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Abstract

During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and
CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of
phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To
understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was
combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed
that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and
macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had
phagocytosed the parasite, thus suggesting a role for these cells in priming naı̈ve T cells. Indeed, dendritic cells were
required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was
not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but
not those that had phagocytosed the parasite) to naı̈ve mice potently induced CD4+ and CD8+ T cell responses, and
conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for
actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses.
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Introduction

Toxoplasma gondii is an intracellular protozoan parasite of

medical and veterinary significance that can induce acute disease

in its host and is an important opportunistic pathogen in

immunocompromised individuals [1,2]. Successful control of this

pathogen requires a rapid TH1 immune response, characterized

by the production of the cytokine IL-12, which promotes the

ability of parasite-specific CD4+ and CD8+ T cells to produce the

cytokine Interferon-c (IFN-c) [3,4,5]. The initiation of CD8+ T

cell responses is a complex process which requires that professional

antigen presenting cells acquire antigens and present them in the

context of Major Histocompatibility Complex (MHC) I, and

multiple models have been proposed to explain how this may

occur during toxoplasmosis [6,7]. For example, in other systems,

foreign antigens are acquired through the pinocytosis of soluble

antigens, the phagocytosis of large particulate antigens, or the

phagocytosis of host cells containing foreign antigens, and

subsequently presented to CD8+ T cells through cross-presentation

[8,9]. A role for cross presentation during toxoplasmosis is

supported by in vivo imaging studies showing that uninfected

dendritic cells interact extensively with parasite-specific CD8+ T

cells [6,10,11]. Alternatively, since T. gondii is an intracellular

parasite, actively infected dendritic cells may acquire parasite-

derived antigens from their intracellular environment indepen-

dently of phagocytosis and directly prime naı̈ve CD8+ T cells.

Indeed, the ability of cells actively infected by T. gondii to prime or

present antigen to CD8+ T cells has been observed in vitro [12–

14] and the critical role of perforin in immunity to T. gondii

implicates the cytolysis of infected host cells as a mechanism of

defense, thus arguing that infected cells can present antigen to

effector CD8+ T cells in vivo [15]. However, several caveats must

be acknowledged in interpreting these studies. Firstly, the ability of

infected cells to present antigens to reporter cells lines or activated

effector CD8+ T cells does not necessarily indicate that infected

cells can prime naı̈ve CD8+ T cells, and events that occur in vitro

may not represent the in vivo situation. Additionally, it can be

difficult to distinguish actively infected host cells from those that

have phagocytosed the parasite by flow cytometry, thus con-

founding experimental interpretation. Furthermore, like many
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intracellular pathogens, T. gondii has been reported to inhibit the

expression or upregulation of molecules involved in antigen

presentation such as MHCI, CD40, CD80, and CD86 on infected

cells, suggesting that the ability of infected cells to prime naı̈ve

CD8+ T cells may be compromised [16–18].

Antigens presented to CD4+ T cells in the context of MHCII

may also be derived from the extracellular or intracellular

environment of the host cell. Endocytosed antigens can be

presented in the context of MHCII, and this pathway is considered

to be the primary mechanism by which antigens are acquired for

presentation to CD4+ T cells [19]. However, intracellular antigens

can also be presented in the context of MHCII, as cytosolic

peptides are presented in the context of MHCII by B cells and

macrophages [20]. Similarly, in vitro studies have demonstrated

that viral or model antigens expressed intracellularly can be

presented to CD4+ T cells independently of phagocytosis [21–29].

Despite these findings, the role of infected cells in presenting

antigen to CD4+ T cells in vivo during any infection remains

unclear [30]. In the case of T. gondii, downregulated expression of

MHCII and other molecules involved in antigen presentation has

been observed on infected cells, and cells infected with T. gondii

exhibit decreased ability to present antigen in vitro [16–18].

Furthermore, in vitro studies have observed that antigens from

heat-killed or invasion-inhibited parasites incubated with dendritic

cells can be presented in the context of MHCII, consistent with a

role for phagocytosis-dependent antigen presentation to CD4+ T

cells [12].

There are several difficulties involved with addressing the

relative contributions of phagocytosis versus active invasion to

antigen presentation in vivo during many infections. For example,

interfering with these pathways can result in changes in pathogen

burden and inflammation that confound experimental interpreta-

tion, and the parasite-mediated lysis of host cells and re-infection

may obscure the analysis of the earliest cell populations that

interact with the pathogen. In addition, there are limited tools to

distinguish host cells that have phagocytosed pathogens from those

that have been productively infected. In the present study, these

issues are addressed using a non-replicating uracil auxotrophic

vaccine strain of T. gondii (the cpsII strain) [31–33] and a novel

assay that tracks the fate of parasites and distinguishes active

invasion from phagocytosis in vivo. Using these approaches, cpsII

parasites were found to infect large numbers of macrophages and

dendritic cells, and dendritic cells were found to be necessary for

optimal cpsII-induced CD4+ and CD8+ T cell responses. Infected

dendritic cells displayed an activated phenotype, characterized by

high levels of CD86 and MHCI expression, which was unique

from the phenotype of dendritic cells that had phagocytosed T.

gondii. Furthermore, the administration of heat-killed or invasion-

blocked parasites did not induce CD4+ or CD8+ T cell responses,

thus demonstrating that phagocytosis of parasites is insufficient to

activate naı̈ve T cells. Lastly, the selective transfer of infected

dendritic cells or macrophages, but not those that had phagocy-

tosed T. gondii, to naı̈ve mice resulted in robust CD4+ and CD8+ T

cell responses and protection from challenge with a virulent strain

of T. gondii. These findings point toward a critical role for infected

cells in initiating the adaptive immune response to T. gondii.

