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Purpose: To use machine learning in those with brain amyloid to predict thioflavin
fluorescence (indicative of amyloid) of retinal deposits from their interactionswithpolar-
ized light.

Methods: We imaged 933 retinal deposits in 28 subjects with post mortem evidence
of brain amyloid using thioflavin fluorescence and polarization sensitive microscopy.
Means and standard deviations of 14 polarimetric properties were input to machine
learning algorithms. Twooversampling strategieswere applied to overcomedata imbal-
ance. Threemachine learning algorithms: linear discriminant analysis, supporting vector
machine, and random forest (RF) were trained to predict thioflavin positive deposits.
For eachmethod; accuracy, sensitivity, specificity, and area under the receiver operating
characteristic curve were computed.

Results: For the polarimetric positive deposits, using 1 oversampling method, RF had
the highest area under the receiver operating characteristic curve (0.986), whichwas not
different from that with the second oversampling method. RF had 95% accuracy, 94%
sensitivity, and 97% specificity. After including deposits with no polarimetric signals,
polarimetry correctly predicted 93% of thioflavin positive deposits. Linear retardance
and linear anisotropy were the dominant polarimetric properties in RF with 1 oversam-
pling method, and no polarimetric properties were dominant in the second method.

Conclusions: Thioflavin positivity of retinal amyloid deposits can be predicted from
their images in polarized light. Polarimetry is a promising dye-free method of detect-
ing amyloid deposits in ex vivo retinal tissue. Further testing is required for translation to
live eye imaging.

Translational Relevance: This dye-free method distinguishes retinal amyloid deposits,
a promising biomarker of Alzheimer’s disease, in human retinas imaged with
polarimetry.

Introduction

Alzheimer’s disease (AD) is a neurodegenera-
tive disease that leads to cognitive impairment and,
ultimately, death. AD is the primary cause of demen-

tia. In 2010, the worldwide prevalence of dementia
was 35.6 million and this number is predicted to
triple by 2050.1 Currently, this disease can only be
definitively diagnosed post mortem through the sever-
ity of 2 hallmarks: amyloid plaques (composed of
misfolded amyloid-β protein) and neurofibrillary
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tangles (composed of tau protein), both of which
begin to accumulate in the brain before symptoms
of cognitive impairment.2 Detection of amyloid, tau,
and neurodegeneration in the brain is recommended
for detecting changes associated with the AD disease
process in clinical trials of novel treatments.3 Confirma-
tion of amyloid in the brain is currently achieved using
positron emission tomography (PET) scans4 or analyz-
ing the cerebral spinal fluid.5 However, both methods
are invasive: PET scans use a radiative isotope injec-
tion,4 and a cerebral spinal fluid test requires extraction
of fluid from the patient’s spine.5 Currently, there is no
effective cure for AD. However, it has been suggested
that earlier detection of brain amyloid in prodro-
mal disease could enable more successful treatment
before damage from amyloid and tau accummulates.6
Furthermore, the amyloid, tau, and neurodegenera-
tion framework allows for the incorporation of other
biomarkers of amyloid in the brain.5 Therefore, it
is important to develop a noninvasive method to
detect amyloid in association with AD before AD
diagnosis. Potential peripheral biomarkers of amyloid
in the brain include detection of amyloid in the
retina.7

Many changes have been measured in the retina in
association with AD.8 An accumulation of amyloid
deposits has been found in the retinas of AD
patients by our group (M.C.W. Campbell, et al.
IOVS 2010;51:ARVO E-Abstract 5778) and others,6,9
including immunohistochemistry positivity for the
presence of amyloid-β10–12 (Yuchun Tsai, et al. IOVS
2014;55:ARVO E-abstract 523-524). We demonstrated
that it is possible to detect amyloid deposits in the
retina using polarized light in an imaging device with
animal models (Michael Tokiyoshi Hamel, et al. IOVS
2016;57:ARVOE-Abstract 2216) and humans (Tao Jin,
et al. IOVS 2017;58:ARVO E-Abstract 3367; David
DeVries, et al. IOVS 2015;56:ARVO E-Abstract 2385),
because the interactions of the deposits with polar-
ized light are significantly different from those of the
surrounding retina. Retinal deposits were confirmed to
be amyloid via Thioflavin-S staining.13 Koronyo et al.14
have also demonstrated the feasibility of the in vivo
detection of retinal amyloid deposits using curcumin
staining. This method, however, requires the inges-
tion of curcumin for 2 to 10 days to bind with the
deposits.14 Our group has also shown that the number
of amyloid deposits in the anterior retina predicts the
severity of AD pathology in the brain, including the
severity of brain amyloid15 (Frank Corapi, et al. IOVS
2018;59:ARVO E-Abstract 1582).

