppress Residual Vibration of
Flexible Object Moved by Robot. Electronics 2019, 8, 30. [CrossRef]

14. Ponce, P.; Molina, A.; Tello, G.; Ibarra, L.; MacCleery, B.; Ramirez, M. Experimental study for FPGA PID
position controller in CNC micro-machines. IFAC-PapersOnLine 2015, 48, 2203–2207. [CrossRef]

15. Concha Sánchez, A.; Figueroa-Rodríguez, J.F.; Fuentes-Covarrubias, A.G.; Fuentes-Covarrubias, R.; Gadi, S.K.
Recycling and Updating an Educational Robot Manipulator with Open-Hardware-Architecture. Sensors
2020, 20, 1694. [CrossRef] [PubMed]

16. Correa, J.E.; Toombs, N.; Ferreira, P.M. A modular-architecture controller for CNC systems based on
open-source electronics. J. Manuf. Syst. 2017, 44, 317–323. [CrossRef]

17. Ricci, S.; Meacci, V. Simple torque control method for hybrid stepper motors implemented in FPGA.
Electronics 2018, 7, 242. [CrossRef]

18. Lai, C.K.; Ciou, J.S.; Tsai, C.C. The Modelling, Simulation and FPGA-Based Implementation for Stepper
Motor Wide Range Speed Closed-Loop Drive System Design. Machines 2018, 6, 56. [CrossRef]

19. Shao, X.; Sun, D. Development of an FPGA-based motion control ASIC for robotic manipulators.
In Proceedings of the 2006 6th World Congress on Intelligent Control and Automation, Dalian, China,
21–23 June 2006; Volume 2, pp. 8221–8225.

20. Shao, X.; Sun, D.; Mills, J.K. A new motion control hardware architecture with FPGA-based IC design for
robotic manipulators. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation
(ICRA 2006), Orlando, FL, USA, 15–19 May 2006; pp. 3520–3525.

21. Jimenez-Fernandez, A.; Jimenez-Moreno, G.; Linares-Barranco, A.; Dominguez-Morales, M.J.; Paz-Vicente, R.;
Civit-Balcells, A. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost
FPGAs. Sensors 2012, 12, 3831–3856. [CrossRef]

22. Alecsa, B.; Cirstea, M.N.; Onea, A. Simulink modeling and design of an efficient hardware-constrained
FPGA-based PMSM speed controller. IEEE Trans. Ind. Informatics 2012, 8, 554–562. [CrossRef]

23. Folea, S.C.; Moiş, G.; Muresan, C.I.; Miclea, L.; De Keyser, R.; Cirstea, M.N. A portable implementation on
industrial devices of a predictive controller using graphical programming. IEEE Trans. Ind. Informatics 2016,
12, 736–744. [CrossRef]

http://dx.doi.org/10.3390/electronics9060972
http://dx.doi.org/10.1016/S0007-8506(07)62993-X
http://dx.doi.org/10.3390/electronics8020198
http://dx.doi.org/10.1109/TIE.2007.898281
Http://www. clifford. at/icestorm
http://dx.doi.org/10.1109/TCST.2015.2460693
http://dx.doi.org/10.3390/electronics8010030
http://dx.doi.org/10.1016/j.ifacol.2015.06.415
http://dx.doi.org/10.3390/s20061694
http://www.ncbi.nlm.nih.gov/pubmed/32197400
http://dx.doi.org/10.1016/j.jmsy.2017.04.013
http://dx.doi.org/10.3390/electronics7100242
http://dx.doi.org/10.3390/machines6040056
http://dx.doi.org/10.3390/s120403831
http://dx.doi.org/10.1109/TII.2012.2193891
http://dx.doi.org/10.1109/TII.2016.2532118

Sensors 2019, 20, 6155 21 of 21

24. Reynoso-Meza, G.; Sanchis, J.; Blasco, X.; Martínez, M. Algoritmos Evolutivos y su empleo en el ajuste de
controladores del tipo PID: Estado Actual y Perspectivas. Rev. Iberoam. AutomÁTica E Informática Ind. RIAI
2013, 10, 251–268. [CrossRef]

25. Hernández-Guzmán, V.M.; Silva-Ortigoza, R.; Carrillo-Serrano, R.V. Control Automático: Teoría de diseño,
Construcción de Prototipos, Modelado, Identificación y Pruebas Experimentales; Colección CIDETEC: México D.F.,
México, 2013; p. 706.

