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Objective: To investigate the effects of sleeve gastrectomy (SG) on diabetes-

related cognitive decline (DCD) in rats with diabetic mellitus (DM).

Methods and methods: Forty Wistar rats were randomly divided into control

(CON) group (n=10), diabetes mellitus (DM) group (n=10), sham operation

(SHAM) group (n=10) and SG group (n=10). DMmodel was established by high-

fat diet (HFD) combined with intraperitoneal injection of streptozocin (STZ).

Behavioral evaluation was given using Morris water maze test and Y-maze. In

addition, PET-CT, TUNEL assay, histological analysis, transmission electron

microscopy (TEM), immunohistochemistry (IHC) and Western blot analysis

were used to evaluate the alleviating effects and potential mechanisms of SG

on DCD in DM rats.

Results: Compared with the sham group, SG induced significant improvement

in the metabolic indices such as blood glucose and body weight. Besides, it

could attenuate the insulin resistance compared with SHAM group. In addition,

SG could improve the cognitive function of DM rats, which were featured by

significant decrease in the escape latency (P<0.05), and significant increase in

the time in target quadrant and platform crossings (P<0.05) compared with the

SHAM group. SG induced significant elevation in the spontaneous alternation

compared with SHAM group (P<0.05). Moreover, SG could improve the

arrangement and biosynthesis of hippocampus neuron. Moreover, SG

triggered the inhibition of apoptosis of hippocampus neurons, and Western

blot analysis showed SG induced significant increase in the ratios of Bcl-2/Bax

and Caspase3/cleaved Caspase 3. TEM demonstrated SG could significantly

improve the microstructure of hippocampus neurons compared with the

SHAM group. Western blot and IHC confirmed the significant decrease in the

phosphorylation of tau at Ser404 and Ser396 sites in the SG group.

Furthermore, SG activated the PI3K signaling pathway by elevating the

phosphorylation of PI3K and Akt and GSK3b compared with the SHAM group.
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Conclusion: SG attenuated the DCD in DM rats, which may be related to the

activation of PI3K signaling pathway.
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Introduction

Diabetes mellitus (DM), with a sharp increase in the

prevalence in the last three decades, is considered the ninth

leading cause of death worldwide (1). Patients with DM usually

show involvement of the nervous system, resulting in cognitive

decline (2, 3). As a major complication of DM, the diabetes-

related cognitive decline (DCD) is characterized by

abnormalities in learning, memory, attention and speed of

information processing (4). To date, impairment of

hippocampus has been closely associated with the learning and

memory loss, while in animals with DCD, the main pathological

features of the hippocampus are neurogenic fibrillary tangles due

to tau hyperphosphorylation and neuronal apoptosis (5).

Bariatric surgery, initially utilized for treating morbid

obesity, is later reported to show a moderate effect on DM and

its complications (6, 7). Bariatric surgery can ameliorate

hyperglycemia (8) and reduce the body weight (9). In

addition, patients underwent such type of surgery showed

significant improvement in the cognitive function (10).

PI3K/Akt signaling pathway plays a key role in the

pathogenesis of DCD (11, 12), which mediates biological

growth and crucial cellular metabolic processes, such as

glucose homeostasis, lipid metabolism, protein synthesis and

cell proliferation and survival (13). In diabetic rats or glucose-

induced hippocampal neuronal impairments, there was decrease

in the phosphorylation of AKT, resulting in a decrease in the

phosphorylation level of glycogen synthase kinase 3b (GSK3b)
(14, 15), serving as a key enzyme that inhibits glycogen synthesis

and one of the key kinases for tau phosphorylation (16).

Physiologically, activation of the PI3K insulin signaling

pathway could inhibit the hippocampal neuronal apoptosis. In

addition, it could ensure that tau phosphorylation is maintained

at a normal level by inactivating GSK3b (17).