Thioflavin is a fluorescent marker of amyloid,
including amyloid-β, known to occur in AD.
Thioflavin also stains other amyloids,16 some of

which are associated with other neurodegenerative
diseases.17 In the amyloid, tau, and neurodegeneration
diagnostic framework for AD, amyloid PET scans are
an approved method of measuring brain amyloid.3
Similarly, a dye used in amyloid PET scans, Pittsburgh
compound B, is an uncharged analog derived from
thioflavin and thus marks amyloid and may not be
specific to amyloid-β.18

A number of studies have applied machine learn-
ing techniques to AD diagnosis. Two studies used a
supporting vector machine (SVM) algorithm to distin-
guish those with AD from controls using neuroimaging
data from magnetic resonance imaging.19,20 Another
used random forest (RF) analysis on magnetic
resonance imaging data to separate those with AD
from healthy controls and compared the performance
of RF with SVM.21 In optical coherence tomography,
a SVM-based 3-dimensional segmentation of retinal
layers has been reported in both diseased and normal
retina.22 In addition, images taken with polarized light
of morphologically similar algae have been classified
with a convolutional neural network.23

In those with brain amyloid, imaging the retina with
polarized light (polarimetry) detects the majority of
the deposits stained with Thioflavin-S (true positives),
some deposits that are not stained by Thioflavin-S
(false positives) and fails to detect a few Thioflavin-
S–positive deposits (false negatives). The purpose of
this study was to differentiate Thioflavin-S-positive
amyloid deposits (true positives) from those deposits
without Thioflavin-S fluorescence (false positives),
based on the polarimetric images of the deposits to
identify retinal amyloid deposits without the use of dye.
To this end, we implemented and compared machine
learning approaches, which can predict the presence of
retinal amyloid fluorescence using only the information
from images obtained with polarized light.

Methods

Sample Preparation

Retinal Samples
Eyes and brains (N = 28) were obtained post

mortem from donors in compliance with the Decla-
ration of Helsinki. Informed consent was obtained
from the donors and the research was approved
by the Human Research Ethics Committee of the
University of Waterloo. Upon post mortem examina-
tion (National Institute on Aging–Alzheimer’s Insti-
tute guidelines2), 23 donors had a high cumula-
tive score of AD neuropathologic change, 4 had
a moderate score, and 1 had a low score; all had
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evidence of brain amyloid. Eyes were immersed in
10% formalin before dissecting, staining, and flat
mounting the retina. Retinas were stained with 0.1%
Thioflavin-S, counterstained with DAPI, and cover-
slipped. Each retina was imaged with fluorescence
and polarimetric microscopy to determine presumed
amyloid deposits. In total, 920 polarization-positive
retinal deposits found in anterior retinal layers from
28 individuals were analyzed, including 789 deposits
with fluorescence signals and 131 deposits without
fluorescence signals. An additional 16 deposits had
only fluorescent signals; 13 of these deposits had no
polarimetric signals and 3 had unclear polarimetric
signals.

Pure Amyloid Samples
Amyloid-β (Aβ) 1-42 was purchased from rPeptide

(Athens, GA). One milliliter of 10 mM HEPES and
150 mM NaCl (pH of 7.4) was added to 0.5 mg of
Aβ (1-42) and incubated at 37°C for 72 hours without
shaking. Stained Aβ was prepared by adding 500 μL of
filtered 1.25 mMThioflavin-T in 50 mM of phosphate-
buffered saline and allowing it to sit for 5minutes before
gently rinsing the amyloid deposited on glass with 50
μL of distilled water (×3). Samples were then blown
dry with a gentle stream of compressed N2 and cover
slipped.

Mueller Matrix Polarimetry

An inverted transmission Nikon microscope was
modified for polarimetric imaging to detect the inter-
action of retinal deposits with polarized light. A
polarization state generator (PSG) and a polariza-
tion state analyzer (PSA) were placed before and after
the sample, respectively. Both the PSG and PSA are
composed of a linear polarizer and a quarter wave plate
(QWP), with the polarizer followed by a QWP in the
PSGand the opposite in the PSA.The light travels from
the PSG through the sample to the PSA before being
collected by the camera (Fig. 1).

The QWP in the PSG is rotated to four angles
(45°, 0°, −30°, and −60°) to generate four different
input polarization states. The output at each setting
was determined by rotating the QWP in the PSA
to the same four angles. Thus, a combination of
16 measurements were performed for each sample.
The images obtained were registered to compute the
Mueller matrix of the sample at each image pixel. For a
given pixel, the intensity, Ii recorded in the ith measure-
ment is then,

Ii = MPSA,iMsMPSG,iSin (i = 0, 1, 2, . . . , 15) (1)

Figure 1. A schematic diagram represents the setup of the micro-
scope channel for polarimetric imaging. P1 and P2 are linear polariz-
ers, λ

4 marks quarter wave plates. The CCD is a camera with a charge-
coupled device. PSA, polarization state analyzer; PSG, polarization
state generator.

where Sin stands for the Stokes vector of the incident
light and MPSA,i and MPSG,i are the Mueller matrices
of the PSA and PSG, respectively. Because the Mueller
matrices of these elements are known, the Mueller
matrix at each pixel of the sample, Ms, can be deter-
mined and polarimetric properties calculated.

