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Association of tau deposition with neurodegeneration in Alzheimer’s disease (AD) 
and related tau-positive neurological disorders collectively referred to as tauopathies 
indicates contribution of tau aggregates to neurotoxicity. The discovery of tau gene 
mutations in FTDP-17-tau kindreds has provided unequivocal evidence that tau abnor-
malities alone can induce neurodegenerative disorders. Therefore, visualization of tau 
accumulation would offer a reliable, objective index to aid in the diagnosis of tauopathy 
and to assess the disease progression. Positron emission tomography (PET) imaging of 
tau lesions is currently available using several tau PET ligands. Because most tau PET 
ligands have the property of an extrinsic fluorescent dye, these ligands are considered 
to be useful for both PET and fluorescence imaging. In addition, small-animal magnetic 
resonance imaging (MRI) is available for both structural and functional imaging. Using 
these advanced imaging techniques, in vivo studies on a mouse model of tauopathy 
will provide significant insight into the translational research of neurodegenerative dis-
eases. In this review, we will discuss the utilities of PET, MRI, and fluorescence imaging 
for evaluating the disease progression of tauopathy.

Keywords: tau protein, transgenic mouse, positron emission tomography, magnetic resonance imaging, two-
photon microscopy

inTRODUCTiOn

Dementia is a leading cause of death in developed countries. Increasing age is the greatest risk 
factor for dementia. About 46 million people in the world are estimated to be suffering from 
dementia, and this figure is expected to rise to 135 million by 2050. Alzheimer’s disease (AD) 
is the most common type of dementia. The global impact of AD will strikingly affect social and 
economic costs. Distinctive features of AD are the deposited accumulations of β-amyloid (Aβ) 
protein fragments and intracellular neurofibrillary tangles (NFTs) (1). NTFs are closely associated 
with the severity of brain function loss in AD (2). Therefore, making tau protein a target in the 
treatment of AD has become a major therapeutic strategy.

Recent advances in positron emission tomography (PET) imaging research have led to significant 
breakthroughs with the application of newly developed tracers for visualizing regional tau deposi-
tions (3–8). This technology allows us to non-invasively evaluate the progression of tau pathology in 
living brains. PBB3 was developed as a novel PET tracer that binds with tau for the diagnosis of AD 
and other neurodegenerative diseases regarded as tauopathies (4, 9). PET imaging using [11C]PBB3 
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(radiotracer) is superior in detecting tau deposits, and it is closely 
aligned with disease symptoms. This was also confirmed by our 
tauopathy mouse models (4; Ishikawa, forthcoming1). 11C-labeled 
tracers, due to their short half-life, are generally unsuitable for 
clinical practice, but [11C]PBB3 can be used to evaluate certain 
tau conditions including AD (4, 10). The fluorescent quality of 
PBB3 makes it especially useful for multimodal imaging, allowing 
us to assess its binding by microscopic observation of related cells 
and tissues.

Animal models of tauopathy are essential for preclinical 
studies of AD and related dementias. The rTg4510 mouse line 
was developed to model aspects of tauopathy through forebrain 
expression of the P301L mutated human tau (11). Expression 
of human tau is controlled by the tetracycline transactivator 
transgene under the CaMKIIα promoter. This mouse line devel-
ops progressive intracellular tau aggregations in corticolimbic 
areas and forebrain atrophy (11). The age-dependent tau pathol-
ogy of rTg4510 mice has been investigated in detail by immu-
nohistochemical and biochemical examinations (12–14). These 
postmortem brain-based studies showed an extensive increase 
of pathological tau inclusions in the cerebral cortex and hip-
pocampus between 4 and 6 months of age. Now, for both current 
and therapeutic strategies, rather than endpoint measurements, 
researchers are eagerly involved in the development of new 
in vivo protocols for tracking the progressive pathological status 
in living animals.

Taking advantage of the multimodality of the PBB3 ligand, 
in vivo monitoring of NFT formation is now available for pos-
sible in tauopathy mouse models, including the rTg4510 mouse. 
In addition, advanced brain magnetic resonance imaging (MRI) 
techniques have enabled us to visualize neuronal dysfunc-
tion and the structural changes related to neurodegenerative 
processes in living animals. Here, we will introduce in  vivo 
multimodal imaging technologies, including PET, MRI, and 
fluorescence imaging to investigate the real-time events of tau-
related neuropathology.