Results

Development of a system to distinguish phagocytosis of
parasites from active invasion

To distinguish between parasites that are phagocytosed by host

cells and those that actively infect host cells, differences in

sensitivity to pH between the fluorescent markers mCherry and

CellTrace Violet were exploited. When mCherry-expressing

parasites were labeled intracellularly with CellTrace Violet and

incubated overnight in buffer solutions of varying pH, mCherry

fluorescence was retained (Figure 1a). In contrast, violet fluores-

cence intensity was maintained at pH 7.0 but was decreased at low

pH (Figure 1a). The ability of this system to distinguish active

invasion from phagocytosis was demonstrated in vitro by

incubating Violet-labeled, mCherry-expressing cpsII parasites with

macrophages and examining fluorescence by flow cytometry

1 hour and 18 hours post-infection. At one hour after incubation

with parasites, two distinct macrophage populations were present:

One displayed mCherry and Violet fluorescence, while the other

was negative for both markers (Figure 1b). However, by 18 hours,

two distinct mCherry+ve populations were apparent. One popu-

lation displayed no loss of mCherry or Violet fluorescence

(mCherry+veViolet+ve), while the other population had decreased

mCherry fluorescence associated with a complete loss of violet

fluorescence (mCherry+veViolet2ve). Utilizing ImageStream flow

cytometry to generate images of individual cells from each of these

populations revealed that the mCherry+veViolet+ve cells contained

intact parasites, while the mCherry+veViolet2ve cells contained

dimmer and more diffuse mCherry fluorescence (Figure 1c, Figure

S1). Instances in which cells contained both diffuse fluorescence

and intact parasites were rare (,3% of infected cells). Further-

more, pre-treatment of parasites with the irreversible inhibitor of

invasion 4-p-bromophenacyl bromide (4-p-bpb) (thus making

parasites targets for phagocytosis) [12,34–36], resulted in the

complete loss of the mCherry+veViolet+ve population at 18 hours

post-infection (Figure 1b,c, Figure S1). Staining with LysoTracker,

a fluorescent dye that specifically stains acidified compartments

[37], enabled parasites that localized to acidified compartments to

be distinguished from those that persist in non-acidified compart-

ments. Both of these populations of parasites (LysoTracker+ve and

LysoTracker2ve) were apparent when untreated (invasion compe-

tent) parasites were incubated with bone marrow-derived macro-

phages one hour post-infection (Figure S2). In contrast, when

invasion was pharmacologically inhibited parasites localized

exclusively to the acidified compartments at these early time

Author Summary

CD4+ and CD8+ T cells are critical for controlling many
infections. To generate a T cell response during infection, T
cells must encounter the microbial peptides that they
recognize bound to MHC molecules on the surfaces of
other cells, such as dendritic cells. It is currently unclear
how dendritic cells acquire the antigens they present to T
cells during infection with many intracellular pathogens. It
is possible that these antigens are phagocytosed and
processed by dendritic cells, or antigens may be presented
by cells that are infected by pathogens such as Toxoplas-
ma gondii, which invades host cells independently of
phagocytosis. To differentiate these pathways, we devel-
oped a novel technique to track the fate of T. gondii in vivo
that distinguishes actively infected cells from those that
phagocytosed parasites. This technique was used to
examine each of these cell populations. We also used
pharmacological inhibitors of parasite invasion, and the
transfer of sort-purified infected or uninfected dendritic
cells and macrophages to determine what roles phagocy-
tosis and active invasion have in the initiation of T cell
responses. Our results demonstrate that phagocytosis of
parasites is not sufficient to induce CD4+ or CD8+ T cell
responses, whereas infected cells are critical for this
process.
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points, and at later time points the diffuse mCherry+ve fluorescence

localized most commonly to a LysoTracker2ve compartment.

Collectively, these results are consistent with a model in which

phagocytosed parasites are degraded, and the acidic environment

of the phagosome leads to a loss of Violet fluorescence, while

mCherry fluorescence is retained. In contrast, when the parasite

actively invades host cells and persists in the less acidic

environment of the parasitophorous vacuole (PV), both Violet

and mCherry fluorescence are retained.

The ability to distinguish active invasion from phagocytosis was

then utilized to determine the fate of cpsII parasites in vivo. When

C57BL/6 mice were vaccinated intraperitoneally with Violet-

labeled, mCherry-expressing parasites, mCherry+veViolet+ve and

mCherry+veViolet2ve populations were apparent in the Peritoneal

Exudate Cells (PECS) 18 hours post-vaccination, and the presence

of the mCherry+veViolet+ve population was abrogated by pre-

treating the parasites with 4-p-bpb (Figure 1d). Furthermore, when

Violet+ve cells were sorted and cytospins were examined, they were

found to contain intact parasites (Figure 1e). ImageStream analysis

also revealed that the mCherry+veViolet+ve population contained

intact parasites whereas the mCherry+veViolet2ve population

displayed diffuse mCherry fluorescence (Figure 1f, Figure S3).