Machine Learning Approach

Mean values and standard deviations of polarimet-
ric properties (features) of the segmented deposits were
used as feature inputs for machine learning algorithms
which then learn to classify the deposits as members of
the thioflavin positive or negative datasets labelled by
their class. Thus, the algorithms are often referred to
as classifiers. For definitions of machine learning terms
please refer to Appendix A.

Segmentation and Calculation of Properties
of Polarimetric Images

From the 16-element Mueller matrix calculated at
each pixel, the state of polarized light exiting from the
sample for each possible state of light input can be
calculated. The way in which the input polarized states
are changed to the exiting states is described by the
Mueller matrix of each pixel of the sample from which
polarimetric properties are calculated. For example,
one state of incident polarization could be preferen-
tially absorbed (the property of diattenuation) or the
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refractive index seen by different polarizations could
differ (the property of retardance) or polarized light
could be changed to partially polarized light.24

For each deposit, the means and standard devia-
tions of 14 polarimetric properties were extracted from
the Mueller matrix values of the segmented pixels and
used as feature inputs for machine learning algorithms.
Linear retardance (LR), circular retardance, and
depolarization power were extracted by the polar
decomposition method.25 Two polarimetric properties,
linear anisotropy (LA) and circular anisotropy, were
calculated from the Mueller matrix components.26
Four polarimetric properties computed by the Mueller
matrix transformation technique were: metric A (a
measure of LA), metric b (sensitive to small sources
of scattered light in samples), metric t (related to the
magnitude of the anisotropy) and metric x (related
to the direction of the aligned fibrous structures).27,28
Linear and circular polarizance and diattenuation were
directly obtained from the polarizance and diattenua-
tion vectors of the Mueller matrix, respectively. The Q
metric is a polarimetric property that contains infor-
mation on depolarization, polarizance and diatten-
uation.29 Table 1 in Appendix B summarizes all 14
polarimetric properties with equations. Polarimetric
properties of presumed amyloid deposits (plotted as
images) were segmented from the surrounding retinal
background by a custom polarimetry segmentation
method (Erik Mason, et al. IOVS 2019;60:ARVO
E-Abstract 179).

Oversampling Methods for Solving Data
Imbalance

As described in the Sample Preparation section, our
2 datasets do not have balanced deposit numbers (789
fluorescence positive and 131 fluorescence negative
deposits). In this study, the minority (smaller) dataset
contains samples with polarization signals but no
fluorescence signals, and the majority (larger) dataset
contains samples with both polarization and fluores-
cence signals. This imbalance, frequently observed in
medical datasets, can lead to poor performance of most
classification algorithms.30 Two oversampling methods
were used to resolve data imbalance while maintaining
the information of the original dataset: (1) sampling
fluorescence negative retinal background and (2) the
borderline-SMOTE algorithm.31

Method 1: Retinal Oversampling—Adding the
Surrounding Retinal Background

To supply more samples with no fluorescence signal,
regions with the same shape as a polarimetric-positive

Figure 2. An example of the retinal oversampling method. In the
linear anisotropy image of a polarimetric-positive deposit, a region
with the same shape (blue dashed line) as the deposit (red line)
with no fluorescence signal is extracted as a fluorescence negative
sample. Scale bar: 20 μm.

deposit in a nearby fluorescence and polarimetric-
negative retinal region were extracted (Fig. 2). The
extracted region has no fluorescence signal and a weak
polarization signal. We then calculated the means and
standard deviations of the polarimetric signals from
these regions and labeled them as nonfluorescence
deposits. Of these regions, 658 were randomly selected
from the eligible retina areas. As a result, we have
an equal number (789) of fluorescence-positive and
fluorescence-negative samples after oversampling.

Method 2: Oversampling by Borderline-SMOTE
Another way of oversampling is to artificially

generate data to add to the minority dataset. Here,
an improved version of the SMOTE algorithm32—
borderline-SMOTE31 was applied. This algorithm
first performs a k-nearest neighbor analysis on the
thioflavin negative (minority) dataset where the nearest
neighbors may be within either or both minority and
thioflavin positive (majority) datasets. Based on the
type of nearest neighbors, deposits in the minority
dataset are ranked into 3 subsets: noise, danger, and
safe. Deposits in the noise subset have all nearest neigh-
bors in the majority dataset; deposits in the safe subset
have more than one-half of their nearest neighbors in
the minority dataset. These subsets are relatively far
from the border between the minority and majority
datasets. Deposits in the danger subset have more than
one-half but not all of their nearest neighbors in the
majority dataset. New synthetic data are generated by
performing the SMOTE algorithm only on the danger
subset.
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Applying Machine Learning Algorithms

Because different polarimetric properties have
different scales due to their nature (e.g., the LR ranges
from 0° to 180°, whereas linear diattenuation ranges
from 0 to 1), a widely used method called min-max
scaling, which converts all polarimetric properties to
have the same scale using formula (2) was applied to
standardize polarimetric property scales.