MRi STUDieS FOR A MOUSe MODeL  
OF TAUOPATHY

Magnetic resonance imaging-based volumetry is a valuable tool 
for assessing disease progression in humans (15–19). As trans-
lational research of neurodegenerative diseases, several groups 
have reported studies using volumetric MRI in mouse models 
(20–25). Age-dependent volume reduction in both cerebral 
cortex and hippocampus of the rTg4510 mouse line was clearly 
demonstrated on MRI (24, 25). The volume (size) of the cerebral 
cortex from 5 to 8-month-old rTg4510 mice was significantly less 
(by approximately 20%) than that of age-matched non-transgenic 
(non-tg) mice (24). Brain atrophy in rTg4510 mice as examined 
by MRI was in agreement with previous histopathology findings 

1 Ishikawa I, Tokunaga M, Maeda J, Minamihisamatsu T, Shimojo M, Takuwa H, et al. 
In vivo visualization of tau accumulation, microglial activation and brain atrophy in a 
mouse model of tauopathy rTg4510. J Alzheimers Dis (2018, Forthcoming). 

(13, 26). A gender difference showing more severe phenotype in 
female rTg4510 mice compared with males (27) was confirmed 
by volumetric MRI study (24).

In addition to volumetric MRI, MR-based in  vivo imaging 
techniques, including MR spectroscopy (MRS), manganese-
enhanced MRI (MEMRI), arterial spin labeling, amide proton 
transfer imaging, and diffusion tensor imaging (DTI), have been 
tested to evaluate brain functions and microstructural changes in 
living rTg4510 mice (24, 25, 28–32). MEMRI is a technique for 
measuring neuronal function, because the manganese ion (Mn2+) 
accumulates in actively firing neurons through voltage-gated Ca2+ 
channels and serves as a positive contrast agent in T1-weighted 
brain images (33, 34). Using this technique, Perez et al. observed a 
reduction in both neuronal activity and volume in the hippocampus 
of 6-month-old rTg4510 mice (25). Fontaine et al. demonstrated 
neuronal dysfunction in the CA3 and CA1 regions of 3-month-old 
rTg4510 mice (32). Together, these studies illustrate the impor-
tance of the MEMRI method as a diagnostic research tool for the 
early detection of neuronal dysfunction in rTg4510 mice.

Diffusion tensor imaging is another MR-based imaging tech-
nique, which is applied to assess the integrity and organization of 
myelinated structures such as axons in white matter (WM) and 
also in gray matter regions (35). For this purpose, we used DTI 
to examine age-related alterations in WM diffusion anisotropy 
in rTg4510 and non-tg control mice (29). Our results indicated 
that 8-month-old rTg4510 mice show significant reductions in 
fractional anisotropy (FA) in WM structures compared with 
control non-tg and young (2.5-month-old) rTg4510 mice. 
The microstructural changes contributing to these age- and 
tauopathy-associated WM changes were supported by electron 
microscopic evidence of disorganized axonal processes and the 
presence of interprocess spaces, which could explain the reduced 
FA in aged rTg4510 mice (29). Reduced FA at a later age (over 
7.5 months) was confirmed by another research group (30, 31). 
Since, reduced FA values in WM were mostly observed at an age 
that included the presence of significant atrophy and tau pathol-
ogy, this standard method may be useful for assessing the thera-
peutic efficacy of treatments that may be used to reduce or prevent 
neurodegenerative progression. On the other hand, examination 
with additional diffusion anisotropy indices such as the mode of 
anisotropy allowed us to detect early signs (at 2.5 months old) of 
WM disorganization (29). Although disorganization of myelin 
morphology at this age was not determined, WM degeneration 
may be one of the early signs of tauopathy. Nevertheless, reduced 
WM integrity associated with tau pathology was confirmed by 
in vivo DTI studies.

