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Selective mitochondrial degradation through autophagy (mitophagy) has emerged as an important homeostatic mechanism in a
variety of organisms and contexts. Complete clearance of mitochondria can be observed during normal maturation of certain
mammalian cell types, and during certain forms of neuronal cell death. In recent years, autophagy dysregulation has been
implicated in toxin-injured dopaminergic neurons as well as in major genetic models of Parkinson’s disease (PD), including
α-synuclein, leucine-rich repeat kinase 2 (LRRK2), parkin, PTEN-induced kinase 1 (PINK1), and DJ-1. Indeed, PINK1-parkin
interactions may form the basis of a mechanism by which dissipation of the inner mitochondrial membrane potential can trigger
selective mitochondrial targeting for autophagy. Multiple signals are likely to exist, however, depending upon the trigger for
mitophagy. Similarly, the regulation of basal or injury-induced autophagy does not always follow canonical pathways described
for nutrient deprivation. Implications of this regulatory diversity are discussed in the context of neuronal function and survival.
Further studies are needed to address whether alterations in autophagy regulation play a directly injurious role in PD pathogenesis,
or if the observed changes reflect impaired, appropriate, or excessive autophagic responses to other forms of cellular injury.

1. Introduction

Macroautophagy represents an evolutionarily conserved
response to nutrient stresses, which also plays an increas-
ingly recognized role in basal cellular maintenance and
in cellular responses to injury. The important role of
macroautophagy in brain development and quality control
was highlighted by observations that mice engineered for
deficiency in key autophagy genes exhibit spontaneous
neurodegeneration with ubiquitinated protein aggregates [1,
2]. Macroautophagy (hereafter, autophagy unless otherwise
specified) is also implicated in mitochondrial quality control,
as altered mitochondria accumulate under basal conditions
of autolysosomal dysfunction [3–6], and mitophagy is
further induced in cells exhibiting damaged mitochondria
[7, 8]. Mitochondrial autophagy induced in response to
mitochondrial damage or neuronal injury may play either
prosurvival [7, 9] or prodeath roles [10, 11]. As mechanisms
underlying different models of injury-induced autophagy

and mitophagy are discovered, the concept of distinct
regulatory inputs to a core autophagy pathway has emerged.

In sympathetic neurons, it was noted that the phos-
phoinositide 3-kinase inhibitor 3-methyladenine (3-MA)
delayed apoptosis by reducing cytochrome c release and
caspase activation [12]. Subsequent studies in the same
system resulted in the first report of complete and selective
clearance of mitochondria from neurons [13]. Combined
with developmental observations of selective mitochondrial
clearance in reticulocytes, lens, and lymphocytes [14, 15],
these findings implicate the existence of specific mechanisms
targeting mitochondria for autophagic clearance (although
nonautophagic mechanisms may also contribute [16, 17]).
Autophagy dysregulation is observed in a growing number
of toxic/environmental and genetic models of Parkinson’s
disease (PD). Recent breakthroughs show a key role for two
recessive Parkinsonian genes, PINK1 and parkin, in the spec-
ification of depolarized mitochondria for sequestration in
aggresomes and/or autophagosomes [18, 19]. The potential
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role of autophagy in PD models is reviewed in relation to
diverse regulatory pathways feeding into the core autophagy
machinery.

2. Autophagy Dysregulation in
Parkinson’s Disease

2.1. Sporadic PD. In PD patient tissues, evidence of apoptosis
and of autophagy is observed in substantia nigra neurons
[20]. Additional studies demonstrate mitophagy in the sub-
stantia nigra neurons of patients with PD spectrum diseases
[21], and in Alzheimer’s disease [22]. The ultrastructural
observations of mitophagy in PD are correlated with a pecu-
liar punctate/vesicular staining pattern for phosphorylated
extracellular signal-regulated protein kinases (ERK1/2) [23,
24]. Although there have not been quantitative ultrastruc-
tural studies of autophagolysosomal structures in PD tissues,
analysis of punctate/vesicular phospho-ERK1/2 indicates
preferential involvement of the substantia nigra ventrolateral
tier [21]. Incidental Lewy body disease, which is thought to
represent a preclinical form of PD, exhibits an intermediate
level of involvement [21]. In contrast, substantia nigra
dopaminergic neurodegeneration associated with a distinct
disease, progressive supranuclear palsy, do not show these
changes (author’s unpublished data), suggesting specificity
for synucleinopathies.