Xscaled = X − Xmin

Xmax − Xmin
(2)

where Xmin and Xmax represent the minimum and
maximum theoretical values of a given polarimetric
property.

The rescaled combined thioflavin-negative and
thioflavin-positive polarimetric datasets were then
randomly split into 2 sets for training (80%) and testing
(20%). During training, 10-fold cross-validation was
performed to evaluate the accuracy (ACC) and robust-
ness of the classifiers.33 Three different algorithms were
trained to automatically determine the existence of a
fluorescence signal: linear discriminant analysis (LDA),
SVM, and RF. The hyperparameters (input settings,
Appendix B, Table 2) of SVM and RF were optimized
by the randomized search function provided in the
scikit-learn library,34 which selects random combina-
tions in a grid of hyperparameters to train the model
and return the combination with the best ACC.

Apart from the mean ACC returned from 10-fold
cross-validation, we also evaluated the performance
of each trained algorithm (classifier) by computing
sensitivity (SEN), specificity (SPE), and area under
the receiver operating characteristic curve (AUC) on
the test set. The evaluations were repeated five times
to establish standard deviations. A receiver operating
characteristic curve was calculated for each classifier to
compare their classification performance.35

Finally, the variable importance36 was obtained
from the RF analysis to assess the importance of each
polarimetric property in predicting deposit fluores-
cence. The variable importance is calculated from the
average decrease of the Gini impurity when each
property is considered. At each node τ , the Gini
impurity is calculated as,

Gini (τ ) = 1 −
∑

k
pk2 (3)

where k stands for the class (or label) of each dataset,
fluorescence positive or fluorescence negative; and Pk
stands for the proportion of the sample placed in class
k before and after splitting at a node. The property with
the smallest Gini impurity is chosen for node splitting.

Results

Visualization of Retinal Deposits

AMueller matrix of a polarimetric and fluorescence
positive deposit is shown in Appendix Figure A1. The
deposit is clearly visible against the surrounding retina.

Four examples of the polarimetric properties of
retinal deposits (2 fluorescence positive and 2 fluores-
cence negative) are displayed in Figure 3. In general,
these polarimetric properties change from pixel to pixel
as well as between deposits and surrounding retina.
These deposits have signals in polarimetric proper-
ties including LR and LA. Retinal deposits 1 and
2 and both pure protein (amyloid-β) deposits are
positive for thioflavin fluorescence. The distributions
of the strength of polarimetric properties across retinal
deposits differ between fluorescence-positive and -
negative deposits, but are similar between fluorescence-
positive retinal and pure protein deposits. Using
machine learning algorithms, our aim was to identify
the differences in polarimetric properties between
fluorescence-positive and -negative retinal deposits and
predict the existence of a fluorescence signal.

Initially, 16 deposits seemed to be fluorescent
positive and polarization negative, but a comparison of
the averages of polarization signals from each deposit
and surrounding retina found that 3 deposits had weak
polarization signals. None of the 16 deposits were
included in the datasets.

Performance of the Three Algorithms in
Classification

The performance of the 3 algorithms (LDA, SVM,
and RF) in classification was assessed using 3 different
methods (without oversampling, retinal oversampling
method, and oversampling by borderline-SMOTE)
and the outcomes are shown in Table 1. The receiver
operating characteristic curves are shown in Figure 4
and their AUCs are summarized in Table 2.

ACC is the mean accuracy from 10-fold cross-
validation. Shown are the mean values with standard
deviations obtained from shuffling and recalculating
the training and test sets five times. From Table 1,
the SPEs of all classifiers are significantly improved
after applying oversamplingmethods. Among the three
classifiers, the performance of LDA is the most sensi-
tive to the choice of oversampling method, with ACC,
SEN and SPE decreasing by 11% on average in the
borderline-SMOTE method compared with retinal
oversampling. SVMhad a lower SEN, but a higher SPE
in borderline-SMOTE oversampling, giving a negli-
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Figure 3. Linear retardance (LR), linear anisotropy (LA), and fluorescence images of four retinal deposits (1 and 2 have fluorescence signals
whereas 3 and 4 do not) and 2 pure Aβ-42 protein deposits with fluorescence signals. Range of LR: [0°, 180°], LA: [0, 1]. Scale bar in the upper
left panel: 20 μm.

gible change in ACC. Both SVM and RF perform
well and are relatively insensitive to the oversampling
method with ACC of RF slightly above SVM at 94%
to 95%.