TAU PeT TRACeRS

Current tau PET tracers are mostly designed by β-sheet binding 
properties. In principle, filamentous tau aggregates (e.g., NFTs, 
neuropile threads, tufted astrocytes, astrocytic plaques, and coiled 
bodies) will be labeled by these tracers with distinct specificity 
and selectivity. Up to date, three types of radiotracers have been 
widely tested for the clinical assessment of patients with tauopathy 
[reviewed in Ref. (36)]. These tracers include the arcyquinoline 
derivative THK5351 (37), the pyrido-indole derivative AV-1451 
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TAbLe 1 | Reference list for in vivo imaging in living rTg4510 mice.

imaging system imaging techniques Reagents and application  
for in vivo imaging

Reference

Magnetic resonance  
imaging (MRI)

Volumetric MRI
1H MR spectroscopy

Yang et al. (24) Neuroimage

MRI Manganese enhanced MRI (MEMRI) Manganese (intraperitoneal injection) Perez et al. (25) Mol. Neurodegeneration

MRI MEMRI Manganese (nasal lavage) Majid et al. (28) Neuroimage Clin.

MRI Diffusion tensor imaging (DTI) Sahara et al. (29) Neurobiol. Aging

MRI Volumetric MRI, DTI
Arterial spin labeling (ASL),
Exchange saturation transfer (CEST),  
glucose CEST

Glucose (intraperitoneal injection) Wells et al. (30) Neuroimage

MRI Volumetric MRI, DTI, ASL, CEST Holmes et al. (31) Neurobiol. Aging

MRI MEMRI Manganese (intraperitoneal injection) Fontaine et al. (32) Neurobiol. Aging

PET PET r18FlTHK523 Fodero-Tavoletti et al. (44) Brain

PET MRI PET volumetric MRI r11ClPBB3
11CIAC-5216 (TSPO)

(see text footnote 1)

Two-photon  
microscopy

Fluorescence imaging Thioflavin S (intracerebral injection) Spires-Jones et al. (57) J Neurosci.

Two-photon  
microscopy

Fluorescence imaging Thioflavin S (intracerebral injection) X-34 (i.v.) De Calignon et al. (53) Nature

Two-photon  
microscopy

Fluorescence imaging Thioflavin S (intracerebral injection) Kopeikina et al. (58) PLoS One

Two-photon  
microscopy

Fluorescence imaging Thioflavin S (intracerebral injection) Kuchibhotla et al. (59) PNAS

Two-photon  
microscopy

Fluorescence imaging GFP (AAV serotype2)
GCaMP6m (AAV 1/2 hybrid serotype)

Jackson et al. (56) Cell Rep.
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(38, 39), and the phenyl/pyridinyl-butadienyl-benzothiazole/
benzothiazolium derivative PBB3 (4). Screening of potential 
tracers was performed by in  vitro binding assays in AD brain 
homogenates and autoradiographies of AD brain sections. [18F]
THK5351, [18F]AV-1451, and [11C]PBB3 showed good affinity for 
tau deposits and no selectivity of amyloid plaques. Accumulating 
evidence has shown that tau PET using these tracers might not 
detect pretangles in tauopathy brains (9, 40). Comparative in vitro 
binding assay of [18F]AV-1451 and [11C]PBB3 revealed that the 
binding of [11C]PBB3 to non-AD-type tau pathology (e.g., tufted 
astrocytes, astrocytic plaques, and pick bodies) was higher than 
that of [18F]AV-1451 (9). Another comparative study of [3H]
AV-1451 and [3H]THK523 showed a distinct binding affinity 
for NFTs (41). Potential off-target bindings of [18F]AV-1451 and 
[18F]THK5351 to monoamine oxidase A (MAO-A) and MAO-B, 
respectively, were also observed (36, 42, 43). Although binding 
properties of tau PET tracers have been vigorously investigated 
for the past decade, the specificity and selectivity of PET signals 
to tau pathology are still to be fully understood.