2.2. Toxin Models of PD. Autophagy has been implicated in
neurotoxin and environmental toxin models of dopamin-
ergic cell death. Early and late autophagosomes can be
identified by ultrastructural analysis, or by monitoring
autophagosome-associated microtubule-associated protein 1
light chain 3 (LC3). Cytosolic LC3 migrates as an LC3-I
band; upon stimulation of autophagy, LC3 is covalently
conjugated to phospholipids, resulting in a faster migrat-
ing LC3-II band and correlating with punctate redistri-
bution of the LC3 immunofluorescent signal. Increased
autophagosomes have been described in acute injury
models involving methamphetamine [25, 26], high doses
of dopamine [27], 1-methyl-4-phenylpyridinium (MPP+)
[10], 6-hydroxydopamine [11], the environmental toxicants
rotenone [28], and paraquat [29]. In the case of toxins that
are weak bases, it is not clear whether increased autophago-
somes reflect increased autophagy induction or impaired
completion of autophagic degradation from lysosomal pH
elevation. Moreover, the role of autophagy in cell survival
and cell death has been model-dependent. In some cases
the “autophagy inhibitor” 3-MA exacerbated cell death [26]
and autophagy stimulation conferred protection [28], but in
other cases 3-MA ameliorated cell death [27, 30].

3-MA is a phosphoinositide 3-kinase (PI3K) inhibitor,
which acts to inhibit autophagy by blocking the activity of
the beclin 1-Vps34/class III PI3K complex. Interpretation of
increased cell death in the presence of 3-MA, however, is
complicated due to the ability of 3-MA to inhibit not only
the class III PI3K involved in beclin 1-dependent autophagy
pathways, but also the neuronal survival kinase Akt that is
downstream of class I PI3K [12]. Due to opposite effects

of class I and class III PI3Ks on autophagy [31], 3-MA
can reduce or promote autophagy depending on the relative
activation state of the two pathways [32]. 3-MA also has
direct effects on glucose/glycogen metabolism independent
of its autophagy-modulating effects and elevates lysosomal
pH in living hepatocytes, but not isolated lysosomes [33].
Thus, it is essential to verify that 3-MA inhibits autophagy
in the particular experimental condition being studied, and
confirmation using more selective molecular inhibition of
autophagy may be preferable.

While neuroprotective effects of autophagy in toxin mod-
els have been correlated with α-synuclein sequestration [26],
noncanonical beclin 1-independent autophagy/mitophagy
contributes to MPP+ toxicity, as shown by RNA interference
knockdown of Atg7 and LC3/Atg8 [10]. This implicates
excessive activation of autophagy, since the participation of
beclin 1 in autophagy is downregulated by binding to Bcl-2
[34] or rubicon [35, 36]. Blunting the autophagy response
has also been shown using dominant negative Vps34 to
prevent hydrogen peroxide-mediated lysosomal leakage and
caspase activation [37]. Likewise, a compound that activates
mTOR to suppress autophagy confers protection from
oxidative stress in neurons [30] while rapamycin exacerbates
toxicity in this system and in primary neurons treated with
MPP+ [38].