Collectively, these studies demonstrate that the use of fluorescent

markers with differing pH sensitivities can be used to distinguish

cells that have phagocytosed T. gondii from those that have been

actively infected.

CpsII parasites can persist within infected host cells, but
are ultimately cleared from the peritoneal cavity

To measure the persistence of cpsII parasites in vivo, bioassays

were performed in which tissues from vaccinated mice were

cultured in the presence of exogenous uracil and examined by

microscopy for the presence of cpsII parasites. Using this method,

cpsII parasites were detected in all mice examined at day 3 post-

infection. However, by day 5 post-infection, 50% of mice had

cleared the infection, and by day 10 post-infection, no parasites

could be detected. These data suggest that cpsII parasites are

ultimately cleared from the host, and are consistent with previous

studies, in which parasite DNA could not be detected in the

peritoneal cavities or spleens of cpsII-vaccinated mice when

measured 3 weeks post-infection [38].

To determine the mechanisms by which cpsII parasites may

ultimately be cleared from host cells, their fate within infected host

cells was examined in vitro. Since IFN-c (in combination with LPS

or TNF-a) can induce the recruitment of immune enzymes such as

the Immunity Related Guanosine Triphosphatases (IRGs) to the

PV, and these enzymes have been implicated in the rupture of the

PV which leads to the xenophagic elimination of the parasite [39],

the colocalization of the parasite with Irgb6 (a member of the IRG

family) and LAMP-1 (which is expressed on lysosomes) in IFN-c–

activated cells and untreated cells was examined using immuno-

fluorescence microscopy, to determine if IFN-c induced the

elimination of cpsII parasites within infected cells. When the

subcellular localization of live cpsII parasites was examined, it was

apparent that these parasites did not colocalize with either Irgb6

or LAMP-1 in IFN-c-activated or untreated macrophages, at any

time point examined (ranging from 3 hours post-infection to 5

days post-infection) (Figure 2a–b). In contrast, LAMP-1 coloca-

lized with heat-killed parasites, consistent with the idea that heat-

killed parasites are phagocytosed. These data argue against the

notion that cpsII parasites are eliminated by xenophagy, and

demonstrate that these parasites can persist within infected cells for

long periods of time. Electron microscopy was also utilized to

examine the integrity of the PV, since IFN-c can induce the

blebbing and rupture of the PV during infection with replicating

strains of T. gondii [40,41]. Using this approach, cpsII-infected

macrophages were consistently observed to contain intact PVs and

blebbing was not apparent (Figure 2c). Additionally, some cpsII

parasites showed atypical morphology, indicative of non-produc-

tive cell division (Figure 2d). Collectively, these results confirm that

cpsII parasites cannot replicate within host cells, and suggest that

cpsII parasites can persist within infected cells, evading IFN-c-

mediated destruction, although they are eventually cleared from

the host.

Identification and phenotypic analysis of cells that are
infected by or phagocytose cpsII parasites

To better understand the fate of cpsII parasites in vivo, mice

were challenged intraperitoneally with Violet-labeled, mCherry-

expressing cpsII parasites, and flow cytometry was performed on

the PECS 18 hours later to characterize the cell populations that

had phagocytosed T. gondii or were actively infected. The largest

population of mCherry+veViolet+ve cells to be infected was

CD11bHI macrophages, which comprised 44.0616.7% of infected

cells. Dendritic cells (which have been previously implicated in the

induction of T cell responses to cpsII [42]) comprised 8.362.8% of

infected cells (Figure 3a,b). Of the infected dendritic cells the vast

majority (97.862.0%) belonged to the Gr-12veCD11bHI subset

(data not shown). Although T. gondii is capable of infecting any

nucleated cell, when the frequencies of CD11bHI macrophages

and dendritic cells within the population of infected cells

(44.0616.7% and 8.362.8%, respectively) were compared to

their frequencies within the total population of peritoneal cells in

vaccinated mice (11.367.9% and 1.360.4%, respectively), it was

apparent that macrophages and dendritic cells are overrepresented

among cells infected by the parasite (Figure 3c). Analysis of the

population that had phagocytosed T. gondii revealed 46.0620.6%

of these cells were CD11bHI macrophages, whereas dendritic cells

represented 6.263.2% of this population (Figure 3a,b). Addition-

ally, 23.469.9% of the cells that had phagocytosed the parasite

stained positive for markers for T, B or NK cells (CD3, CD19 and

NK1.1, respectively). Further sub-setting revealed these cells to be

B cells, consistent with previous reports identifying a population of

phagocytic B cells in the peritoneal cavity (Figure 3b, data not

Figure 1. Differences in pH sensitivity of two fluorescent markers can be used to distinguish parasites that have been
phagocytosed from those that actively invade host cells. Fluorescence intensity of mCherry-expressing cpsII parasites labeled with CellTrace
Violet and incubated overnight at varying pH in buffer solutions consisting of citric acid and disodium phosphate [93] was measured by flow
cytometry (a). Violet and mCherry fluorescence of immortalized murine bone marrow-derived macrophages exposed to Violet-labeled, mCherry-
expressing cpsII parasites pre-treated with DMSO (top) or the irreversible inhibitor of invasion 4-p-bpb (bottom) 1 hour and 18 hours following
exposure to parasites, measured by flow cytometry (b). Images of mCherry+veViolet+ve and mCherry+veViolet2ve bone marrow-derived macrophages
18 hours following exposure to Violet-labeled, mCherry-expressing cpsII parasites pre-treated with 4-p-bpb or DMSO (c). Violet and mCherry
fluorescence of cells isolated from the PECS of mice 18 hours post-administration of 106 DMSO-treated or 4-p-bpb-treated parasites (d). Cytospin
analysis was performed on Violet+ve cells isolated by FACS sorting, obtained from the PECS of a mouse 18 hours after vaccination with Violet-labeled
cpsII parasites (e). Images of mCherry+veViolet+ve and mCherry+veViolet2ve cells isolated from the PECS of mice 18 hours post-administration of 106