Overall, the AUCs of the three classifiers in Table 2
increased after using oversampling methods, from
previously less than 90% to more than 95%, except for
the LDA classifier in the borderline-SMOTE method,
which was not different from before oversampling.
The AUC values for the RF and SVM classifiers were
not significantly different between the 2 oversampling
methods. The RF classifier has the highest AUC in
comparison to LDA and SVM using the borderline-
SMOTE oversampling (AUC = 0.986).

Importance of Polarimetric Properties

We ranked the polarimetric properties by their
importance as feature inputs in RF analysis in Figure 5
for retinal oversampling and in Figure 6 for the
borderline-SMOTE oversampling method.

In retinal oversampling (Fig. 5), LR and LA were
the two dominant polarimetric properties (features) in
predicting Thioflavin-S fluorescence. Their means
and standard deviations together accounted for

74.8% of the total variable importance. Therefore,
other feature inputs with lower importance were
excluded, and the analysis was rerun with only mean
and standard deviation of these two polarimetric
properties as feature inputs.Table 3 summarizes the
results of retinal oversampling before and after this
selection.

From Table 3, there was a decrease in the ACC and
SEN for LDA and a small decrease in ACC for RF, but
no other significant changes after performing feature
selection. Although only four polarimetric properties
were used as features, SVM and RF classifiers still
achieved more than 90% in ACC. Thus, other polar-
ization metrics can be excluded to speed up the analy-
sis with little loss in performance in predicting deposit
fluorescence.

In contrast, the variable importance distribution of
each polarization feature was much different under
borderline-SMOTE oversampling in Figure 6 than in
retinal oversampling with a much smaller range of
contribution values (contributions range from 1.5% to
10.1%). Therefore, feature selection was not applied for
the borderline-SMOTE oversampling method because
there was no evidence of dominant polarimetric
properties.
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Figure 4. Receiver operating characteristic (ROC) curves for fluorescence signal prediction by the three classifiers under three sampling
strategies. The true-positive rate is the sensitivity and the false-positive rate is 1 – specificity. LDA, linear discriminant analysis; RF, random
forest; SVM, supporting vector machine.

Table 2. Summary of AUC of the ROCs of the 3 Machine Learning Classifiers Under 3 Sampling Strategies

Method Without Oversampling Retinal Oversampling Borderline-SMOTE Oversampling
AUC AUC AUC

LDA 0.863 ± 0.015 0.958 ± 0.003 0.885 ± 0.011
SVM 0.859 ± 0.019 0.967 ± 0.008 0.975 ± 0.003
RF 0.880 ± 0.019 0.981 ± 0.006 0.986 ± 0.007

The area under the receiver operating characteristic curve (AUC of the ROC) is shown ± standard deviation for each of
the 3 classifiers: linear discriminant analysis (LDA), support vector machine (SVM) and random forest (RF) without and with
2 oversampling methods, retinal oversampling and borderline-SMOTE oversampling. The corresponding curves are shown in
Figure 4.

Discussion

There are some limitations in this study. First,
it is difficult to quantitatively evaluate the similarity
between an oversampled dataset and the actual dataset.
This factor may affect the generalization and robust-
ness of our models. Because retinal deposits are found
sparsely distributed across the retina, retinal oversam-
pling is justified. Although more data from retinal
deposits with polarimetric but no fluorescence signals
would further validate the reliability of the oversam-
pling methods, because polarimetry predicts thioflavin

positivity with high ACC, such false-negative deposits
are scarce.

Second, the limited number of retinas (n = 28) and
deposits (n = 920, before oversampling) involved in
this study could bias our models. Thus, it would be
helpful to analyze more retinas to enhance the gener-
alization of the models before moving to a clinical
setting. However, the number of paired retinas and
brains available post mortem is limited. In vivo studies
could compare retinal polarimetry and in vivo brain
amyloid measurements in larger sample sizes.

Third, other classification models such as convo-
lutional neural networks should be tested to see if



Polarized Light Interactions Predict Retinal Amyloid Thioflavin Signals TVST | Special Issue | Vol. 9 | No. 2 | Article 47 | 9

Figure 5. The variable importance of 28 polarimetric properties as feature inputs (means and standard deviations [Std] of 14 polarimetric
properties) from a random forest analysis with retinal oversampling. The sum of the variable importance of all features is 1.

Figure 6. The variable importance of 28 feature inputs (means and standard deviations [Std] of 14 polarimetric properties) for a random
forest analysis with borderline-SMOTE oversampling. The sum of the variable importance of all feature is 1.

they can further improve the already excellent ACC
of the classification of thioflavin positive (presumed
amyloid) versus thioflavin-negative deposits. Consider-
ing the ACC as well as the computation/memory and
time costs of the models, we could then select the one
that would be best for clinical application.