Sleeve gastrectomy (SG) serving as one of the most popular

bariatric surgeries for obesity has been reported to improve the

cognitive function among the obesity patients (18, 19). However,

little is known about the exact mechanisms for this process. In

this study, a DM rat model was established in order to

investigate how SG improved the cognitive function, and at

the same time, we determined the activity of PI3K/AKT
02
signaling pathway, with an aim to illustrate its roles in

this process.
Materials and methods

Animals

Forty male Wistar rats (90–110g; 6-week-old), purchased from

Vital River Laboratory Animal Technology (Beijing, China), were

housed in the animal laboratory of Shandong Provincial

Qianfoshan Hospital of Shandong University, under specific

pathogen-free housing conditions at 20–26°C in a humidity of

50–60%. All animals were fed on a standard diet containing 15% of

fat for 1 week for acclimatization. This animal study was approved

by the Institutional Animal Care and Use Committee of Shandong

Qianfoshan Hospital, Shandong University.
Grouping

The animals were randomly divided into the following four

groups: (i) control (CON) group (n=10), rats subject to a

standard diet; (ii) DM group (n=10), rats subject to DM

induction; (iii) sham operation (SHAM) group (n = 10), and

(iv) SG group (n=10). One week before the surgical intervention

in the SG and SHAM groups, Y-maze test was performed to

confirm the differences in cognitive ability among the groups

(Figure S1). Animals in the SG group were subject to SG after a

12 hrs fast. Animals in the SHAM group were subject to DM

induction, followed by operations that were the same as the

above surgery before occlusion of gastric blood vessels. There

were no interventions in the SHAM group except exposure of

abdominal organs such as the stomach, small intestine, and liver.

The flowchart of the study was shown in Figure 1.
DM induction

Animals were given a 4-week high fiber diet (HFD, 40% fat;

Xietong Pharmaceutical Bio-engineering, Nanjing, China),
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followed by a 12 hrs fast. Then the rats received a single

intraperitoneal injection of streptozocin (STZ, 35 mg/kg,

Sigma-Aldrich, St. Louis, MO, US). Three days after STZ

injection, random blood glucose was measured 3 times

consecutively, and a glucose level of ≥ 16.7 mmol/L was

considered a successful model (20).
SG procedures

The procedures of SG were performed as previously reported

(21). All rats were fasted for 12 hrs before surgery and then

anesthetized by continuous inhalation of 2% isoflurane gas using

a mask. First, a 4 cm incision was made in the middle of the

upper abdomen. Then, the stomach was separated until a clear

distinguish of the gastric blood vessels. The blood vessels of the

fundus and the greater curvature of the stomach were ligated

with a 7-0 thread (Chenghe Microsurgical Instruments, Ningbo,

China), and then cut off after ligation. Subsequently, an incision

of about 0.5 cm parallel to the greater curvature of the stomach

was made in the fundus to remove the gastric contents. The

fundus and most of the gastric body on the greater curvature of

the stomach were removed, and the remaining part was sutured

with 5-0 sutures (Cheng-He Microsurgical Instruments Factory,

Ningbo, China). No active bleeding was confirmed and the

anatomical position of the abdominal organs was restored.

Finally, close the abdominal wall layer by layer with 3-0

sutures (Chenghe Microsurgical Instruments, Ningbo, China).
Body weight and food intake
measurement

For the animals in each group, we measured the baseline

body weight and food intake. Then the body weight and food

intake were measured at 2, 4, 6, and 8 weeks afterwards.
Frontiers in Endocrinology 03
Homeostasis model assessment of
insulin resistance

Upon fasting for 12 hrs, the blood samples were collected

from the tail vein after anesthesia, and centrifuged at 3,000 rpm

for 8 min. Fasting blood glucose (FBG) was measured using a

blood glucose meter (One Touch Ultra, Johnson & Johnson, CA,

USA). Then serum insulin was detected with EZRMI-13K kit

(One Touch Ultra, Johnson & Johnson, CA, USA). Finally, the

Homeostasis Model Assessment of Insulin Resistance (HOMA-

IR) was calculated to assess the degree of insulin resistance, using

the following formula: HOMA-IR=fasting serum insulin (mIU/

L)×FBG (mmol/L)/22.5 (22).
Oral glucose tolerance test and insulin
tolerance Test