DMSO-treated or 4-p-bpb-treated Violet-labeled, mCherry-expressing cpsII parasites (f).
doi:10.1371/journal.ppat.1004047.g001
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shown) [43,44]. Parasites were not detected in lymph nodes or

spleens by flow cytometry, and parasites could not be cultured

from these tissues at days 3,5 or 10 post-vaccination.

The phenotype of infected cells and those that phagocytosed the

parasite was compared by analyzing expression levels of MHCI

and MHCII, as well as the costimulatory molecules CD86 and

CD40. Although vaccination with cpsII resulted in an overall

increase in expression of MHCI on CD11bHI macrophages,

macrophages that had phagocytosed the parasite and those that

were infected displayed similar levels of MHCI to the total

population present in the PECS of vaccinated mice. In contrast,

dendritic cells that had phagocytosed cpsII and those that were

infected by the parasite displayed higher levels of MHCI relative to

the total dendritic cell population in the peritoneal cavity

(Figure 4a). Vaccination with cpsII induced no significant changes

in MHCII expression on dendritic cells, although infected

macrophages had lower levels of MHCII than the total population

in the PECS (Figure 4b). Expression of CD86 was markedly higher

on macrophages and dendritic cell populations that were infected

by the parasite, but not the populations that had phagocytosed the

parasite (Figure 4c). While vaccination induced increased CD40

expression on the total dendritic cell population, infected cells

displayed similar expression levels to the total population, and

those that phagocytosed the parasite exhibited the highest levels of

expression (Figure 4d). Collectively, these results reveal a complex

pattern demonstrating that infected macrophages and dendritic

cells display activated phenotypes, characterized by the upregula-

tion of MHCI and CD86, and constitutive expression of CD40

and MHCII, which is distinct from the phenotype of cells that

phagocytosed T. gondii.

Figure 2. The fate of heat-killed and live cpsII parasites in host cells. C57BL/6 bone marrow derived macrophages were infected with cpsII
parasites and examined using immunofluorescence assays (a). Bone marrow-derived macrophages activated with IFN-c (100 U/ml) and LPS (0.1 ng/
ml) were infected with freshly lysed or heat-killed parasites for 3 hours. Intracellular parasites were stained for host Irgb6 or LAMP1 recruitment in
green. Parasites were stained with a mouse monoclonal antibody to GRA1 to identify the parasitophorous vacuole or rabbit polyclonal sera against
GRA7 in red. IFN-c and LPS activated bone marrow-derived macrophages were infected with freshly lysed cpsII parasites and fixed at 3, 24, 48 and
120 hours post-infection (b). Parasite vacuoles were identified with rabbit polyclonal sera to GRA7 (red) and host LAMP1 was identified with a rat
monoclonal antibody. Scale bar = 10 mm. Electron micrograph images of infected macrophages treated with IFN-c (50 units/ml) and LPS (10 ng/ml) or
untreated at 2 hours post-infection (c). Parasites persist in intact vacuoles and do not display blebbing or disruption of the parasitophorous vacuole.
Some cpsII parasites were found to exhibit non-productive cell division in IFN-c and LPS- treated or untreated macrophages when examined 24 hours
post-infection (d). Scale bars = 1.5 mm.
doi:10.1371/journal.ppat.1004047.g002
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Figure 3. Composition of total cell populations, mCherry+veViolet2ve cell populations, and mCherry+veViolet+ve populations from
the PECS of naı̈ve and vaccinated mice. Mice were vaccinated with 106 Violet-labeled, mCherry-expressing cpsII parasites intraperitoneally and
sacrificed 18 hours post-vaccination. Cell type composition of total peritoneal cell populations in naı̈ve and vaccinated mice, and the cell type
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composition of mCherry+veViolet2ve cells and mCherry+veViolet+ve cells in vaccinated mice were examined. Representative flow plots demonstrating
infected cells and cells that have phagocytosed T. gondii for each major cell type present in the PECS are shown (a). The composition of the PECS in
naı̈ve mice and vaccinated mice, and the composition of infected cells (mCherry+veViolet+ve) and cells that have phagocytosed T. gondii
(mCherry+veViolet2ve) are depicted (b). Percentages of macrophages and dendritic cells in the total peritoneal cell population in vaccinated mice are
compared to the percentages of infected cells that are macrophages and dendritic cells (c). T/B/NK cells are identified by expression of CD3, CD19, or
NK1.1. Dendritic cells were identified as CD32ve,CD192ve,NK1.12ve,CD11cHI,MHCIIHI. Monocytes and neutrophils were defined as CD32ve,CD192ve,
NK1.12ve,CD11cLOW-INT,Gr-1+ve. Macrophages were identified as CD32ve,CD192ve,NK1.12ve,CD11cLOW-INT,Gr-12ve,CD11bINTorHI. *p,0.05; ***p,0.0005.
AVG6STDEV. A paired, two-tailed student’s t test was used to analyze the data in (c). Results shown are from one representative experiment. Similar
results were obtained over the course of seven separate experiments.
doi:10.1371/journal.ppat.1004047.g003

