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Abstract

Acidianus two-tailed virus (ATV) infects crenarchaea of the genus Acidianus living in terrestrial thermal springs at extremely
high temperatures and low pH. ATV is a member of the Bicaudaviridae virus family and undergoes extra-cellular
development of two tails, a process that is unique in the viral world. To understand this intriguing phenomenon, we have
undertaken structural studies of ATV virion proteins and here we present the crystal structure of one of these proteins,
ATVORF273. ATVORF273 forms tetramers in solution and a molecular envelope is provided for the tetramer, computed from
small-angle X-ray scattering (SAXS) data. The crystal structure has properties typical of hyperthermostable proteins,
including a relatively high number of salt bridges. However, the protein also exhibits flexible loops and surface pockets.
Remarkably, ATVORF273 displays a new azb protein fold, consistent with the absence of homologues of this protein in
public sequence databases.
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Introduction

Viruses are key components of biogeochemical cycles: they are

the most abundant biological entities in the oceans [1] and

probably on the planet. Thus, it has been estimated that every day,

viruses kill about 20% of the oceanic biomass [2]. Viruses also

represent a major genetic asset for the biosphere. Indeed, all

organisms from each Domain of Life are likely to be infected by

viruses. Although viruses infecting archaea are known since the

early 1970s [3], they have only been studied in detail very recently.

The notion that these viruses constitute a variety of bacteriophages

with head and tail (Caudovirales), reinforced by the initial findings,

was challenged by the analyses of samples isolated by Zillig and co-

workers from extreme environments, rich in hyperthermophilic

archaea, including the Icelandic solfatara [4]. These analyses

revealed the presence of a large diversity of viral morphotypes,

including viruses of linear, spindle-shaped, spherical and more

exotic forms, such as drops and bottle-shapes. These viruses infect

archaea living in such extreme environments, which mostly belong

to the crenarchaeal orders Sulfolobales and Thermoproteales.

They have been classified into eight viral families, primarily on the

basis of their unusual morphotypes, subsequently backed by

genomic analyses with a few viruses remaining unclassified.

Generally, crenarchaeal viruses display non-lytic life cycles, a

strategy that would allow them to minimise contact to the extreme

conditions of their environment. With the exception of the recently

discovered Aeropyrum coil-shaped virus (ACV) [5], which has a

single-stranded DNA genome, crenarchaeal viruses present

double-stranded DNA genomes. Examination of the genomic

sequences obtained so far shows that most of these viruses are

unrelated to any other known viruses and that they probably have

different evolutionary origins [6]. In spite of their interest from an

evolutionary viewpoint, the biology of crenarchaeal viruses

remains largely unexplored. This situation mirrors the fact that

between 50% and 90% of the open reading frames (ORFs)

predicted in the genomes of these viruses have no unambiguous

functional annotations [6]. Structural analysis has been a useful

tool for establishing evolutionary relationships amongst viruses [7],

especially those infecting Archaea [8]. In the absence of sequence

similarity to annotated proteins, structure similarity might provide

insights into protein function [9]. Thus, we have worked on the

structure determination of selected function–orphan crenarchaeal

viral proteins with a view to obtain clues to their biological

function [9–13].

The Acidianus two-tailed virus (ATV) was originally discovered

in 2003 in Pozzuoli, Italy. It was isolated from a spring with

temperatures higher than 85uC and at a pH of 1.5, where its host,
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the crenarchaeon Acidianus convivator, thrives [14,15]. ATV is a

member of the Bicaudaviridae family of crenarchaeal viruses. It has a

circular double-stranded DNA genome of 62,730 base pairs,

including 72 predicted open reading frames (ORFs), most without

bona fide homologues in public sequence databases. Exceptionally

for a crenarchaeal virus, ATV is known to undergo both lysogenic

and lytic life cycles. Lysogeny can be interrupted and transformed

into a lytic pathway by environmental stress factors. For example,

ATV lytic propagation can be induced by lowering the

temperature of the cultures from 85uC to 75uC [14].

Released ATV virions are initially spindle-shaped particles. At

striking variance with all other known viruses, ATV undergoes an

extracellular morphological transformation: between one hour and

a few days, two tails develop irreversibly at each end of the

particle. Tail development seems to depend solely on temperature,

which must be close to that of the host’s habitat (75uC to 90uC)

[14]. Although infection of host cells by ATV has not yet been

directly observed, it is possible that the tails facilitate or mediate

the attachment of virions to host membranes.

The mechanism behind ATV’s ability to grow bipolar tails has

yet to be understood. At least 11 proteins have been identified in

ATV virion preparations [15]. ATVORF273 is the fourth most

abundant of these proteins [15]. Notably, ATVORF273 has no

homologues in the distantly related virus Sulfolobus tengchongensis

Spindle-shaped Virus 1 (STSV1), a virus that does not undergo

cell–independent tail development [16]. To gain insight into this

unique biological phenomenon, we have characterised the

structure and the behaviour in solution of the ATVORF273 protein.