For the OGTT, glucose (1 g/kg) was given to each rat via

intragastrical administration. Then the blood glucose was

measured at 0, 10, 30, 60, and 120 min, respectively. About 24

hrs after OGTT, ITT was performed after a 12-hour fast. The

rats were intraperitoneally injected with insulin (0.5 IU/kg,

Tonghua Dongbao Pharmacy. Gansu, China), and then the

blood glucose was measured at 0, 10, 30, 60, and 120 min,

respectively. Finally, the area under the curve (AUC) of OGTT

and ITT was calculated with the trapezoidal method according

to the previous description (23, 24).
Morris water maze test

MWM test was used to measure hippocampus-dependent

cognitive function as previously described (25). All behavioral

tests were performed during the active period of the

photoperiod. A video analysis system (Calvin Biotech,

Nanjing, China) was utilized to record the swimming patterns
frontiersin.or
FIGURE 1

Flowchart of animal experiments. N = 10 for each group. STD, standard diet; HFD, high-fat diet; STZ, streptozotocin; CON, control group; DM,
diabetes mellitus; SHAM, sham operation; SG, sleeve gastrectomy.
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of each rat. The pool was filled with water at a constant

temperature of 20°C. An escape platform with a diameter of

4.5 cm was placed in the swimming pool. The top of the platform

was approximately 1.5 cm below the water surface.

The 5-day hidden platform test was used to detect the learning

ability of rats. Rats were trained for 5 days. Animals failed to find the

platform within 120 sec were placed on the platform for 10 sec.

Spatial memory for each rat was determined based on the probe

trial. Hidden platforms in the target quadrant were removed after

training for 5 days. On day 6, a probe trial was performed and the

rats were allowed to swim freely in the pool for 2 min.
Y-maze test

Spatial memory status in rats was tested by measuring the

percentage of alternation in Y-maze test according to the

previous description (26). The test device consisted of three

equal-length arms (50×18×35 cm) in a Y-shape and an

intermediate region. Rats were placed at the end of either arm,

and were allowed to explore freely for 8 min. Subsequently, the

total number and sequence of entries into each arm were

recorded. The percentage of alternations was determined based

on the following equation: (spontaneous alternations)/(total

number of arm entries-2).
Positron-emission tomography and
image processing

Before euthanasia, rats fasted for 12 h were maintained

under anesthesia with 1.5% isoflurane for PET. After

intravenous injection of 18F-FDG (800 mCi, 29.6 MBq), the

entire body of the rat was continuously scanned for 21 min with

a PET scanner (Metis 1800, Madic Technology, Linyi, China) in

the coronal, sagittal and transverse dimensions, followed by a

focused scan of the brain for 15 min, especially the

hippocampus. The brain glucose uptake was analyzed by

measuring the mean standard uptake values (SUVMean) using

PMOD 4.1 software (PMOD Technology, Zurich, Switzerland).
Histological analysis

Hippocampal tissues were fixed with 4% paraformaldehyde

and embedded in paraffin. Paraffin sections (5 mm) were stained

with hematoxylin-eosin to evaluate the structure of four vital

sub-regions of the hippocampus. After dewaxing, the sections

were stained with hematoxylin staining solution (G1004,

ServiceBio, Wuhan, China) for 5 min, and then stained with

eosin staining solution (G1001, Wuhan, China, ServiceBio,

Wuhan, China) for 5 min. In addition, Nissl staining was

performed on the sections to evaluate the neuronal damage.
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The samples were processed in the same way as H&E staining,

then stained with Nissl’s staining solution (G1036, ServiceBio,

Wuhan, China) for 5 min, and finally sealed with neutral resin.