Figure 4. Activation status of mCherry+veViolet2ve and mCherry+veViolet+ve macrophages and dendritic cells. Mice were administered
parasites as described in Figure 3. At 18 hours post-vaccination, expression of the antigen presentation molecules MHCI (a) and MHCII (b) and
expression of the costimulatory molecules CD86 (c) and CD40 (d) on CD11bHI macrophages and dendritic cells was determined by flow cytometry.
Macrophages are identified as CD32ve,CD192ve,NK1.12ve,CD11c2ve,Gr-12ve,CD11bHI cells. Dendritic cells are identified as CD32ve,CD192ve,NK1.12ve,
CD11cHI,MCHIIHI. Confidence intervals were determined using the Bonferroni correction method. *p,0.017; **p,0.0017; ***p,0.00017. AVG6SE.
Paired, two-tailed student’s t tests were used to compare expression levels of molecules on populations within cpsII-vaccinated mice.
doi:10.1371/journal.ppat.1004047.g004
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Dendritic cells are critical for optimal cpsII-induced CD4+

and CD8+ T cell responses
Given the activated phenotype of dendritic cells infected with

cpsII versus those that had phagocytosed the parasite, studies were

performed to determine the role of dendritic cells in the

development of CD4+ and CD8+ T cell responses to this strain.

Mice that express the diphtheria toxin receptor under the control

of the CD11c promoter (CD11c-DTR mice) were used to test the

requirement for dendritic cells to prime T cells [45]. In these

experiments, CD11c-DTR mice were treated with diphtheria

toxin, which resulted in a 70–90% reduction in dendritic cells

(Figure 5a). One day following the administration of diphtheria

toxin, mice were challenged with a strain of cpsII engineered to

express Ovalbumin (cpsII-OVA) [38]. At eight days following

vaccination, CD4+ and CD8+ T cell responses were measured

using MHCII tetramers, which bind CD4+ T cells specific for the

endogenous T. gondii epitope CD4Ag28m combined with magnetic

enrichment for the tetramer+ve population [46,47], and MHCI

tetramers for OVA-specific CD8+ T cells. Additionally, the surface

molecule CD11a, which is upregulated on antigen-experienced

CD4+ and CD8+ T cells [48,49], and the intracellular molecule

Ki67, which is indicative of cellular proliferation [50], were used to

estimate the total CD4+ and CD8+ T cell responses to T. gondii.

Indeed, vaccination with cpsII induced a two-fold increase in the

frequency of CD11aHIKi67HI cells and an expansion in the

number of CD11aHI CD4+ T cells specific for the CD4Ag28m

epitope, but depletion of dendritic cells inhibited these responses

(Figure 5b). Similarly, cpsII vaccination induced an increase in

CD11aHIKi67HI and OVA-specific CD8+ T cells, however these

responses were decreased in mice depleted of dendritic cells

(Figure 5c). Furthermore, when Flt3L2/2 mice (which have global

defects in numbers of dendritic cells [51]) or Batf32/2 mice (which

have a defect in numbers of CD8a+ dendritic cells [52]) were

challenged with cpsII-OVA, both mice displayed marked defects in

tetramer-specific and total CD4+ and CD8+ T cell responses

(Figure S4,S5).

Given the numbers of macrophages that were either infected or

which had phagocytosed T. gondii, experiments were performed to

assess their role in the cpsII-induced T cell responses. However,

attempts to deplete macrophages using clodronate liposomes also

resulted in significant depletion of dendritic cells, making it

difficult to assess the specific contribution of macrophages (data

not shown). However, because monocytes were observed to

interact with parasites (Figure 3b), and these populations can

develop into dendritic cells that express CD11c, experiments were

performed to assess their role in generating CD4+ and CD8+ T cell

responses following cpsII vaccination. Therefore, mice deficient in

the chemokine receptor CCR2, which promotes the recruitment

of inflammatory monocytes to sites of inflammation during

toxoplasmosis [53], were immunized with cpsII-OVA parasites.

Despite having a defect in monocyte recruitment to the

peritoneum, CCR22/2 mice had similar cpsII-induced CD4+

and CD8+ T cell responses to WT control mice (Figure S6), thus

arguing against a critical role for inflammatory monocytes in

presenting antigen to CD4+ and CD8+ T cells following cpsII-

vaccination. Collectively, these results establish a role for dendritic

cells in the generation of CD4+ and CD8+ T cell responses

following cpsII vaccination.

Infected dendritic cells are sufficient to generate CD4+

and CD8+ T cell responses
To assess the contribution of phagocytosis to the generation of

CD4+ and CD8+ T cell responses, mice were challenged with live

cpsII-OVA parasites, heat-killed cpsII-OVA parasites, or parasites

pre-treated with the irreversible inhibitor of invasion 4-p-bpb. As

expected, vaccination with live parasites induced a robust CD4+ T

cell response, however these responses were abrogated when

parasites were killed or invasion was inhibited (Figure 6a).