2.3. Genetic Models of PD. The dominant PD-linked protein
α-synuclein exhibits consensus motifs for lysosomal degra-
dation by chaperone-mediated autophagy (CMA), which
is distinct from macroautophagy in its regulation. Mutant
forms of α-synuclein bind the CMA receptor but are
not internalized, inhibiting this degradative pathway in
isolated liver lysosomes [39]. Moreover, dopamine-oxidized
forms of α-synuclein show the same effect [40]. Both
CMA and macroautophagy are involved in degrading wild-
type α-synuclein in neurons [41], and A53T α-synuclein
expression impairs CMA in living cells [42]. While upreg-
ulation of macroautophagy can mediate clearance of α-
synuclein aggregates in metabolically intact cells [43], reports
that α-synuclein can affect mitochondrial metabolism [44]
and macroautophagy efficiency [45] raise additional ques-
tions. Indeed, CMA impairment induces upregulation of
macroautophagy, which appears to contribute to neuron
cell death [42]. Interestingly, low-dose application of the
fusion inhibitor bafilomycin can protect against α-synuclein
pathology in C. elegans [46]. The reciprocal cross-regulation
of autophagy and of α-synuclein complicates analysis and
creates the possibility of damaging feed-forward cycles.

One of the prominent phenotypes attributed to the dom-
inant and sporadic PD-implicated protein LRRK2 is mod-
ulation of the neuritic arbor. Increased LRRK2 activity
and PD-linked LRRK2 mutants cause simplification and
shortening of neuritic projections while knockdown of
LRRK2 expression results in enhanced neuritogenesis [47].
LRRK2-G2019S elicits neuritic autophagy, which mediates
neurite shortening in retinoic acid-differentiated SH-SY5Y
cells [48] and in primary cortical neurons [49]. LRRK2
associates with multivesicular bodies, and LRRK2-R1441G
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elicits increased autophagosomes attributed to disrupted
autophagic flux in HEK-293 cells [50]. Whether cell type
differences or somatic versus neuritic differences affect flux
responses to mutant LRRK2 remain to be established, as
estimates of autophagy induction and flux rates are inferred
unless pulse-chase techniques are used.

Parkin deficiency causes different phenotypes in different
model systems. In parkin knockout mice, the primary
defect relates to neurotransmission [51, 52]. In Drosophila,
however, prominent mitochondrial degeneration in flight
muscles and sperm is observed [53]. A pivotal discovery
for parkin function was made in HeLa cells treated with
the mitochondrial depolarizing agent FCCP or CCCP [18].
Parkin translocation to FCCP-depolarized mitochondria
results in their eventual clearance through Atg5-dependent
mechanisms, and this observation has led to an explosion
of papers on the subject, each of which sheds additional
insight into molecular mechanisms of mitochondrial cargo
specification (discussed below). While overexpressed parkin
enhances mitophagy in FCCP-treated cells [18] and in
PINK1-deficient cells [7], the role of endogenous parkin
in this setting is less clear. Translocation of tagged parkin
to mitochondria and its ubiquitinating activity is essential
for enhanced mitochondrial autophagy in FCCP/CCCP-
treated cells. However, parkin monoubiquitination of Bcl2
enhances the ability of Bcl2 to bind beclin 1 and suppress
autophagy, and RNAi knockdown of parkin increases the
LC3-II band in 293, SH-SY5Y, and primary neuron cultures
[54]. Thus, depending on subcellular localization and/or
target accessibility, parkin can act to either promote mito-
chondrial specification for autophagy or to downregulate
general autophagy.

PINK1 knockdown cells exhibit mitochondrial func-
tional and morphological abnormalities [7, 55–57], with
enhanced autophagic clearance of mitochondria [7]. On
the other hand, overexpressed, full-length PINK1 reduces
unconjugated LC3 [58] and increases parkin localization to
mitochondria ([59, 60] and discussed below). Endogenous
PINK1 in SH-SY5Y cells is predominantly processed [7],
and PINK1 is processed in Drosophila by the membrane
protease Rhomboid-7 [61]. As mitochondrial protein import
and processing depends upon an intact inner mitochondrial
membrane potential, stabilization of full-length PINK1 at
the surface of depolarized mitochondria initiates PINK1-
dependent mitophagy enhancement [62, 63].