Digital slides were prepared by a Pannorama digital slide

scanner (Pannoramic DESK, P-MIDI, P250, and P1000,

3DHISTECH, Budapest, Hungary).
TUNEL assay

Apoptosis in the hippocampus tissues was detected by

commercial TUNEL Apoptosis kit (C1086, Beyotime

Biotechnology, Shanghai , China), according to the

manufacturer’s instructions. The positive cells in each group

were counted under a microscope. Apoptotic cells were stained

in green color.
Transmission electron microscopy

Tissue squares (1 mm×1 mm×1 mm) were fixed with

electron microscopy fixative (G1102, ServiceBio, Wuhan,

China) for 2-4 hrs at 4°C, and then were post-treated in 1%

osmium tetroxide for 2 hrs at 4°C. Subsequently, the samples

were dehydrated through an ethanol series and infiltrated using

acetone and 812 embedding medium (905529-77-4, SPI). After

complete polymerization, the sections were observed under the

TEM (Hitachi, HT-7700, Japan).
Immunohistochemistry

Paraffin sections (5 mm) were deparaffinized, and washed 3

times with PBS (G0002-2L, Servicebio, Wuhan, China). The

antigens were retrieved in a microwave oven with citrate

buffered saline (C1032, Solarbio, Beijing, China). Sections were

incubated overnight with primary antibodies including p-tau

(Ser404) (1:200, ab92676, Abcam, Cambridge, USA) and p-tau

(Ser396) (1:4000, ab109390, Abcam, Cambridge, USA), followed

by washing three times with PBS. Sections were then incubated

with a universal two-step detection kit (PV-9000, ZSGB-BIO,

Beijing, China) following the manufacturer’s instructions. After

washing 3 times with PBS, the sections were stained with

diaminobenzidine (DAB, ZLI-9017, ZSGB-BIO, Beijing,

China) and hematoxylin. Finally, the sealed sections were

made into digital slides by a panoramic digital slide scanner

(Panorama Desk, P-MIDI, P250 and P1000, 3DHISTECH).
Western blot analysis

Hippocampal tissues were homogenized in RIPA cold buffer

(89901; Thermofisher, USA) containing protease inhibitor
frontiersin.org
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(ST506, Beyotime Biotech, Shanghai, China). Protein samples

were quantified using the BCA protein assay kit (E-BC-K318-M,

Elabscience, Wuhan, China). Protein samples (50 mg) were

separated by SDS-PAGE gel (PG212, EpiZyme, Shanghai,

China) and then transferred to a polyvinylidene fluoride

(PVDF) membrane. PVDF membranes were blocked with 5%

nonfat dry milk for 1 h, and incubated with primary antibody

overnight at 4°C [p-tau (Ser404), 1:2000, ab92676, Abcam, USA;

p-tau(Ser396), 1:50000, ab109390, Abcam, USA; Tau, 1:10000,

sc-32274, Santa Cruz Biotechnology, Beijing; p-PI3K, 1:1000,

13857S, Cell Signaling Technology, USA; PI3K, 1:1000, 3358S,

Cell Signaling Technology, USA; Akt, 1: 1000, 4685S, Cell

Signaling Technology, USA; p-Akt, 1:2000, 4060S, Cell

Signaling Technology; GSK3b, 1:1000, 9315S, Cell Signaling

Technology, USA; p-GSK3b, 1:1000, 9315S, Cell Signaling

Technology, USA; Bcl-2, 1:5000, 60178-1-Ig, Proteintech,

China; Bax, 1:10000, 50599-1-Ig, Proteintech, China; Caspase

3, 1:1000, 9662S, Cell Signaling Technology, USA; cleaved

Caspase 3, 1:1000, 9664S, Cell Signaling Technology, USA; b
actin, 1:20000, 66009-1-Ig, Proteintech, China]. Then, the

membrane was washed and incubated with secondary

antibodies (goat anti-mouse IgG, 1:10000, ab216776, Abcam;

goat anti-rabbit IgG, 1:10000, ab6721, Abcam). Protein bands

were visualized by ECL (Millipore) and quantified using ImageJ

software (National Institutes of Health).
Statistical analysis

Data were analyzed using Graph Pad Prism 8.0 (San Diego,

CA, USA). Data were presented as mean ± standard error of

mean. One-way ANOVA was utilized to compare the differences

between groups, together with Tukey’s multiple comparison test.