Similarly, CD11aHIKi67HI and OVA-specific CD8+ T cells were

detected when mice were administered live, but not heat-killed or

invasion-inhibited parasites (Figure 6b). Indeed, even when the

dose of heat-killed parasites was increased to 107 parasites (1006
the typical dose of live parasites used in these experiments), no

CD4+ or CD8+ T cell responses could be detected (Figure S7).

Additionally, gp912/2 mice, which have a defect in cross-

presenting antigens to CD8+ T cells [54], developed normal

CD8+ T cell responses following cpsII-vaccination (data not

shown). Collectively, these data indicate that phagocytosis of

parasites is insufficient to induce CD4+ and CD8+ T cell responses,

and point toward a critical role for infected cells in these processes.

To determine whether infected dendritic cells were sufficient to

generate CD4+ and CD8+ T cell responses, bone marrow-derived

dendritic cells cultured in GM-CSF (which are CD11bHIC-

D8a2ve) were infected with violet-labeled, mCherry-expressing

cpsII parasites in vitro overnight, and FACS sorting was used to

purify the uninfected (mCherry2veViolet2ve) and infected cells

(mCherry+veViolet+ve) from the same cultures, and each of these

fractions was then administered to naı̈ve mice. In addition, bone

marrow-derived dendritic cells were cultured with invasion-

blocked parasites, and the populations of DCs that had

phagocytosed the parasite (mCherry+veViolet2ve) were also isolat-

ed by FACS sorting, and administered to mice. This experiment

allowed a direct comparison of the ability of infected dendritic cells

and dendritic cells that phagocytosed T. gondii to induce CD4+ and

CD8+ T cell responses in vivo. In mice administered uninfected

dendritic cells cultured with parasites, or dendritic cells that had

phagocytosed parasites, there was no detectable increase in

Ki67+veCD11aHI, antigen-experienced CD4+ or CD8+ T cells

(Figure 7a,b). In contrast, mice administered cpsII-infected

dendritic cells developed CD4+ and CD8+ T cell responses as

determined by tetramer-binding as well as expression of Ki67 and

CD11a (Figure 7a,b). Furthermore, when vaccinated mice were

challenged 6 weeks later with a highly virulent strain of T. gondii,

only those mice administered cpsII-infected dendritic cells

displayed a ,90% reduction in parasite burden (Figure 7c).

Similar results were obtained using splenic dendritic cells, which

are composed of both CD8a+ and CD8a2 dendritic cells (data not

shown). Moreover, the transfer of sort-purified infected bone

marrow-derived macrophages to mice also induced CD4+ and

CD8+ T cell responses and protected mice from challenge,

whereas the transfer of macrophages that had phagocytosed

parasites did not induce T cell responses or protection (Figure S8).

Collectively, these results demonstrate a key role for infected cells

in the induction of CD4+ and CD8+ T cell responses, and

protective immunity upon re-challenge.

Discussion

There are many fundamental questions about the mechanisms

of antigen presentation that lead to the activation of CD4+ and

CD8+ T cells during toxoplasmosis and multiple studies have

addressed the ability of actively infected cells to present antigen

[12–14,55]. The present work highlights that following challenge

in vitro or in vivo with live parasites there are high rates of

phagocytosis and the combination of flow cytometry and parasites

that express a single fluorescent reporter protein are not sufficient

to distinguish infected cells from those that phagocytose T. gondii.
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Rather, the ability to combine parasites that express a pH

insensitive reporter such as mCherry protein with a pH sensitive

dye and analysis by high throughput imaging and flow cytometry

provide a unique opportunity to examine parasite fate and host

cell phenotype. This approach should be broadly applicable to

determining the fate of other intracellular fungal, bacterial and

parasitic pathogens [56–62]. Regardless, the ability to distinguish

active invasion from phagocytosis revealed that macrophages and

dendritic cells infected by T. gondii have unique activation

phenotypes when compared to those that have phagocytosed the

parasite. Previous reports have indicated that infection with

T. gondii inhibits the maturation of professional antigen presenting

cells [6,16,18,63], but the data presented here are more consistent

with the idea that infection induces DC maturation [36,55,64–66].

The experiments in which dendritic cells were selectively depleted,

or pre-infected dendritic cells were transferred to mice highlight

the important role of these accessory cells in generating CD4+ and

CD8+ T cell responses following cpsII-vaccination. However, these

findings do not rule out the possibility that other cell types are also

involved. Indeed, the transfer of infected bone marrow-derived

macrophages could also induce CD4+ and CD8+ T cell responses,

suggesting that resident macrophages may also contribute to the T

cell responses that occur following cpsII vaccination.

In current paradigms, the direct phagocytosis or endocytosis of

soluble and particulate non-infectious antigens is the major

pathway that allows antigens to be presented in the context of

MHCII to CD4+ T cells [19]. Similarly, phagocytosed antigens are

thought to be presented to CD8+ T cells through the process of

cross-presentation [8]. However, the multiple approaches present-

ed here indicate that phagocytosis of T. gondii is not sufficient to

generate T cell responses. The finding that infected dendritic cells

and macrophages display activated phenotypes and are able to

promote CD4+ and CD8+ T cells responses in vivo distinguishes

them from populations that phagocytose T. gondii. These

observations suggest that live (as opposed to phagocytosed)

parasites may uniquely activate innate sensing mechanisms that

are linked to antigen presentation. This may relate to the

persistence of parasites that occurs in infected cells, or to the

engagement of mechanisms that allow the host to distinguish

viable parasites from those that had been phagocytosed and would

be killed [67]. The failure of cells that phagocytose the parasite to

upregulate expression of CD86 is consistent with this idea.