Mitochondrial dysfunction observed in DJ-1 null cells is
accompanied by a baseline decrease in the activated LC3-II
band [6, 64]. However, whether this reflects increased or
decreased autophagic flux remains controversial, and an
increase in markers of compensatory mitophagy was recently
reported in DJ-1 shRNA-expressing neuroblastoma cells
[65]. DJ-1 null fibroblasts show reductions in expression of
rapamycin-induced autophagosome markers in one study,
interpreted as indicative of decreased autophagic induction
[6]. Based on decreased basal levels of the autophagy
substrate and cargo adaptor p62, however, another study
concluded increased autophagic flux [64]. Flux analysis of
autophagy or mitophagy can be technically challenging,
but it is also possible that DJ-1 has different effects on

basal versus induced autophagy. Interestingly, DJ-1 null cells
exhibited decreased phosphorylation of ERK1/2 [6], which
mediates autophagy/mitophagy in several systems [10, 11,
48, 66, 67]. DJ-1 siRNA has also been reported to inhibit
paraquat-induced autophagy [68].

3. Diversity in the Regulation of Autophagy

3.1. Canonical Pathway of Starvation-Induced Autophagy.
The identification of yeast genes necessary for autophagy,
and related membrane trafficking events revolutionized the
study of mitophagy in health and disease [69]. In brief,
amino acid signals and insulin signals converge in turning
on the mammalian target of rapamycin (mTOR), which
suppresses autophagy. Amino acids also suppress ERK1/2
signaling. Loss of insulin signals, loss of amino acids,
or direct inhibition of mTOR then serve to derepress
autophagy induction, while 5

′
adenosine monophosphate-

activated protein kinase (AMPK) senses low energy to turn
on autophagy. Beclin 1-Vps34-mediated changes in lipid
composition are needed to define the phagophore and
nucleate the membrane deposition of ubiquitin-like proteins
Atg12 and LC3 in response to deprivation of growth factors
or nutrients. Because beclin 1 can be found in several
competing protein complexes [34–36], beclin 1-dependence
has been proposed to serve a potential rheostat role in fine
tuning levels of autophagy.

3.2. Mitophagy Regulation during Nutrient-Deprivation-
Induced Autophagy. Starvation-induced autophagy is tra-
ditionally thought of as a nonselective bulk degradation
process, with nonselective or bystander engulfment of
mitochondria. However, yeast studies suggest a degree
of mitochondrial recognition even in this process. The
clearance of presumably undamaged mitochondria during
nitrogen starvation requires the presence of an outer mito-
chondrial membrane protein Uth1p, [70], which does not
have a clear mammalian homolog. Efficient mitochondrial
autophagy in stationary-phase yeast are also regulated by
an intermembrane space protein Aup1p [71]. Yeast cells
grown in lactate undergo mitochondrial autophagy. Recently,
the mitochondrial protein Atg32 was identified as a yeast
mediator of selective mitophagy [72]. Atg 32 binds to Atg11,
a known adaptor protein for selective autophagy in yeast.
This system recruits mitochondria to autophagosomes, but
does not directly regulate macroautophagy induction itself.

3.3. Beclin 1-Independent Injury-Induced Autophagy. Mito-
phagy is induced in neuronal cells and primary neurons
injured with MPP+. Interestingly, in this system, autophagy
induction proceeds even in the presence of PI3K inhibitors or
siRNA knockdown of beclin 1 [10]. PI3K inhibitors are also
unable to inhibit the selective clearance of photodamaged
mitochondria in hepatocytes [73]. Beclin 1-independent
mitophagy would no longer be negatively regulated by Bcl2
or rubicon, and thus, is more likely to allow a harmful level
of autophagy activation. While the mechanism of beclin 1-
independent autophagy has not been defined, it could reflect
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alternative enzymatic means of increasing localized mem-
brane concentrations of phosphatidylinositol 3-phosphate
(PI(3)P) [38]. Alternatively, there could be other pathways
of nucleation in which membrane changes mediated by ROS
or kinase activation can substitute for PI(3)P in recruiting
Atg18–Atg2 [74] or Atg16L to membranes.