Statistical outliers were determined using the Grubbs test. P

<0.05 was considered to be statistically significant.
Results

SG improved basic metabolic parameters
in diabetic rats

The body weight and food intake were significantly higher in

the DM group than these of the CON group. Compared with the

DM group, significant decrease was noticed in the body weight

and food intake of rats in SG group (Figures 2A, B). In addition,

compared with the SHAM group, the FBG showed significant

decrease in the SG group within 2 weeks after surgery

(Figure 2C). By recording FBG and serum insulin levels for

HOMA-IR assessment, we found a significant decrease in insulin

resistance in the SG group compared to the sham group

(Figures 2C-2E). Consistently, AUCOGTT and AUCITT further

validated the improvement in insulin resistance in the SG group
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(Figures 2F, G). All these indicated that SG could significantly

improve the basic metabolic parameters in diabetic obese rats.
SG ameliorated cognitive function in
diabetic rats

The escape latency of the rats in the DM group and the

SHAM group was significantly longer than that of the control

(Figure 3A). The escape latency in the SG group was significantly

shorter than that of the DM group (Figure 3A). Meanwhile,

there was no statistical difference in the swimming speed of the

rats in each group (Figure 3B). The travelled distance of rats in

each group showed gradual decrease in a time-dependent

manner. The travelled distance in the SG group was

significantly shorter than the SHAM group on day 4 and 5

(Figure 3C). Compared with normal rats, the percentage of time

in target quadrant (Figure 3D) and the number of platform

crossing (Figure 3E) were significantly shortened in the DM and

SHAM groups. In contrast, the percentage of time and number

of platform crossings in SG group showed significant increase

compared with the SHAM group (Figures 3D, E). These

indicated that SG significantly improved spatial memory and

learning ability in diabetic rats. In addition, the Y-maze test

showed that the percentage of spontaneous alternation in the

DM group was lower than that in the control group, while the

percentage of spontaneous alternation in the SG group was

significantly different compared to the SHAM group (Figure 3F),

with no significant changes in total arm entries (Figure 3G). This

suggested that SG may improve the ability of diabetic rats to

recognize novel environment, and could partially improve

the DCD.
SG significantly improved cerebral
glucose uptake in diabetic rats

We evaluated glucose uptake in brain tissues using a PET

scanner (Figure 3H). The SUVmean of the control group and SG

group was significantly higher than that of the DM group and

sham group, respectively (Figure 3I). These results suggested

that SG improved the diabetes-induced obstruction of cerebral

glucose uptake.
SG significantly reversed hippocampal
histopathology in diabetic rats

Changes in the hippocampus tissue underlie cognitive

decline as central nervous system diseases and diabetes

progress (27, 28). Compared with the CON group, the number

of neurons in the hippocampal cornu ammonis (CA)1, CA2,

CA3, and dentate gyrus (DG) regions of the DM group showed
frontiersin.org
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significant decrease, which were featured by presence of swollen

cells, nuclear fragmented or disappearance, and irregular

arrangement of cell. Notably, SG significantly improved these

changes (Figure 4A). To assess the damage of hippocampal

neurons, the hippocampus of each group was analyzed using
Frontiers in Endocrinology 06
Nissl staining. DM resulted in the reduction of Nissl bodies in

the CA1, CA3 and DG regions of the hippocampus, indicating

significant neuronal damage. Whereas, the number of Nissl

bodies in the SG group showed significant increase compared

with SHAM group (Figure 4B). In conclusion, SG ameliorated
A B

D

E F

G

C

FIGURE 2

Changes of metabolic parameters including body weight (A), food intake (B), FBG (C), serum insulin (D), HOMA-IR (E), AUCOGTT (F), and AUCITT