Results and Discussion

ATVORF273 structure belongs to a new fold
ATVORF273 is an acidic protein (theoretical pI = 4.8) with a

molar mass of 32154 Da. This protein (UniProt:Q3V4T6) was

isolated from ATV virions and identified by N9-terminal Edman

degradation from an SDS-PAGE band migrating with an

apparent molecular weight of 38 kDa [15]. All the work reported

here was carried out using a recombinant ATVORF273 protein

(molar mass 32977 Da, theoretical pI = 5.0) expressed in E. coli T7

Iq pLysS cells (New England Biolabs). Recombinant ATVORF273

migrates on SDS polyacrylamide gels with an apparent 39 kDa

molecular weight.

Two crystal forms of recombinant ATVORF273 were obtained

belonging to the tetragonal space group P41212 but with different

cell parameters (Table 1). Crystals of the first form diffracted to

3.85 Å resolution and included one monomer in the asymmetric

unit. The crystals of the second form reached a 2.15 Å diffraction

limit and comprised two monomers in its asymmetric unit. Since

ATVORF273 contains a single, N9-terminal methionine a triple

mutant introducing three methionine residues was produced to

facilitate SeSAD phasing. Thus, residues Leu31, Leu117 and

Leu240 were selected for mutation into methionines based on their

similar properties (bulky, hydrophobic) and on their predicted

positioning in ordered a-helices by PSIPRED [17]. The SeMet

substituted triple mutant protein ATVORF273M was also produced

in E. coli, purified, and the incorporation of SeMet was checked by

mass spectrometry. The SeMet protein produced crystals of the

second form with cell parameters isomorphous to those of the

corresponding native crystals (Table 1).

The SeMet data extended to 2.77 Å resolution. Its structure was

solved by the SAD method with data collected at the selenium

anomalous peak. The data were of sufficient quality to locate the 6

Se sites present in the two molecules in the asymmetric unit. The

current model is refined against native data to 2.15 Å, resulting in

an Rwork/Rfree factors of 20.2%/23.4% (Table 1) and includes

residues 22 to 270 in monomer A and 25 to 269 in monomer B.

Two loops could not be built in the model owing to the lack of

supporting electron density. The first of these loops comprises

residues Ser46 to Thr53 in monomer A and Arg44 to Ile54 in

monomer B, whereas the second missing loop encompases residues

Gly148 to Arg151 in both monomers. The monomer A from this

model was then used to solve the structure of the first crystal form

by molecular replacement. Refinement against these data

produced a new model, at 3.85 Å, with Rwork and Rfree factors

of 27.1% and 29.5%, respectively (Table 1). The second crystal

form being solved at higher resolution, the rest of the structural

description will be based on this current model, unless otherwise

stated.

The structure of an ATVORF273 monomer is made up of 10

helices and two b-sheets, one composed of seven strands and the

other consisting of two short parallel strands (Figure 1). The major

b-sheet is mainly antiparallel, but strands b3 and b5 are parallel

(Figure 1a). This b-sheet forms a half-barrel with the first a-helix

(a1) packed onto its concave side. The rest of the helices and the

small b-sheet are arranged at the other side of the major b-sheet

(Figure 1b). The monomer can be described as a disk with overall

dimensions 59 Å|58 Å|38 Å. The protein N9-terminus pro-

trudes on one side of the disk, whereas the surface of the other side,

lined by a high number of acidic residues (Figure 1c), is concave.

The two unmodelled loops face each other at the periphery of the

disk, with the visible extremes pointing towards the concave side

(Figure 1a). This concave face (Figure 1c) includes two deep

pockets with volumes of *575 Å3 and *400 Å3, respectively, as

calculated by the Relibase+ [18] implementation of LIGSITE

[19]. Other smaller pockets are distributed across the protein

surface. Analysis of these cavities with the SUMO server [20] did

not suggest any clear-cut ligands matching them.

As expected for a hyperthermostable protein [21], the

ATVORF273 monomer is stabilised by a relatively high number

of salt bridges (5 in monomer A and 8 in monomer B; to be

considered as engaged in a salt bridge, the centroids of the side-

chain charged groups and at least a pair of side-chain nitrogen and

oxygen atoms of the ion-pairing residues must be within a 4 Å

distance [22]). Some of these salt bridges form networks, namely

the triplets Glu29/Asp33/Lys260 (Figure 1d) and Glu252/

Lys254/Lys265 in monomer B, another feature related to

hyperthermostability [21]. Furthermore, a disulphide bond is

observed between cysteines 250 and 263 in both monomers

(Figure 1d).