26. García-Martínez, J.R.; Rodríguez-Reséndiz, J.; Cruz-Miguel, E.E. A New Seven-Segment Profile Algorithm
for an Open Source Architecture in a Hybrid Electronic Platform. Electronics 2019, 8, 652. [CrossRef]

27. Fang, Y.; Hu, J.; Liu, W.; Shao, Q.; Qi, J.; Peng, Y. Smooth and time-optimal S-curve trajectory planning for
automated robots and machines. Mech. Mach. Theory 2019, 137, 127–153. [CrossRef]

28. Heo, H.J.; Son, Y.; Kim, J.M. A Trapezoidal Velocity Profile Generator for Position Control Using a Feedback
Strategy. Energies 2019, 12, 1222. [CrossRef]

29. Yang, X.; Chen, X.; Xia, R.; Qian, Z. Wireless Sensor Network Congestion Control Based on Standard Particle
Swarm Optimization and Single Neuron PID. Sensors 2018, 18, 1265. [CrossRef] [PubMed]

30. Mu, S.; Goto, S.; Shibata, S.; Yamamoto, T. Intelligent position control for pneumatic servo system based on
predictive fuzzy control. Comput. Electr. Eng. 2019, 75, 112–122. [CrossRef]

31. Xin, W.; Ran, L.; Yanghua, W.; Yong, P.; Bin, Q. Self-tuning PID controller with variable parameters based
on particle swarm optimization. In Proceedings of the 2013 Third International Conference on Intelligent
System Design and Engineering Applications, Hong Kong, China, 16–18 January 2013; pp. 1264–1267.

32. Bandyopadhyay, R.; Chakraborty, U.K.; Patranabis, D. Autotuning a PID controller: A fuzzy-genetic
approach. J. Syst. Archit. 2001, 47, 663–673.

33. Flores-Morán, E.; Yánez-Pazmiño, W.; Barzola-Monteses, J. Genetic algorithm and fuzzy self-tuning PID for
DC motor position controllers. In Proceedings of the 2018 19th International Carpathian Control Conference
(ICCC), Szilvasvarad, Hungary, 28–31 May 2018; pp. 162–168.

34. Yu, H.; Lee, H.; Lee, S.; Kim, Y.; Lee, H.M. Recent advances in FPGA reverse engineering. Electronics 2018,
7, 246. [CrossRef]

35. Wu, X.; Goodall, R. One-bit processing for digital control. IEE Proc.-Control Theory Appl. 2005, 152, 403–410.
[CrossRef]

36. Lee, W.G.; Lee, J.W.; Hong, M.S.; Nam, S.H.; Jeon, Y.; Lee, M.G. Failure diagnosis system for a ball-screw by
using vibration signals. Shock Vib. 2015. [CrossRef]

37. Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review.
Mech. Syst. Signal Process. 2018, 108, 33–47.

38. Khadersab, A.; Shivakumar, S. Vibration analysis techniques for rotating machinery and its effect on bearing
faults. Procedia Manuf. 2018, 20, 247–252. [CrossRef]

39. Córdova, E.P.; Loja, R.V.S.; Cabrera, D.; Cerrada, M. Adquisición de señales de vibración y emisión acústica
para el diagnóstico de severidad de fallos en maquinaria rotativa. Rev. Colomb. Tecnol. Av. (RCTA) 2019.
[CrossRef]

40. Saucedo-Dorantes, J.J.; Garcia-Ramirez, A.G.; Jauregui-Correa, J.C.; Osornio-Rios, R.A.; Garcia-Perez, A.;
Romero-Troncoso, R.J. Reliable methodology for gearbox wear monitoring based on vibration analysis.
In Proceedings of the IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas,
TX, USA, 29 October–1 November 2014; pp. 3381–3385.

41. Berri, P.C.; Dalla Vedova, M.D.; Maggiore, P. A Lumped Parameter High Fidelity EMA Model for
Model-Based Prognostics. In Proceedings of the 29th ESREL, Hannover, Germany, 22–26 September 2019;
Research Publishing Services: Singapore, 2019; pp. 1086–1093. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.riai.2013.04.001
http://dx.doi.org/10.3390/electronics8060652
http://dx.doi.org/10.1016/j.mechmachtheory.2019.03.019
http://dx.doi.org/10.3390/en12071222
http://dx.doi.org/10.3390/s18041265
http://www.ncbi.nlm.nih.gov/pubmed/29671822
http://dx.doi.org/10.1016/j.compeleceng.2019.02.016
http://dx.doi.org/10.3390/electronics7100246
http://dx.doi.org/10.1049/ip-cta:20055118
http://dx.doi.org/10.1155/2015/435870
http://dx.doi.org/10.1016/j.promfg.2018.02.036
http://dx.doi.org/10.24054/16927257.v0.n0.2018.3309
http://dx.doi.org/10.3850/978-981-11-2724-3_0480-cd
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Dynamic Model of a Servo System
	Controller and Tuning
	Reconfigurable Hardware Description
	Results and Discussion
	Conclusions
	References