Beclin 1-independent autophagy has been described
in several model systems. As inhibition of autophagy is
protective in these models [10, 48, 75–77], these observations
support the concept of harmful overactivation of autophagy.
It remains to be determined whether this is accidental, or
forms part of a programmed cell death pathway.

3.4. Quality Control Autophagy and Cargo Regulation. Other
variations from classic rapamycin-induced autophagy are
beginning to emerge. Both basal autophagy and injury-
induced autophagy play roles in organellar and protein qual-
ity control. A key feature of quality control-related autophagy
relates to the ability of the cellular autophagy machinery to
selectively remove damaged proteins and organelles while
sparing their normal counterparts.

Interestingly, studies of quality control autophagy reveal
requirements for HDAC6 and actin remodeling for matura-
tion and completion of autophagy [78]. HDAC6-dependent
retrograde transport of autophagy substrates and mediators
to the perinuclear region is necessary for degradation of
aggregated huntingtin [79], and selective transport may
represent one mechanism of cargo enrichment. For pro-
tein aggregates, another mechanism of cargo recruitment
involves direct adaptor protein interactions mediated by
p62, which bridges ubiquitin on the cargo with LC3 on the
autophagic membrane [80, 81]. Other adapter proteins that
have been identified include NBR1, which can cooperate
with p62 [82], and Nix, which binds to GABARAP-L1 [83].
While specific proteins may differ between yeast and mam-
mals, the general concept of cargo receptors and adapter
proteins that link into the autophagy machinery represents
a rapidly emerging area of research.

3.5. Depolarization-Induced Mitophagy. One of the exciting
developments in mitophagy regulation is the use of chem-
ically depolarized mitochondria to dissect proteins needed
for mitochondrial clearance. With nutrient deprivation,
depolarization of mitochondria can occur after sequestration
by GFP-LC3 [84], preceding their entry into acidic lysosomal
compartments in rat hepatocytes [85]. Live imaging studies
also show that mitotracker-labeled mitochondria disappear
within 8 minutes of entering lysotracker-stained lysosomes
in hepatocytes [86]. Thus, the observation of “mitophago-
somes” is a transient event, most readily observed when
elicited by synchronized chemical insults, or with inhibition
of autophagosome maturation [11, 87].

The past year has witnessed significant advances in
delineating mechanism(s) by which depolarization promotes
mitophagy, subsequent to the original observation that
the ubiquitin ligase parkin translocates to mitochondria in
FCCP/CCCP-treated cells to mediate their clearance [18].
Of note is the observation that parkin functions only in the

cargo recruitment step of mitophagy, but other mechanisms
involving Nix mediate the induction of autophagy by depo-
larization [8]. Subsequent discussion will focus on surface
changes on depolarized mitochondria that could mediate
their autophagic recruitment in the depolarization model.

Depolarization inhibits membrane potential-dependent
proteolytic processing of PINK1 [88]. This, in turn, causes
full-length PINK1 to accumulate at the surface of mito-
chondria [62, 63], which is necessary for stable and global
association of parkin with mitochondria in the FCCP/CCCP
treated cells. From here, several mechanisms have been
described that could specify parkin-bearing mitochon-
dria for mitophagy. Parkin ubiquitination of mitofusins
serve to promote fission [60, 89], which is necessary for
mitophagy [87]. Parkin has also been reported to polyubiq-
uitinate voltage-dependent anion-selective channel protein 1
(VDAC1) [90], which may explain PINK1-parkin-dependent
perinuclear aggregation of mitochondria [19, 91]. VDAC1
interacts with a dynein light chain [92], although it is
unknown whether or not ubiquitination modulates this.
PINK1 may also interact directly with LC3 [59]. Finally,
the p62 adaptor discussed above is recruited to parkin-
ubiquitinated mitochondria, although its role in aggregation
versus mitophagy recruitment is controversial [90, 93].