Structural similarity searches performed with Dali [23] and

PDBeFold [24] produced no significant hits. The highest Z-scores

were below 5 for Dali and below 4 for PDBeFold, corresponding

to high r.m.s.d. values (worse than 2.7 Å) over a small number of

residues ranging from 60 to 120 amino-acids. All these hits were

essentially overlapping with the major b-sheet and some included

the a1 helix that is packed against this sheet. Thus, we conclude

that the ATVORF273 structure defines a new azb fold.

ATVORF273 can form different types of oligomers
The elution of the recombinant ATVORF273 protein from the

size-exclusion chromatography column used for its purification

was compatible with the protein forming trimers or tetramers at

pH 8.5. To define more accurately the stoichiometry of this

oligomer, we analysed the purified protein by the MALS/SEC

method (Figure 2). With the protein injected at 4 mg/mL

(121 mM), these experiments showed that ATVORF273 forms a

tetramer (132.9+1.3 kDa) at pH 7.4 but a dimer (67.7+3.4 kDa)

at pH 3.6. Hydrodynamic radius calculation performed with the

Structure of ATVORF273
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ASTRA software yielded values of 4.84+0.27 nm and

3.54+0.30 nm, respectively.

The analysis of the crystal interfaces present in the second

crystal form with the PISA software [25] suggested two possible

dimers with a significant buried area at the interface, namely

1258 Å2 and 1087 Å2 per monomer, respectively. Remarkably,

these interfaces are not conserved in the first crystal form, which

actually displays less extensive contact surfaces, the largest masking

608 Å2 per monomer, none of them considered as significant by

the PISA algorithm.

Each of the two interfaces suggested by PISA results in a

possible dimer with pseudo-two-fold symmetry. Based on their

appearence, we call them the ‘open’ and the ‘closed’ dimers,

respectively (Figure 3a and 3b). In the closed dimer the concave

sides of the monomers face each other thereby creating a chamber

with a volume of *8650 Å3. In the open dimer the interface

involves their convex side. Not only do the open and closed dimers

bear similar contact surface areas, but they also display the same

number (15) of inter-subunit hydrogen bonds, defined according to

Mills & Dean criteria [26]. There are however two global

differences between these two dimers. First, the closed dimer

Table 1. Summary of data collection, phasing and refinement statistics.

Form 1 native Form 2 SeSAD Form 2

PDB code 4ats 4art

Data collectiona

Beamline (synchrotron) ID14eh4 (ESRF) ID29 (ESRF) Proxima1 (Soleil)

Wavelength (Å) 1.1810 0.9184 0.9791

Space group P41212 P41212 P41212

Unit cell axes (Å) a = b = 101.0, c = 53.0 a = b = 78.6, c = 189.4 a = b = 78.9, c = 188.9

Resolution (Å) 71.43 – 3.85 (3.86 – 3.85) 50.00 – 2.15 (2.20 – 2.15) 45.00 – 2.77 (2.85 – 2.77)

Unique reflections 2843 32549 28786

Multiplicity 11.0 (11.9) 12.8 (13.4) 7.6 (7.2)

Completeness (%) 98.6 (100.0) 97.9 (99.9) 99.8 (98.1)

SSIT=s(SIT)T 20.5 (6.8) 24.0 (3.7) 16.9 (3.1)

Rmeas
b 15.1 (65.9) 7.7 (77.4) 10.0 (74.4)

Phasing

Anom. corr. (%)c 44 (3.74)

Phasing powerd 1.01 (3.74)

Refinementa

Reflections usede 2819 (459) 32529 (1660)

Protein atoms 1960 3917

Solvent atoms 0 281

Rwork/Rfree (%)f 27.1/29.5 (29.1/32.1) 20.2/23.4 (22.9/25.5)

Fo=Fc correlation coefficientg 0.861 (0.838) 0.947 (0.933)

r.m.s.d. (bonds)h 0.009 0.010

r.m.s.d. (angles)h 1.08 1.05

Average isotropic B factors (Å2)

Main chain 132.7 44.5

Side chains 148.8 54.8

Solvent 51.9

Ramachandran plot statistics (%)

Residues in favoured regions 223 (97.4) 453 (99.3)

Residues in allowed regions 6 (2.6) 3 (0.7)

Outliers 0 (0) 0 (0)