Amyloid stained with Congo red is known to inter-
act with polarized light producing an apple green
birefringence signal.37,38 We have shown that unstained
pure amyloid-β and thioflavin positive retinal amyloid
deposits also interact with polarized light and show

very similar variations of LR and depolarization
across deposits (Corapi F, et al. IOVS 2018;59:ARVO
E-Abstract 1582). These similarities and thioflavin
positivity39 are presumably due to the fibrillary, well-
ordered structure of these deposits.39 Thus, it is not
unexpected that LR and polarimetric properties which
are related to LR (such as LA) are important to distin-
guishing thioflavin positive (amyloid) deposits from
those that are not thioflavin positive.

Amyloid deposits show a range of polarimetric
property strengths, both within and between deposits,
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Table 3. Classification Performance by Retinal Oversampling Before and After Applying Feature Selection

Before Feature Selection After Feature Selection

Method ACC SEN SPE ACC SEN SPE

LDA 90.9 ± 0.0% 91.1 ± 3.1% 93.4 ± 1.2% 89.1 ± 0.3% 84.5 ± 3.4% 94.4 ± 1.6%
SVM 92.5 ± 0.3% 95.6 ± 0.7% 91.4 ± 0.7% 92.4 ± 0.3% 94.0 ± 1.4% 92.0 ± 2.1%
RF 93.7 ± 0.2% 95.5 ± 1.3% 92.1 ± 2.1% 92.8 ± 0.5% 94.9 ± 0.7% 91.4 ± 2.4%

The average accuracy (ACC), sensitivity (SEN), and specificity (SPE) ± standard deviation before feature selection (with all
polarimetric properties included) and after feature selection (including a small subset with high variable importance shown
in Figure 5) for each of the 3 classifiers: linear discriminant analysis (LDA), support vector machine (SVM) and random forest
(RF) for the retinal oversampling method.

potentially owing to a variety of factors, including
variations in thickness (thinner regions have weaker
signals, usually at the edge of deposits (e.g., deposit
2 in Fig. 3), in the uniformity of orientation of the
fibrils and potential differences in amyloid species.
Thioflavin has been known to stain amyloid species
other than amyloid-β, such as alpha-synuclein.16 By
choosing retinas from donors with a brain pathology
of amyloid deposits of the Alzheimer’s type, we expect
the majority of thioflavin positive deposits to contain
amyloid-β. The lack of polarization signals for a small
number (n = 16) of thioflavin positive deposits may
indicate one or more of the following: thinner deposits
(Tao Jin, et al. IOVS 2017;58:ARVO E-Abstract 3367),
more disordered deposits, or the presence of other
impurities (analogous to neuritic material found in
brain plaques).40

Despite the range of polarimetric properties of
deposits in the retina, which indicates differing inter-
actions with polarized light, in the present study,
we trained machine learning classifiers to precisely
and robustly distinguish polarimetry-positive retinal
deposits with and without thioflavin fluorescence
signals. In turn, thioflavin positivity defines a presumed
amyloid deposit. In this study, the RF and SVM classi-
fiers exhibited highACC, SEN, and SPE. Twooversam-
pling methods proved to be useful for dealing with the
larger numbers of fluorescence positive versus negative
deposits and improved the SPE, AUC and, in all but
one case, the ACC of the classifications.

Using the RF algorithm with the retinal oversam-
pling method, we found that the means and standard
deviations of two polarimetric properties—LR and
LA—have superior performance in predicting fluores-
cence positivity. We can use only these four proper-
ties as feature inputs to produce excellent classifica-
tion performance. From the perspective of the physi-
cal meanings of these two polarimetric properties, LR
is directly related to the linear birefringence which
results from the ordered alignment of the fibrils. LA

is a measure of the polarimetric anisotropy of samples
that can be interpreted as the different optical responses
to light polarized in different directions caused by
the samples’ LR and linear diattenuation.26,41 LA is
postulated to have a periodic variation that reflects the
geometric structure of samples,26 such as the orien-
tation of fibrillary structures. The high importance
of these two polarimetric properties suggests that the
ordered arrangement of fibrils may be the key to
distinguishing between fluorescent and nonfluorescent
deposits. Given the similarities between LR and LA
patterns in deposits in Figure 3, for amyloid, retarda-
tion seems to contribute more to LA than diattenua-
tion.

In the case of the second (borderline-SMOTE)
oversampling method, the variable importance
returned from RF analysis indicates that LA and LR
are no longer dominant variables. The contributions
of all variables are within one order of magnitude. This
difference in variable contribution is likely caused by
the differing data introduced by the two oversampling
methods. We performed a t-distributed stochastic
neighbor embedding (t-SNE)42 (see Appendix A) to
show the distributions of the polarimetric properties
of each deposit for each oversampling method. The
t-SNE algorithm maps the local distance informa-
tion from the original high-dimensional space (of 14
properties) to a low-dimensional space (two proper-
ties). Perplexity, whose value is varied, provides a
smooth measurement of the number considered as
neighbors, which alters the algorithm’s attention on
local and global information (local variations dominate
at a small perplexity). The t-SNE visualization plots for
differing values of perplexity are displayed in Figure 7a
for the retina oversampling method and Figure 7b for
the borderline-SMOTE oversampling method.