TAU PeT iMAGinG STUDieS  
OF rTg4510 MiCe

Micro-PET imaging of tau pathology in tg mouse models of 
tauopathy has contributed to the characterization of novel PET 

tracers. Using [18F]THK523, micro-PET imaging in 6-month-
old rTg4510 mice successfully showed significantly higher 
radiotracer retentions in brains compared with non-tg or PS1/
APP mice (44). [11C]PBB3-PET imaging in another tauopathy 
mouse model, PS19 tg (expressing P301S mutant human tau) 
(4), and [18F]THK5117-PET imaging in P301S tg and biGT 
(bigenic GSK-3β  ×  P301L  tau) tg mice (45) were reported to 
show higher tracer uptake in tg than in non-tg mice. On the 
other hand, there was no significant difference in retention of 
[18F]AV-1451 between TAPP (bigenic APPswe  ×  P301L  tau) 
tg and non-tg mice (39). Inconsistency of these micro-PET 
analyses was mostly due to the use of different tg mouse models. 
Technical limitations also stem from the diversity of pathologi-
cal characteristics in different mouse models. The distribution of 
tau deposits and the time course of pathological tau accumula-
tion in tg mice differed from each other. It is very important to 
compare in vivo bindings of different tracers with reproducible 
mouse models. To initiate the development of a screening plat-
form for tau PET tracers, our group has recently demonstrated 
longitudinal micro-PET imaging in rTg4510 mice (see text 
footnote 1). Consistent with neuropathological and biochemi-
cal observations, our [11C]PBB3 PET imaging of rTg4510 mice 
showed an age-dependent increase in [11C]PBB3 signal and that 
[11C]PBB3 retention was inversely correlated with neocortical 
volumes. The increasing [11C]PBB3 signal reached a plateau by 
7 months of age. The correlation between [11C]PBB3 levels and 
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reach a few 100 μm. The imaging depth reached has been up to 
~1  mm depending on the properties of the tissue (47). Using 
this technology, AD mouse models have been investigated with 
regard to monitoring the time course of disease progression 
[reviewed in Ref. (48)]. Hyman’s group first reported in  vivo 
visualization of amyloid plaques in APP tg mouse lines (PDAPP 
mice and tg2576 mice) (49, 50). Clearance of plaques by anti-
Aβ antibody was monitored by two-photon microscopy after 
Thioflavin S injection into the brain. Fluorescence imaging 
using Pittsburgh Compound B (PiB), which is used for amyloid 
PET imaging, was also examined to visualize amyloid plaques 
in APP tg mouse lines (51). As a result, the multimodality of 
PiB ligand for both fluorescence and PET imaging was clearly 
demonstrated. Because the PBB3 ligand was derived from the 
same tracer family as the PiB ligand, a similar approach was used 
to visualize the tau pathology in PS19 tg mice (4). Moreover, 
the current chronic cranial window setting enables the use of 
long-period two-photon imaging for more than 2 months (52). 
As for our study, longitudinal monitoring of PBB3-positive 
neurons has been performed in living rTg4510 mice (Takuwa 
et al., manuscript in preparation). Our data showed that PBB3-
positive inclusions were visualized with two-photon imaging at 
an age of as early as 4 months, with fluorescence signals then 
reaching a plateau at 6  months. These data are in agreement 

FiGURe 1 | Imaging modalities for investigating tau-induced brain atrophy and neuroinflammation. (A) Theoretical processes of volume change, pathological tau 
accumulation, and microglial activation in rTg4510 mice. (b) Effects of early intervention. Treatment was started from 2 months of age. (C) Effects of late 
intervention. Treatment was started from 6 months of age. (D) Representative images of volumetric magnetic resonance imaging (MRI), tau-positron emission 
tomography (PET), and translocator protein-PET in 2- and 13-month-old rTg4510 mice.

brain atrophy disappeared in rTg4510 mice over 7 months old. 
Since, tau pathology is tightly linked to neuronal loss, the disap-
pearance rate of [11C]PBB3-positive neurons may increase at age 
over 7 months. It should be noted that microglial activation in 
rTg4510 brains examined using translocator protein (TSPO) 
(18-kDa TSPO)-PET imaging showed significant correlation 
with both [11C]PBB3 level and brain atrophy (see text footnote 1). 
rTg4510 will be a useful model for investigating the mechanisms 
of tau-induced neuroinflammation. Nevertheless, in combina-
tion with tau PET imaging, the imaging of neuroinflammation 
will offer an additional diagnostic parameter for tauopathy.