Molprobity score (percentile)i 1.91 (100) 1.48 (98)

aValues in parentheses are for the highest resolution shell.
bRmeas~(Shkl (N=(N{1))1=2Si DSIhklT{Ihkl,i D)=ShklSi Ihkl,i is the multiplicity (N) independent Rmerge .
cMean correlation factor between two random subsets of anomalous intensity differences. In parenthesis, resolution at which anomalous correlation drops below 35%.
dValue in parenthesis: resolution for which phasing power drops below 1.0.
eIn parenthesis, number of reflections randomly assigned to the test set.
fRwork~Shkl DDFo D{DFc DD=Shkl DFo D. Rfree is defined as Rwork for the test set.
gThe value in parentheses corresponds to the test set reflections.
hRoot mean square deviation from the standard values.
iAs reported by the Molprobity server [57]. In parenthesis, the percentile of this value among structures of comparable resolution.
doi:10.1371/journal.pone.0045847.t001
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exhibits two strong symmetrical salt bridges between Asp211 on

one monomer and Arg215 on the other. Furthermore, a third salt

bridge is observed between Glu195 in monomer B and His219 in

monomer A (Figure 3c). Conversely, only weak ion-pair interac-

tions are found in the open dimer, with the best N-O bridge [22]

established between residues Glu29 and His237. Second, shape

complementarity of the interface surfaces, as calculated by the SC

program [27] is significantly better (0.670) for the closed dimer

than for the open dimer (0.563).

Noteworthy is that the dimers observed in the ATVORF273

crystals do not combine to form a tetramer but rather generate

fibers (see below). This observation is at odds with the fact that

these crystals appear under pH conditions (pH *6) closer to those

used for the protein purification, where the MALS/SEC data

indicate the presence of tetramers, than to pH 3.6, where dimers

are detected by this technique. We sought to resolve this apparent

discrepancy by using SAXS to characterize the ATVORF273

oligomer in solution and examine its shape and dimensions.

Attempts to obtain SAXS data at pH *6 were unsuccessful, due

to concentration-dependent protein aggregation. Therefore we

collected SAXS data under the pH and ionic strength conditions

used for the protein purification. Guinier analysis yielded an Rg of

35.8 Å, which is bigger than values calculated for the closed

(22.9 Å) and the open (24.4 Å) dimers. The maximum dimension

Figure 1. Crystal structure of ATVORF273. a) Ribbon representation of the structure of a monomer of ATVORF273. Its b-strands are labelled. The
secondary structure elements are colored from the N9- (blue) to the C9-terminus (red). The loops that were not modelled are represented by dashed,
black lines. b) A view orthogonal to the previous one, showing the arrangement of the a-helices. This view shows part of the concave face of the
monomer (top, right) c) The solvent-accessible surface of the ATVORF273 monomer concave face, colored by its electrostatic potential (red: 252 mV,
blue: 52 mV), calculated at pH 7 and 150 mM NaCl with APBS [56]. Two cavities are marked with yellow open stars. d) A detail view of monomer B
showing the salt bridge network formed by residues Glu29/Asp33/Lys260 as well as the disulphide bond established by cysteine residues 250 and
263. Amino acid residues are labelled in one-letter code; the secondary structure elements to which they belong are also labelled.
doi:10.1371/journal.pone.0045847.g001

Figure 2. Oligomeric state of ATVORF273 in solution. About
120 mg of purified ATVORF273 were subjected to size-exclusion
chromatography coupled to MALS/RI/UV detectors as described in
the Experimental section. Two chromatograms/mass analyses are
combined in this figure, showing the elution of the tetrameric (left)
and dimeric (right) forms of ATVORF273, obtained at pH 7.4 and 3.6,
respectively. The molar mass (dotted lines), derived from refractive
index measurements, and the absorption at 280 nm (full line) were
plotted as functions of the elution volume around the peaks. The
weight-averaged molar mass (Mw) values determined by the ASTRA
software are indicated.
doi:10.1371/journal.pone.0045847.g002
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of the particle (Dmax = 111.0 Å), obtained from the distance

distribution function (P(r)), was also larger than those computed

from the structures of the closed (67.9 Å) and open (84.0 Å)

dimers. Finally, the excluded volume of the hydrated particle

(Porod volume) was 221.5 nm3 that, according to the empirical

formula Mw~(Vp|1:25)=2 [28], gives a molar mass of 133 kDa,

in good agreement with an ATVORF273 tetramer (132 kDa). The

Kratky plot was consistent with a properly folded protein

(Figure 4b), whereas the P(r) function was monomodal and

suggested a compact, slightly elongated particle (Figure 4c).

Next we employed the program DAMMIF to carry out ab initio

shape reconstruction of the oligomer. We conducted several series

of independent runs with either no forced symmetry or imposing

P2, P222, P3 or P4 symmetries (Table 2, Figure S1a). Within each

symmetry class, the models were very reproducible with average

normalized spatial discrepancy (NSD) values below 1.0, consistent

with structurally similar solutions. Furthermore, all the models

were similar in terms of agreement with the experimental data, as

measured by DAMMIF x parameter. Slightly better agreement

was attained with P1 and P222 (Figure 4d) models, whereas P4

models fitted the data systematically worse than the rest. We note

that the averaged models have slightly bigger volumes, ranging

from 256.5 Å (P4 model) to 282.5 Å (P1 model), than that

obtained by Porod analysis.