We can see in the t-SNE perplexity plots (Figs. 7a
and 7b), that the data points of fluorescent negative
and fluorescent positive areas are somewhat more
separated in the retinal oversampling method than
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Figure 7. Two-dimensional t-distributed stochastic neighbor
embedding (t-SNE) visualization of the polarization properties of
the fluorescent positive and fluorescent negative datasets from (a)
the retinal oversampling method and (b) the borderline-SMOTE
oversampling method under different values of perplexity. The
distribution focus moves from the local to the global as the
perplexity increases. FP and FN are fluorescent positive and
negative deposits, respectively. T_SNE_1 and T_SNE_2 are the axis
of the 2-dimensional space to which the t-SNE mapped the higher
dimensions.

in the borderline-SMOTE oversampling method. As
the perplexity increases, the sample distribution with
negative fluorescence in retinal oversampling tends to
aggregate at both ends of the dataset, whereas the
borderline-SMOTE oversampling method produces a
more complex data distribution. This finding implies
that the properties of deposits identified in the
borderline-SMOTE oversampling are closer to those
of the fluorescent-positive deposits than in retinal
oversampling. The differing data distributions are
consistent with lower ACC for LDA with borderline-
SMOTE. It is also not surprising that, for the two

oversampling methods, differing polarimetric proper-
ties differentiate fluorescent positive from fluorescent-
negative deposits.

The methods described herein predict from the
polarimetric properties of retinal deposits, with high
ACC, the existence of amyloid with thioflavin positive
fluorescence signals. We have shown that, in combina-
tion with machine learning algorithms, imaging using
Muellermatrix polarimetry can detect amyloid positive
deposits in the ex vivo retina without using a dye. We
have previously reported that the polarimetric signals
from retinal amyloid deposits measured in double pass,
analogous to the live eye imaging method proposed in
Campbell’s patents,43 give polarimetric signals which
are twice as large as those seen in single pass measure-
ments (Photonics North presentation, 2016; M.C.W.
Campbell, et al. IOVS 2020; 61:ARVO E-Abstract
1850). Our preferred live eye implementation uses
a confocal scanning laser ophthalmoscope combined
with polarimetry. Using the methods described here,
we expect that thioflavin-positive retinal deposits could
be identified with high ACC in live eye imaging.
In turn, we have previously shown that the number
of retinal amyloid deposits predicts the severity of
amyloid in the brain.15 Therefore, in vivo dye-free
polarimetric imaging of deposits in the retina could
determine brain amyloid noninvasively, in contrast
with current invasive methods. The results reported
here are an important step towards the development of
a novel, noninvasive, clinical method of imaging retinal
amyloid as a predictor of brain amyloid.
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Appendix A: Definitions of Machine
Learning Terms not Defined in the
Text

Words and phrases in bold are used in the main text.
Feature:A feature is a property input to themachine

learning algorithm. In this article we use polarimetric
properties which describe interactions of the sample
with polarized light.

Datasets of each class: The groups into which the
data is classified, each of which has a unique label, are
referred to as classes. In our case, we have 2 datasets
of deposits labelled with the classes, thioflavin positive
and thioflavin negative, both members of which are
described by polarimetric properties. When datasets
contain unequal numbers of data, this is referred to as
data imbalance.

Machine learning algorithm: Computer programs
(algorithms) that can “learn” from training data and
improve their performance in predicting the class of
input testing data. Our 2 datasets are labelled thioflavin
positive and thioflavin negative. After learning
training, these programs are given testing data, which
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Figure A1. A spatially resolvedMuellermatrix (MM) of a polarimet-
ric and fluorescence positive deposit. Elements are coded by row
and column number (M00 to M33) and each pixel position has 16
elements associated with it. The matrix elements are normalized by
M00. Scale bar: 20 μm.

they classify into the classes. These algorithms are also
known as classifiers. The algorithms we test are:

Linear discriminant analysis (LDA): Uses training
data to learn linear equations that produce values
that are close for members of the same dataset, and
far apart for members of different datasets. These
equations are then used to classify testing data into
classes.

Supporting vector machine (SVM): When training,
SVM finds a decision boundary in the feature space to
separate the different datasets as far as possible.Testing
data are classified based on which side of the bound-
ary they fall on. SVM heavily weights data close to the
decision boundary.

Random forest (RF): Uses many decision trees to
generate a consensus decision. A decision tree classifies
data points by using multiple properties to differentiate
data into separate classes. When training, many trees fit
a random subset of the training set. Each data point is
available to be sampled multiple times during training.
This is called bootstrapping. When testing, bootstrap-
ping again generates many subsets, and each is classi-
fied. This classification uses a decision tree based on
Gini impurity. Data points are then classified into the
class where it was most frequently placed.