Another possibility is that dendritic cells actively infected with

T. gondii display a hypermotile phenotype and enhanced migration

to lymph nodes, a process that is considered essential for T cell

priming [68–72]. Differences in cellular motility between infected

cells and those that phagocytose parasites may account for the

apparent discrepancy between the previous studies that showed

that phagocytosis of parasites is sufficient to prime CD4+ T cells in

vitro [12] and our finding that this process is not sufficient in vivo.

Regardless of the reasons that cells that phagocytose T. gondii fail

to prime T cells, the data presented here are consistent with

models in which infected cells either directly prime CD4+ T and

CD8+ T cells, or are taken up by efferocytosis (i.e. the phagocytosis

of apoptotic cells), leading to antigen presentation. Since T. gondii

resides in a specialized non-fusogenic vacuole, it is unclear how

parasite antigens may escape the PV for processing and

presentation by infected cells. One possibility is that parasite

antigens are acquired for presentation from the intracellular

environment through the xenophagic elimination of cpsII parasites.

Indeed, autophagic machinery has been implicated in the

elimination of T. gondii [40,73,74], and antigen acquired through

autophagy can be subsequently presented [23,24,75]. However,

the lack of recruitment of Irgb6 and LAMP-1 to the PVs

containing cpsII parasites argues against this idea. Other possible

mechanisms that would allow parasite material to enter antigen

processing pathways include the fusion of the PV with the

endoplasmic reticulum [12], the secretion of antigen into the

cytoplasm during invasion [76], or leakage of antigen out of the

PV [14]. More recent work has shown that T. gondii can secrete

antigens into host cells without subsequently infecting these cells

[77]. This population of injected-but-uninfected cells may also

contribute to the host immune response, and the ability to track

these abortive invasion events in vivo, as well as the ability to

divorce injection from infection through modulation of the

parasite, may provide further insight into the pathways involved

in antigen processing during cpsII vaccination.

Given the lack of overt inflammation observed during infection

with cpsII parasites, the absence of parasite-driven cytolysis of host

cells, and limited antigen load, it remains surprising that relatively

low numbers of these parasites are able to generate strong

protective CD4+ and CD8+ T cell responses, comparable to those

seen during live infection [31–33,38,42,78]. Increased antigenic

burden is generally associated with increased T cell responses, and

inflammatory signals can promote pathways involved in antigen

presentation, T cell proliferation, and T cell survival [79–81].

Caution is therefore required when extrapolating these findings to

natural infection with replicating parasites. Regardless, the finding

that phagocytosis is insufficient to induce antigen presentation in

this system highlights the importance of alternative approaches to

deliver antigens for vaccine design and immunotherapies, such as

those that target antigens to the host cell cytosol [82]. Further-

more, while many studies have utilized models of murine infection

to elucidate the factors involved in the generation of T cell

responses and the formation of memory T cells, vaccination with

cpsII parasites allows these processes to be studied in a setting in

which overt inflammation is limited. Thus, this experimental

system may prove valuable to dissect basic principles that lead to

the generation of long-lived T cell responses that translate easily to

vaccine design, where inflammation should also be limited.

Materials and Methods

Ethics statement
All procedures involving mice were reviewed and approved by

the Institutional Animal Care and Use Committee of the

University of Pennsylvania (Animal Welfare Assurance Reference

Number #A3079-01) and were in accordance with the guidelines

set forth in the Guide for the Care and Use of Laboratory Animals

of the National Institute of Health.

Figure 5. Dendritic cells are required for optimal CD4+ and CD8+ T cell responses. CD11c-DTR mice were administered diphtheria toxin 1
day prior to cpsII-OVA vaccination. At the time of vaccination, some mice were sacrificed to determine the efficiency of depletion. Percentages and
numbers of dendritic cells from the spleen are shown. FACS plots are gated on CD32,CD192,NK1.12 cells (a). Eight days following vaccination, mice
were sacrificed and total and tetramer-specific CD4+ and CD8+ T cell responses were analyzed. Total CD4+ T cell responses from the spleens are
shown (b, top). Tetramer-specific CD4+ T cell responses from pooled lymph nodes and splenocytes were determined in a separate experiment (b,
bottom). Flow plots are gated on CD4+ T cells (b), and the population examined was magnetically enriched for the tetramer+ve population (b,
bottom). Total and OVA-specific CD8+ T cell responses from the PECS are depicted (c), and flow plots are gated on CD8+ T cells. Significant differences
in tetramer and total CD8+ T cell responses between WT and CD11c-DTR mice were also apparent in the spleen. *p,0.05; **p,0.005. AVG6SE.
doi:10.1371/journal.ppat.1004047.g005
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Mice
Flt3L2/2 mice were obtained from Taconic Farms (German-

town, NY). Batf32/2 mice, CCR22/2 and CD11c-DTR mice

were obtained from Jackson Laboratories. C57BL/6 mice were

obtained from Jackson Laboratories or Taconic Farms. All mice

were kept in specific-pathogen-free conditions at the School of

Veterinary Medicine at the University of Pennsylvania. For

experiments in which dendritic cells were depleted, CD11c-DTR

or WT control mice were administered 100 ng of Diphtheria

Toxin (Sigma-Aldrich) diluted in 100 mL of PBS (Invitrogen)