In a complementary approach, we used SASREF [29] to

generate rigid-body refined models based on the available

structures of ATVORF273, that is the monomer and the two

possible dimers identified in the second crystal form. For the

monomer we used the same symmetries as for the ab initio shape

reconstruction, whereas for the dimers we calculated models with

P1 and P2 symmetry. As expected, better agreement to the

experimental curve was achieved by the trials with more degrees of

freedom, i.e. those involving the monomer (Table 2), with the

notable exception of the P3 symmetry, which gave the worst

agreement of all the rigid-body models. Examination of the P3

models showed that the monomers are disconnected since they

need to occupy a volume that is better accounted for by four

monomers. Amongst the models generated from the monomers,

those with P4 symmetry performed only better than the P3 models

and worse than the rest, in terms of x (Table 2). To further explore

the possibility that the protein may form trimers in solution and to

exclude a problem with SASREF for the generation of appropri-

ated trigonal models, we used the symmdock software [30] to

generate trimers of ATVORF273 with trigonal symmetry. The best

symmdock model has a score of 11592 compared to a score of

8892 for the second best model, with scores monotonously

decreasing thereafter. The best symmdock model has an Rg of

25.8 Å, the second best model has Rg = 25.9 Å and the average Rg

of the best 10 models is 27.3+1.0 Å. Similarly, the first model has

Dmax = 84.5 Å, the second model has Dmax = 83.8 Å and the

average of the best 10 models gives Dmax = 84.3+2.8 Å. These

values are clearly different from the experimental values obtained

by SAXS analysis. Further, the SAXS profiles calculated from

these trimers by the program CRYSOL [31], fitted very poorly the

experimental profile, with average x = 39.98+6.73. We conclude

that under these experimental conditions ATVORF273 does not

form trimers.

Figure 3. Crystal packing of ATVORF273. a) Overall view of the open and b) closed dimers found in the second crystal form. In both cases the
pseudo-two-fold axis is vertical in the plane of the paper. c) View of the interface between monomer A (colored as in in Figure 1) and monomer B
(grey) in the closed dimer. Amino acid residues involved in cross-monomer salt bridges are labelled in one-letter code. The secondary structure
elements that support them are also labelled. d) A view of the dimers arranged as a continuous helical fiber in the crystal. The edges of a unit cell box
are shown in grey color.
doi:10.1371/journal.pone.0045847.g003
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Interestingly, the rigid-body refined models calculated from the

crystallographic open dimer came next to those from the monomer

in terms of agreement with the SAXS data. Furthermore, models

calculated from the open dimer were all very similar, irrespective of

the symmetry used (overall vNSDw = 1.128+0.492). We con-

clude from these results that under the conditions tested (pH 8.5,

100 mM NaCl) ATVORF273 forms a tetramer, possibly with point

group 222 symmetry (Figure S1b).

ATVORF273 is a hyperthermostable and hyperacidostable
protein

ATV viruses proliferate at extreme pH (*1.5) and temperature

(§85uC). Under these conditions, structural proteins have to bear

an extreme stability to preserve fold and function. The ATVORF273

CD spectrum recorded at 20uC and pH 7.2 displays two minima

at 215 and 222 nm, characteristic of a folded protein containing

mainly a-helices (Figure 5). The CD spectra recorded at 20uC and

80uC, both at neutral and acidic (pH 0) conditions are all nearly

superimposable, establishing the extreme protein resistance to high

temperature, low pH and a combination of both factors.

Deconvolution of the CD spectra using the CDSSTR program

[32], as implemented in the Dichroweb server [33], was consistent

with the secondary structure derived from the crystal structure

(42% helices and 18% strands, see Figure 5) within the

uncertainties of this approach [32]. These analyses suggest that,

at the two pH values studied, increasing the temperature to 80uC
slightly destabilises the protein helices without affecting its content

in b-strands.

In contrast, at pH 11 and 80uC, ATVORF273 unfolds: the signal

at 200 nm is negative and the signal in the range 215–260 nm is

closer to zero (not shown). Importantly, the fact that ATVORF273

withstands a combination of low pH and high temperature agrees

well with the environment of the ATV virus in the thermal spring

where it was discovered.

Final remarks
Apart from an increased presence of salt-bridges and other ionic

pair interactions, ATVORF273 bears some rare traits for a

hyperthermostable protein (see [21] for a thorough discussion of

these properties). First, its fold is less compact than expected and

displays several cavities. Second, its C9-terminus and especially its

N9-terminus are not well structured. Finally, it carries disordered

loops. The presence of cavities and of disordered loops would seem

to suggest an enzymatic function. However, the novelty of the fold

and the fact that the protein sequence does not retrieve any

significant hit in public databases hinder the assignment of a

biological function to ATVORF273. Furthermore, although the

protein has a number of surface pockets we could not assign them

to any bona fide ligand/substrate. Significantly, ATVORF273 is the

fourth most abundant protein in virion preparations [15] and,

moreover, no homologue of ATVORF273 is present in the STSV1

virus [16]. In contrast, the ATV homologue (ATVORF131) of the

STSV1 major capsid protein (STSV1ORF40) is also the most

abundant protein in the ATV virion [15].