Gini impurity: is a commonly used metric in RF
decision trees to decide the optimal property to split
the data into subsets. In general, as the splitting contin-
ues, the amount of data in branch nodes of a decision
tree which belong to the same class should increase,
this implies that the “purity” of the nodes is increas-
ing. The purity of a dataset varies inversely with Gini

impurity (Equation 3). The property with the small-
est Gini impurity is chosen for node splitting. The
decrease in Gini impurity at each node over the tree
is summed to calculate the variable importance of each
property.

Oversampling strategy: If the datasets of each
class are not balanced in their number of data
points, these methods can be applied to increase
the data points in the dataset with lower numbers
(minority, in our case thioflavin negative deposits).
Our majority dataset consists of thioflavin positive
deposits.

K-nearest neighbor analysis, used in oversampling:
Determine the k points nearest a given point (from the
nearest to the kth nearest). The points are defined by
the values of the mean and standard deviation of each
of the polarimetric properties. The nearest points have
the most similar properties.

SMOTE algorithm:A commonly used algorithm to
generate synthetic samples (oversample) in the minor-
ity dataset to balance the number in the majority
dataset. The algorithm begins by searching for the k-
nearest neighbors of the same class (k is usually set
to 5) for every sample in the minority dataset, then
randomly generates a number of new synthetic data
points along the line between the minority datapoint
and its nearest neighbors. The number of synthetic data
points matches the total number in theminority dataset
to the majority dataset.

Borderline-SMOTE oversampling: Based on
SMOTE oversampling, borderline-SMOTE only
performs the SMOTE algorithm on examples in the
minority dataset that have nearest neighbors in the
majority dataset as these are easily misclassified.

Cross-validation: (10-fold): Divides the data into 10
subsets with similar size. One subset is used as the
testing data and the other 9 are the training data. This
is repeated for the other 9 subsets and the average of
the 10 results is output.

t-Distributed stochastic neighbor embedding (t-
SNE)42 test: A machine learning method for dimen-
sion reduction that can help to identify the patterns
of properties in the datasets. The main advantage
of t-SNE over other dimension reduction methods
(such as principal component analysis) is the ability
to maintain local patterns in the dataset. This means
that similar points in high-dimensional space are
still close to each other in a lower-dimensional
projection.

Perplexity is a parameter that controls the dimen-
sion reduction in t-SNE. It can be interpreted as
the nearest neighbors considered when matching
the original (high-dimensional space) and the fitted
(low-dimensional space) of each point. A smaller
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perplexity means only a few points are considered
as the nearest neighbors when doing fitting, which
highlights the information local to the data points. A
higher perplexity means that more points are consid-

ered as the nearest neighbors, giving a more “global
view.”

Appendix B:

Table B1. Equations for the Polarimetric Properties Used as Features in the Machine Learning Algorithms

Feature Name Equation

Linear retardance (LR)
√

(MR23−MR32 )2+(MR31−MR13 )2

2sin{cos−1[ tr(MR )
2 −1]}

Circular retardance MR12−MR21

2sin{cos−1[ tr(MR )
2 −1]}

Linear diattenuation
√(

M01
2 + M02

2)

Circular diattenuation M03

Depolarization power 1 − |tr(M� )−1|
3

Metric b M22+ M33
2

Metric t
√

(M22−M33 )2+(M23+M32 )2

2

Metric A 2b∗t
b2+t2

Metric x
tan−1(M31

M21
)

2

Linear polarizance
√
M10

2 + M20
2

Circular polarizance M30

Q metric

∑3
i, j=0(Mi j

2−M00
2 )

M002
−M01

2−M02
2−M03

2

1+ M01
2+M02

2+M03
2

Linear anisotropy (LA)
√

(M01+M10 )2+(M02+M20 )2+(M23−M32 )2+(M13−M31 )2√
�

Circular anisotropy
√

(M03+M30 )2+(M12−M21 )2√
�

In this table,� = (3M00
2 −M11

2 −M22
2 −M33

2)+ 2(M01M10 +M02M20 +M03M30 −M23M32 −M13M31 −M12M21). Mij is the
Mueller matrix element in the ith row and jth column. M� and MR are the depolarization and retardance matrices obtained
from polar decomposition.25

Table B2. Hyperparameters of SVM and RF Where the Parameters Used Are Defined in34

Classifier Hyperparameter Distributions

SVM Kernel: [radial basis function, polynomial, sigmoid]
Degree of polynomial kernel function: [1,2,3]
Gamma: [0.001, 0.01, 0.1]
Shrinking: [True, False]
Cost parameter: 1
Search iteration:30

RF Number of trees: a random integer in [100,1000]
Bootstrap: [True, False]
Max features of splitting: a random integer in [1,28]
Minimal sample of splitting: a random integer in [2,27]
Criterion: [Gini impurity, information gain]
Maximum tree depth: unlimited
Search iteration: 100