(G) before and after surgery. Data were expressed as means ± SEM for n = 10 per group. **p < 0.01 vs. CON group, ***p < 0.001 vs. CON
group; ##p < 0.01 vs. SHAM group, ###p < 0.001 vs. SHAM group. FBG, fasting blood glucose; HOMA-IR, homeostasis model assessment of
insulin resistance; AUCOGTT, the area under the curve of the oral glucose tolerance test; AUCITT, the area under the curve of the insulin
tolerance test; CON, control; DM, diabetes mellitus; SHAM, sham operation; SG, sleeve gastrectomy.
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the histological changes in the hippocampus induced

by diabetes.
SG alleviated hippocampal neuronal
apoptosis in diabetic rats

In DM group, there was a significant increase in the number

of positive neurons in the hippocampus, indicating significant

increase in the apoptosis compared with the CON group. In

contrast, SG alleviated the situation of neuronal apoptosis

(Figure 4C). Western blot analysis showed that Bcl-2 and

Caspase 3 were down-regulated in DM group and SHAM

group compared with these of the CON group, while

significant up-regulation was seen in the expressions of Bax

and cleaved Caspase 3 in DM group (Figures 4D, F). The ratio of

Bcl-2 to Bax and Caspase 3 to cleaved Caspase 3 in the SG group

showed significant increase compared with that of SHAM group

(Figures 4E, G). Taken together, we concluded that SG can

ameliorate diabetes-induced apoptosis of hippocampal neurons.
Frontiers in Endocrinology 07
SG significantly improved the fine
structure of hippocampal neurons

TEM indicated pyknosis, severe edema, condensed cell

matrix, obvious swelling of organelles in the hippocampal

neurons in the DM group and SHAM group (Figure 4H),

together with obvious vacuolar degeneration. In CON group

and the SG group, the nuclear membrane was intact. In addition,

the chromatin was uniform, and the cell membrane was intact.

Moreover, the intracellular matrix was abundant and evenly

distributed. It was worth noting that the mitochondria in the SG

group were slightly swollen, and the cristae were fragmented and

reduced, but not as severe as the SHAM group.
SG inhibited tau phosphorylation in the
hippocampus of diabetic rats

There was increased phosphorylation of tau at Ser404 and

Ser396 in the hippocampus of DM and SHAM group compared
A B

D E F

G IH

C

FIGURE 3

SG induced significant improvement in the animal behaviors in the Morris water maze test (A-E) and Y-maze test (F, G), and PET imaging system
validated the improvement of glucose uptake in brain (H, I). Data were expressed as means ± SEM for n = 10 per group. *p < 0.05 vs. CON
group, **p < 0.01 vs. CON group, ***p < 0.001 vs. CON group; #p < 0.05 vs. SHAM group, ##p < 0.01 vs. SHAM group, ###p < 0.001 vs. SHAM
group. PET, positron-emission tomography; SUVMean, the average standard uptake value; CON, control; DM, diabetes mellitus; SHAM, sham
operation; SG, sleeve gastrectomy.
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A
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D E

F
G

H

C

FIGURE 4

SG reversed the histological features (A), induce the increase of Nissl’s bodies (B), and inhibited the apoptosis of hippocampus neurons (C-G),
and improved the microstructure of hippocampus neurons under TEM (H). The scale bar for A-C was 100 µm, while that for H was 1 µm. Data
were expressed as means ± SEM for n = 10 per group. **p < 0.01 vs. CON group, ***p < 0.001 vs. CON group; ###p < 0.001 vs. SHAM group.
H&E, hematoxylin and eosin; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling; CA1, cornu ammonis1; CA2,
cornu ammonis2; CA3, cornu ammonis3; DG, dentate gyrus; M, mitochondrion; N, nucleus; RER, rough endoplasmic reticulum; GO, Golgi
apparatus; CON, control; DM, diabetes mellitus; SHAM, sham operation; SG, sleeve gastrectomy.
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with CON group (Figure 5A). In contrast, SG decreased the