The two viruses ATV and STSV1 both exhibit large fusiform

bodies but while the former generates long bipolar tails

extracellularly, the latter generates one long tail intracellularly

[14,16]. Both genomes encode several pairs of homologous

proteins, albeit distantly related, but they differ markedly in their

virion protein contents. Whereas ATV virions contain several

major protein components, STSV1 carries only one major

component, the coat protein STSV1ORF40. It has been hypothe-

sised that some of the virion components of ATV actively

contribute to the extracellular tail development [15] and in a

detailed study of one of the major components, a MoxR-type

ATPase ATVORF618, evidence was provided for a co-chaperone

activity together with a Von Willebrand domain A protein

ATVORF892 [34]. Moreover, a model was presented whereby this

co-chaperone facilitated tail development together with another

virion protein ATVORF800, which exhibits intermediate filament-

like properties. Further, it was proposed that novel ATV DNA

binding proteins, also present in the virions, were involved in

drawing DNA along the tails [34]. In this context, a structural role

for ATVORF273 cannot be ruled out in spite of its enzyme-like

features. In this regard, the stability of ATVORF273 to extreme

acidic pH suggests that it may be in contact with the external

environment of the virion and thus participate in its coat and

contribute to the development of ATV tails. Finally, the two

interfaces identified in the second-form crystals of ATVORF273 are

assembled head-to-tail, resulting in helicoidal fibers that extend

indefinitely along the crystallographic c-axis (Figure 3d). Although

we have not observed fiber formation when handling the protein,

such a process could be dependent on pH. In this respect, the

Figure 4. SAXS analysis of ATVORF273. a) SAXS intensity as a
function of the momentum transfer. This profile corresponds to the
measurements taken at 4.7 mg/ml protein cocentration and pH 8.5.
Average values are in red and the standard error in grey. b) The Kratky
plot (see text for details) corresponds to a folded protein. c) Pair-
distance distribution, P(r), function of the data shown in panel a). d)
Three orthogonal views of the ab initio envelope calculated imposing
orthorhombic symmetry.
doi:10.1371/journal.pone.0045847.g004
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crystal pH (*6) might reflect the protein natural environment

better than the pH (8.5) of the protein solutions. Our results should

help guiding further experiments necessary to understand the

biological function of ATVORF273 and its possible involvement in

the development of ATV tails.

Materials and Methods

ATVORF273 construction and purification procedures
The ATVORF273 gene was cloned into the pDEST14 expression

vector according to standard Gateway protocols. The final

construct included a coding sequence for a C–terminal hexa–

histidine tag. A variant of ATVORF273 (ATVORF273M ), carrying the

Leu31Met, Leu117Met and Leu240Met mutations, was generated

by syntetic production of the mutated gene (Geneart).

Plasmids were transformed into the Escherichia coli T7 Iq pLysS

expression strain (New England Biolabs). Cells were grown at

37uC in Lysogeny Broth (LB) until the OD600 reached 0.6. Protein

expression was induced then with 0.5 mM isopropyl-b-thio-

galactoside (IPTG) and the cultures maintained at 25uC. After

*16 hours, cells were harvested and lysed by sonication in

50 mM sodium phosphate buffer (pH 8), 300 mM NaCl, 10 mM

imidazole and a protease inhibitor cocktail (Complete EDTA-free,

Roche). Soluble protein was separated from inclusion bodies and

cell debris by centrifuging for 30 min at 20,000 g. We used an

ÄKTA FPLC system for a two-step purification. First, the lysates

were applied onto a Ni2z affinity chromatography column

(HisTrap 5 ml, GE Healthcare) and eluted with 250 mM

imidazole in 50 mM sodium phosphate buffer (pH 8) and

300 mM NaCl. A preparative Superdex 200 (GE Healthcare)

gel filtration column was then run in 10 mM Bicine pH 8.5,

100 mM NaCl to remove aggregated material.

Seleno-Methionine-labeled ATVORF273M was prepared follow-

ing standard procedures in the minimum medium M9 by blocking

the methionine biosynthesis pathway [35]. Expression, purifica-

tion, and characterisation of the SeMet-labeled ATVORF273M

protein were carried out using the same protocols as for the native

protein.

Size-Exclusion Chromatography-coupled Multi-Angle
Light Scattering

Size-Exclusion chromatography (SEC) was performed on an

Alliance 2695 HPLC system (Waters). A Shodex KW803 column,

operated at 0.5 mL/min, was used in either 20 mM Hepes

(pH 7.4) with 100 mM NaCl or in 20 mM citrate buffer (pH 3.6)

with 150 mM NaCl. Multi-Angle Light Scattering (MALS), Ultra-

Violet (UV) spectrophotometry, Quasi-Elastic Light Scattering

(QELS) and Refractive index (RI) measurements were achieved

Table 2. Summary of SAXS results.