IN VIVO FLUOReSCenCe iMAGinG  
FOR DeTeCTinG TAU PATHOLOGY

The invention of two-photon excitation laser scanning micro-
scopy has given new impetus to the research field of investi-
gating in  vivo brain cell dynamics (46). In combination with 
newly developed fluorescence imaging techniques, cellular 
and molecular mechanisms underlying brain functions and 
impairments can be examined using in  vivo animal models.  
In theory, the spatial scales of two-photon microscopy are from 
a micron to a millimeter. The side length of field-of-views can 
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with both [11C]PBB3 PET imaging and volumetric MRI, sug-
gesting multimodal imaging utilities of the PBB3 ligand. On the 
other hand, Hyman’s group has investigated the mechanism of 
neuronal loss in rTg4510 mouse brains using the fluorescence 
indicator of caspase activation and β-sheet ligand X-34 (a Congo 
red derivative) (53). Their data indicate that NFT formation 
has a neuroprotective effect against caspase-mediated neuronal 
death. Synaptic dysfunction is another key event taking place 
during the pathogenesis of tauopathy. Previous reports showed 
decreased dendritic spine and synapse density in cortical slices 
prepared from 9 to 10-month-old rTg4510 mice (54, 55). 
Most recently, Jackson et al. demonstrated the visualization of 
synapses in the somatosensory cortex of rTg4510 mice by two-
photon microscopy after the injection of adeno-associated virus 
that drove neuronal expression of either GFP or GCaMP6m 
(56). For longitudinal imaging, GFP-expressing axonal and 
dendritic regions were imaged weekly to investigate the turnover 
of axonal terminal boutons and dendritic spines. For functional 
imaging, GCaMP6-expressing neurons were imaged in lightly 
anesthetized animals to measure neuronal activity in response 
to whisker stimulation. The authors observed mismatched 
abnormalities in pre-and post-synaptic turnover coinciding 
with disrupted neuronal activity at 5 months of age. Their data 
suggests that synaptic dysfunction precedes tangle-associated 
neurodegeneration. Although linkage between aggregated tau 
formation and synaptic dysfunction remains unclear, in  vivo 
monitoring of tau pathology at cellular levels provides an advan-
tage for dissecting the mechanisms of tau toxicity.

DeSiGn FOR A DiAGnOSTiC PLATFORM 
OF TAUOPATHY

The rTg4510 mouse is one of the widely used models of tauopa-
thy. As described above, several groups have conducted in vivo 
imaging studies on rTg4510 mice (Table  1). Because the time 
course of tau pathology and forebrain atrophy have been well 
examined using postmortem materials, experimental designs for 
drug intervention can be easily designed (Figure 1). Since, this 
mouse model allows the tetracycline-repressible overexpression 
of human tau, doxycycline treatment for the suppression of tau 
expression will provide a positive control in an experimental 
design of the evaluation of therapeutic candidates. Previous study 
showed that suppression of tau from 5.5 months of age reversed 

memory deficits, while tangles persisted and continued to accu-
mulate (11). Therefore, early intervention starting at 2  months 
of age could be more effective to prevent both NFT formation 
and brain atrophy (Figure 1B). Although effects will be limited, 
late intervention would be worthwhile if aggravation of tau- 
induced brain atrophy can be slowed down (Figure 1C). In our 
study, we developed a unique diagnostic platform of in vivo imag-
ing of volumetric MRI, tau-PET, and TSPO-PET (Figure  1D). 
Brains of living rTg4510 mice can be used to monitor their 
volume, pathological tau accumulation, and neuroinflammation. 
Moreover, live cell imaging with two-photon microscopy allows 
us to capture NFT formation and neuronal death in rTg4510 
mice. Using these platforms, we expect to be able to validate 
several drug candidates in the foreseeable future.

COnCLUSiOn

For more effective therapies, the pre-clinical evaluation of 
drugs for tauopathy is needed. The use of animal models that 
recapitulate the critical features of the disease, such as NFTs, 
cognitive impairment, brain atrophy, and neuronal loss, is 
essential. The rTg4510 mouse model of tauopathy fulfills the 
required features, despite the fact that tau protein was expressed 
at a non-physiologically higher level over the total life span. In 
vivo, brain imaging offers reliable approaches to validating the 
pathological status and to determining the efficacy of drugs for 
exploring disease-modifying therapies.
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