phosphorylation of these two tau sites (Figures 5B, C), which was

verified by IHC results (Figure 5D). Thus, SG alleviated

hyperphosphorylation of tau in the hippocampus of

diabetic rats.
Effects of SG on PI3K signaling pathways

Compared with the CON group, the hippocampal

expression of p-PI3K, p-Akt, and p-GSK3b showed significant

decrease in both DM and SHAM groups, while SG induced

significant increase in their expression (Figure 5E). The ratios of

p-PI3K to total PI3K, p-Akt to total Akt and p-GSK3b to total

GSK3b were consistent with the above results (Figures 5F-5H).
Frontiers in Endocrinology 09
In conclusion, we infer that SG partially ameliorated diabetes-

induced cognitive impairment, which was associated with

activation of the PI3K signaling pathway.
Discussion

DM and its complications were indeed a serious threat to

global health. On this basis, there has been widespread interests

in the treatment of diabetes (1). DCD has been more and more

widely recognized as a serious complication for DM (29). Slowly

progressive DCD occurs in all age groups, not limited to the aged

population (30). The main pathological features of DCD include

hyperphosphorylation of tau and apoptosis of hippocampal

neurons, leading to progressive impairment of hippocampal
A B

D

E F G

H

C

FIGURE 5

SG inhibited the phosphorylation of tau (A-D) and activated the PI3K signaling pathway (E-H). The scale bar for D was 800 µm. Data were
expressed as means ± SEM for each group (n = 10). *p < 0.05 vs. CON group, ***p < 0.001 vs. CON group; ###p < 0.001 vs. SHAM group. CON,
control; DM, diabetes mellitus; SHAM, sham operation; SG, sleeve gastrectomy.
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function (31–33). A large number of DCD patients are more

likely to present mild cognitive impairment (MCI) or dementia,

showing a poor prognosis even after treatment (33, 34).

Convent ional treatment opt ions for DCD include

measurements for lowering blood glucose, l i festyle

interventions, and cognitive rehabilitation training. In

addition, delivery of insulin to targeted brain tissues has been

proposed as a potential strategy for treating cognitive

impairment in DM patients (35). Unfortunately, this strategy

is not universally effective due to poor adherence and individual

variability (36). Therefore, it is urgently to develop more effective

treatment options for these patients.

In the 1990s, bariatric surgery began to be recognized as a

form of inducing weight loss, which may improve the symptoms

of DM and its complications (37). Recently, it has gradually

considered as the best treatment strategy for DM and obesity,

with the advances in the surgical safety (38). In terms of animal

models, due to the similarity of metabolic characteristics, the

most commonly used diabetes model is the DM rodent model,

which is used to investigate the pathogenesis and treatment of

DM (39). In this study, such model was used to investigate the

therapeutic effects of SG on DCD and its associated mechanisms.

According to the previous studies, cognitive decline was

sufficiently induced in this model about 8-9 weeks after

induction of DM (40, 41). Our data showed that the cognitive

function of rats was significantly impaired at week 12 after DM.

Meanwhile, SG showed significant effects on reducing body

weight, together with improving hyperglycemia and reversing

insulin resistance. However, some rats showed signs of rebound

in body weight and blood sugar after surgery, which we consider

to be caused by maintaining a high-fat diet during the

experiments. The CA1, CA3 and DG regions of the

hippocampus were crucial for learning and spatial memory,

and there was a unidirectional tri-synaptic pathway between

these regions (42). In this study, we found that cognitive

function decreased. HE and Nissl staining revealed neuronal

damage in the CA1, CA3, and DG regions in DM rats.

Interestingly, these negative effects were improved to varying

degrees after SG. The above notion was further supported by the

changes in neuronal microstructure under TEM. Taken

together, SG could improve the symptoms in diabetic rats

with DCD.

PET, employing molecules labeled with positron-emitting

radioisotopes to provide direct and specific measurements of

biochemical processes in regions of interest, has been used to

gain a deeper understanding on the neural mechanisms

underlying behavioral and cognitive processes (43). In

cognition-related regions, there is an association between

insulin resistance and reduced brain glucose metabolism (44).