DAMMIFa

Symmetry x NSD vVolw (nm3) Rg (Å) Dmax (Å)

P1 1.654+0.011 0.583+0.019 282.5 34.4 115

P2 1.659+0.021 0.680+0.106 278.0 34.2 115

P222 1.648+0.008 0.486+0.017 272.2 34.7 114

P3 1.704+0.036 0.654+0.032 278.4 33.6 102

P4 1.770+0.052 0.768+0.127 256.5 32.8 90

SASREFb

Model Symmetry x NSD

Open dimer P1 4.514+0.024 0.923+0.667

Open dimer P2 4.589+0.045 1.498+0.999

Closed dimer P1 13.139+0.239 1.771+0.944

Closed dimer P2 12.721+0.033 2.134+1.437

Monomer P1 4.053+0.012 1.317+0.059

Monomer P2 4.132+0.044 1.426+0.066

Monomer P222 4.277+0.097 0.901+0.092

Monomer P3 11.765+0.841 1.398+0.449

Monomer P4 4.392+0.107 0.933+0.213

aab initio shape reconstruction.
bRigid-body modelling.
doi:10.1371/journal.pone.0045847.t002

Figure 5. Circular dichroism spectra of ATVORF273. Mean residue
ellipticity spectra recorded at pH 7.2 (black lines) and pH 0 (red lines),
either at 20uC (full lines) or at 80uC (dashed lines). The content in helices
and strands, as determined by deconvolution of the spectra, is shown
(see text for details).
doi:10.1371/journal.pone.0045847.g005
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with MiniDawn Treos (Wyatt Technology), Photo Diode Array

2996 (Waters), DynaPro (Wyatt Technology) and Optilab rEX

(Wyatt Technology) detectors, respectively. Weight-averaged

molar mass (Mw) and hydrodynamic radius calculations were

performed with the ASTRA software (Wyatt Technology) using a

dn/dc value of 0.185 mL/g.

Circular Dichroism
Temperature and pH stability studies were carried out by far-

UV Circular Dichroism (CD) spectroscopy. CD spectra were

recorded with a JASCO J-810 spectropolarimeter (JASCO

Corporation, Japan) equipped with a Peltier temperature control

system. Far–UV measurements (195–260 nm) were performed

using a 0.1 cm path quartz cuvette, with a scanning speed of

20 nm/min, spectral bandwidth of 1 nm, and were averaged over

three scans. The solvent spectra were subtracted in all experiments

to eliminate background effects. CD measurements in millidegrees

were performed at a protein concentration of 0.15 mg/mL in

10 mM sodium phosphate buffer at pH 7.2. Stability tests at pH 0

and pH 11 were carried out in 1 M HCl and 1 mM NaOH,

respectively. Thermal denaturation was monitored by increasing

the temperature from 20uC to 80uC.

The CD spectra were deconvoluted by using the CDSSTR

program [32], with reference database 7, as implemented in the

Dichroweb server [33]. The normalised root-mean square

deviations were in the 0.004–0.013 range, consistent with excellent

agreement between the experimental data and the fitting from the

deconvolution.

Small-Angle X-ray Scattering measurements and analysis
All Small-Angle X-ray Scattering (SAXS) measurements were

carried out at the ID14eh13 beamline (ESRF, Grenoble, France)

at a working energy of 13.32 keV corresponding to l = 0.931 Å.

Data were collected on a Pilatus 1 M detector placed at a sample-

detector distance of 2.43 m.

SAXS data were collected using 30 ml of protein solution at 2.3,

4.7 and 9.2 mg/ml in 10 mM Bicine (pH 8.5) buffer with

100 mM NaCl, loaded by a robotic system into a 2-mm quartz

capillary mounted in a vacuum. This procedure enables the

sample to move across the beam during exposure thus minimizing

the effect of radiation damage. Ten exposures each of 10 s were

made in this way for each condition. Individual frames were

processed automatically and independently at the beamline by the

data collection software (BsxCUBE), yielding radially averaged

normalized intensities as a function of the momentum transfer q,

with q~4psin(h)=l, where 2h is the total scattering angle and l is

the X-ray wavelength. Data were collected in the range q = 0.04–

6 nm21. The ten frames were combined to give the average

scattering curve for each measurement and any data points

affected by aggregation, possibly induced by radiation damage,

were excluded. Scattering from the buffer alone was also measured

before and after each sample measurement and the average of

these two buffer measurements was used for background

subtraction using the program PRIMUS [36] from the ATSAS

package [37]. PRIMUS was also used to perform Guinier analysis

[38] of the low q data, which provides an estimate of the radius of

gyration (Rg). Regularized indirect transforms of the scattering

data were carried out with the program GNOM [39] to obtain P(r)

functions of interatomic distances. The P(r) function has a

maximum at the most probable intermolecular distance and goes

to zero at Dmax, the maximum intramolecular distance. Values of

Dmax were chosen that yielded solutions that fit the experimental

data well and have a smooth and strictly positive P(r) function.