3.6. Alternative Mechanisms Relating to Mitophagy. Mito-
phagy can be initiated prior to depolarization of the mito-
chondrial membrane potential in several model systems. In
starvation-induced mitophagy in hepatocytes, mitochondria
remain polarized until after they are encircled by GFP-LC3
[84]. Likewise, mitochondrial depolarization occurs down-
stream of autophagosome formation in reticulocytes dur-
ing Nix-dependent developmental mitophagy [94]. Indeed,
depolarization-independent, Nix-dependent mitophagy may
involve direct interactions of Nix with an LC3 homolog
GABARAP [83], indicating alternative signaling for mito-
chondria recognition during autophagosome formation.

Parkin also compensates for PINK1 deficiency [95, 96].
While this could be mediated by nonmitophagy-related
mechanisms, increased parkin expression causes increased
autophagy in PINK1-deficient cells [7], and parkin-mediated
protection from cell death is substantially diminished by
RNAi knockdown of autophagy mediators [9]. Whether or
not stable parkin recruitment to mitochondria is necessary
for its compensatory effects is unknown, but hydrogen
peroxide can recruit parkin to mitochondria through a
mechanism not requiring mitochondrial targeting of PINK1
[97]. Finally, a parkin mutant that is deficient in translocat-
ing to mitochondria can be rescued in this function by the
DnaJ/Hsp40 chaperone HSJ1a [98]. Besides ubiquitination,
phosphorylation or changes in lipid composition could
conceivably also trigger loss of mitochondria [99].

It is reasonable to assume that these mechanisms
would allow for selective removal of irreversibly damaged
mitochondria while sparing normal mitochondria, but this
has not yet been robustly demonstrated. FCCP- or CCCP-
treated cell lines exhibit rather global changes of parkin
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translocation, perinuclear aggregation, and clearance. Like-
wise, selective autophagy of mitochondria with mtDNA
mutations is inferred from studies showing that fibroblasts
from patients with mitochondrial DNA diseases exhibit
higher rates of mitophagy upon amino acid deprivation than
those containing normal mitochondria [100], but selective
autophagic engagement of individual mitochondria with
high burdens of mtDNA mutations was not assessed. Cells
expressing mitochondrial DNA deletions exhibit elevated
transcripts for Atg proteins [101], and thus generalized
elevations in autophagic capacity may also result in greater
mitophagy for stochastic reasons. Live imaging studies
such as those demonstrating that relatively depolarized
mitochondria show decreased fusion [102], or preferential
retrograde axonal transport [103], could be used to further
establish selective recognition of abnormal mitochondria on
an organelle-by-organelle basis.

4. Summary

Autophagy has emerged as a central response observed in
multiple models of Parkinsonian neurodegeneration. In
several chronic models, autophagy induction plays beneficial
roles in clearing protein aggregates or damaged mitochon-
dria. Autophagy can also play a harmful role in neurons
subjected to acute injury such as ischemia-reperfusion or
neurotoxin treatment. As understanding of mechanisms
underlying autophagy and mitophagy develops, it will be
interesting to determine whether distinct regulatory inputs
to the core autophagy machinery underlies differences
in the degree and outcome of autophagy or mitophagy
induction. Just as pathways are emerging that show dif-
ferences between autophagy induced for quality control
and in response to trophic/nutrient deprivation, variations
on the depolarization-initiated PINK1-parkin pathway are
likely to emerge. Cell type specific mechanisms must also
be considered, as parkin translocation is not observed in
CCCP-treated cortical and striatal/midbrain neurons [104].
Redundancy in mechanisms that underlie the removal of
damaged mitochondria may account for the relatively minor
symptoms observed in knockout mice and form the basis for
future therapies to heighten neuroprotective responses in PD
patients.
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