Therefore, PET scans of rat brains were performed and SUV was

utilized to assess glucose uptake in brain, particularly the

hippocampus. PET scan showed significant increase in the
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SUV in SG group, but it did not reach the level of the CON

group. And confirmed that SG significantly reversed cerebral

glucose uptake in diabetic rats.

Pathological alternations of hippocampus are closely

associated with the pathogenesis of DCD with the main

pathological manifestations as hyperphosphorylation of tau

and increased neuronal apoptosis (45). These pathological

changes would trigger the inhibition of PI3K/Akt signaling

pathway (46). Previous study indicated that many Tau sites

can be phosphorylated and inactivated, including Ser404,

Ser396, Ser202 and Thr205 (47). In our study, Western blot

analysis and IHC showed that the expression of p-tau (Ser404)

and p-tau (Ser396) showed significant up-regulation in the DM

group and SHAM group compared with those of the CON

group. According to the previous studies, DM could mediate the

increased apoptosis of hippocampal neurons by inhibiting the

PI3K pathway (48, 49). Consistently, our TUNEL assay

indicated the increased expression of apoptosis-related

proteins in hippocampus. Therefore, we concluded that SG

could improve the pathological changes. Additionally, our data

provided solid evidence for the neuroprotective effects of

bariatric surgery by inhibiting neuronal apoptosis and

tau phosphorylation.

PI3K signaling pathway plays crucial roles in several

biological processes, such as glucose homeostasis, cell growth

and proliferation (50). The activation of Akt and inactivation of

GSK3b was highly depending on phosphorylation of

corresponding serine residues, which functioned as serine/

threonine kinases (51, 52). PI3K was activated by direct

interaction with insulin receptor substrate 1 (IRS-1), and then

the Akt was phosphorylated, which in turn induced the

phosphorylation of GSK3b and ultimately promoted the

balance of blood glucose (53). It has been assumed that there

is a potential link between PI3K signaling pathway and the

pathogenesis of DM or Alzheimer’s disease (AD) as there is

confirmed impairment of PI3K signaling pathway in the DM.

Inhibition of glycogen synthesis and inactivation of tau have

been reported to trigger hyperglycemia and cognitive decline,

respectively (54). Meanwhile, increased ratio of GSK3b to p-

GSK3b resulted in increased apoptosis of hippocampal neurons

in DM rats (55). Notably, the expression of p-PI3K, p-Akt, and

p-GSK3b was significantly up-regulated after SG, which

suggested that the activation of PI3K signaling pathway may

play an important role in the attenuation of DCD mediated by

SG (Figure 6).

Indeed, our study has some limitations. Some patients may

present rebounding of blood glucose and weight even after

bariatric surgery (56). It is still difficult to predict the state of

diabetes-induced cognitive impairment following re-elevation of

blood glucose and weight. Therefore, it is necessary to extend the

observation time in the following studies to discuss the long-

term effects of SG on diabetes-induced cognitive impairment. In
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addition, both glycemic control and weight loss have positive

effects on metabolic status. Thus, it is not clear which is the

crucial factor in the improvement of cognitive decline in SG-

induced diabetes. On this basis, further studies are required to

illustrate the exact mechanism of diabetes-induced cognitive

impairment improvement. Finally, to further elucidate the

mechanism by which SG attenuated the diabetes-induced

cognitive impairment, we need to explore the interaction

between GSK3b, Tau and neuronal apoptosis.

In conclusion, SG could reverse the tissue morphology of the

hippocampus, decrease of glucose uptake in the hippocampus,

and attenuate cognitive dysfunction induced by hippocampal

neuronal apoptosis and hyperphosphorylation of Tau in DM

rats. Additionally, the SG could reverse the inhibition of PI3K

signaling pathway in rats with DCD. The reduction of diabetes-

induced cognitive function by SG was associated with

reactivation of the PI3K signaling pathway. In the future,

inhibition of PI3K signaling may be a potential target for

treating patients with DCD.
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