This approach also allows the calculation of Rg values that agreed

with the values found by the Guinier analysis.

Ab initio 3D shape reconstructions
We built 3D bead models fitting the scattering data with the

program DAMMIF [40]. Ten independent DAMMIF runs were

performed for each scattering profile, with data extending up to

0.25 Å21, using slow mode settings, assuming either P1, P2, P222,

P3 or P4 symmetry and allowing for a maximum 500 steps to

grant convergence. The models resulting from independent runs at

each symmetry were superimposed using the DAMAVER suite

[41]. This yielded an initial alignment of structures based on their

axes of inertia followed by minimisation of the normalized spatial

discrepancy (NSD), which is zero for identical objects and larger

than 1 for systematically different objects [42]. The aligned

structures were then averaged, giving an effective occupancy to

each voxel in the model, and filtered at half-maximal occupancy to

produce models of the appropriate volume that were used for all

subsequent analyses. To provide a clearer representation of the 3D

shape reconstructions, bead models were converted to density

maps by the program pdb2vol from the Situs package [43].

Rigid body modelling of the SAXS data
We used the program CRYSOL [31] to generate theoretical

scattering curves from monomer A of the best resolution model of

ATVORF273, as well as from the two putative dimers observed in

this crystal form. Rigid body modeling was performed with the

program SASREF [29], which uses a simulated annealing protocol

to build an interconnected ensemble of subunits without steric

clashes, while minimizing the discrepancy between the experi-

mental scattering data and the curves calculated from the

appropriate subunits by CRYSOL.

Crystallisation and Structure Determination
ATVORF273 crystallisation trials were carried out in sitting-drop

vapour diffusion method at 20uC in 96-well Greiner crystallisation

plates using a nanodrop-dispensing robot (Cartesian Inc.). The first

crystals, belonging to space group P41212 (Table 1), were obtained

in 5%–15% PEG 8000, 0.2 M MgCl2, 0.1 M Tris (pH 7–8). A

native data set (l = 0.91839 Å) to 3.85 Å resolution was collected

at the ID14eh4 beamline (ESRF, Grenoble, France).

Crystals of a second form grew in a few days by mixing 1.5 mL

protein at 5 mg/mL with 0.5 mL 3.6% isopropanol, 1.9 M

(NH4)2SO4, 5 mM MgCl2, 2 mM AMP. The mother liquor was

pH 6. Crystals were cryoprotected with mother-liquor supple-

mented with 25% glycerol and 2.3 M (NH4)2SO4 and flash

vitrified in liquid nitrogen. Two data sets were collected: a native

data set (l = 0.91839 Å) to 2.15 Å resolution at the ID29 beamline

(ESRF, Grenoble, France) and a Se-SAD data set (l = 0.97911 Å)

to 2.77 Å at the Proxima 1 beamline (SOLEIL, Gif-sur-Yvette,

France).

Data integration and scaling were done using the XDS package

[44] and POINTLESS [45] was used to help establishing the space

group. The structure of ATVORF273 was solved by the single-

wavelength anomalous diffraction (SAD) method using the

autoSHARP program [46] with SHELXD [47] to locate the

selenium substructure. Initial automatic building was performed

with Buccaneer [48]. Alternative cycles of manual model building

with Coot [49] and refinement with either autoBuster-TNT [50]

or refmac5 [51] were carried out to improve the initial model.

We solved the structure of the first crystal form by molecular

replacement with the program PHASER [52], using as template

the final model from the second crystal form. Refinement was

performed with autoBuster-TNT [50] with the ‘‘target’’ option
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[53] that uses local similarity restraints to a separate already

determined structure, typically at higher resolution, that remains

fixed during the refinement of the structure being refined. This

procedure facilitates the refinement of low resolution structures.

Our final model from the second crystal form was used as ‘‘target’’

structure. Temperature factors were refined with the translation-

libration-screw (TLS) approach with a single TLS group.

We used the DSSP program [54] to define the secondary

structure elements of the higher resolution crystal structure.

Figures were generated using Chimera [55].

Supporting Information

Figure S1 SAXS analysis of ATVORF273. a) Three orthogonal

views of each of the five ab initio envelopes calculated imposing

(from left to right) no, binary, orthorhombic, trigonal or tetragonal

symmetry. b) Fitting of the SASREF model obtained from the

open dimer using P2 symmetry into the P222 DAMMIF model.

The fitting was performed by the program Chimera [55].

(TIF)
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