Figure 6. Active invasion is required for adaptive immune responses to T. gondii. cpsII-OVA parasites were heat-killed, treated with the
invasion inhibitor 4-p-bpb or left untreated and administered to mice intraperitoneally. Tetramer-specific and total CD4+ (a) and CD8+ (b) T cell
responses were measured from cells isolated from the spleen and lymph nodes (pooled) 10 days post-vaccination. Flow plots are gated on Foxp32ve

CD4+ T cells (a, top) or CD4+ T cells (a, bottom) and the population examined at the bottom of A was enriched for tetramer+ve cells. Flow plots in B are
gated on CD8+ T cells. *p,0.05; **p,0.005. AVG6SE.
doi:10.1371/journal.ppat.1004047.g006
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intraperitoneally ,12 hours prior to vaccination. Depletion

efficiency was typically 90%.

Infections
All experiments were performed using cpsII parasites, cpsII-OVA

parasites [38], cpsII-OVA-mCherry parasites, or RH-OVA-Tomato

parasites. RH-OVA-Tomato parasites [83] and cpsII-OVA para-

sites [38,84] have been previously described. CpsII-OVA parasites

and were derived from the RHDcpsII clone, which was provided

as a generous gift by Dr. David Bzik [31]. CpsII-OVA-mCherry

parasites were derived from the cpsII-OVA clone using the

previously described methods [76,77], with the exception that

parasites were selected using zeomycin as previously described

[85]. Parasites were cultured and maintained by serial passage

on human foreskin fibroblast cells in the presence of parasite

culture media [71.7% (Corning), 17.9% Medium 199 (Invitro-

gen), 9.9% Fetal Bovine Serum (FBS)(Invitrogen), 0.45%

Penicillin and Streptomycin (Invitrogen)(final concentration of

0.05 units/ml Penicillin and 50 mg/ml Streptomycin), 0.04%

Gentamycin (Invitrogen)(final concentration of 0.02 mg/ml

Gentamycin)], which was supplemented with uracil (Sigma-

Aldrich)(final concentration of 0.2 mM uracil) in the case of

cpsII, cpsII-OVA and cpsII-OVA-mCherry parasites. For infec-

tions, parasites were harvested and serially passaged through 18,

20 and 26 gauge needles (BD) before filtration with a 5 mM

filter (Sartorius Stedim). Parasites were washed extensively with

PBS and mice were injected intraperitoneally with 105 or 106

parasites suspended in PBS. In vitro experiments were

performed at an MOI of 0.5 or 1. For experiments in which

CellTrace Violet (Invitrogen) was utilized to track the fate of

parasites, CellTrace Violet was diluted in 200 mL of DMSO to

obtain a 0.5 mM stock solution. Parasites were washed once

with PBS before incubation in 0.5 mM CellTrace Violet diluted

in PBS for 10–25 minutes at 37uC. This reaction was quenched

by the addition of ,40 volumes of complete media [88.5%

RPMI 1640 (Corning), 8.8% FBS (Invitrogen), 0.9% Sodium

Pyruvate (Gibco), 0.9% Penicillin and Streptomycin (Invitro-

gen)(final concentration of 0.1 units/ml Penicillin and 100 mg/

ml Streptomycin), 0.9% MEM Non-essential Amino Acids

Solution (Gibco) and 0.18% beta-2-mercaptoethanol (Gibco)]

and parasites were washed extensively. In experiments in which

4-p-bromophenacyl bromide (4-p-bpb) was utilized to inhibit

parasite invasion, 4-p-bpb (Sigma-Aldrich) was prepared fresh

for each experiment and dissolved in DMSO (Sigma-Aldrich) to

make a 0.1 M stock solution. Parasites were incubated in a

100 mM solution of 4-p-bpb in Fetal Bovine Serum at a

concentration of 107 parasites/ml for 10 minutes, and the

reaction was quenched by the addition of ,40 volumes of

complete media, followed by extensive washing [12]. To heat-

kill parasites, parasites were incubated at 60uC for 1 hour in

PBS [86]. Death was confirmed using Trypan Blue staining

(Corning).

Cell culture and tissue harvesting
Peritoneal exudate cells were obtained by peritoneal lavage with

5 ml of PBS. Splenocytes and lymphocytes were obtained by

grinding spleens and lymph nodes over a 40 mM filter (Biologix)

and washing them in complete media. Red blood cells were then

lysed by incubating for 5 minutes at room temperature in 5 ml of

lysis buffer [0.864% ammonium chloride (Sigma-Aldrich) diluted

in sterile de-ionized H2O)], followed by washing with complete

media. Bone marrow-derived macrophages were obtained using

previously described methods [83,87]. Immortalized macrophages

from C57BL/6 mice were obtained by transforming bone

marrow-derived macrophages with the J2 Virus and were cultured

in macrophage media [88].

Flow cytometry and imaging
Tetramer-specific CD4+ T cells were measured using the

protocol previously described [46]. MHCII Tetramer was

obtained as generous gifts from Drs. Marc Jenkins and Marion

Pepper, and subsequently from the NIH Tetramer Core Facility,

and was used at a final concentration of 10 nM. APC-MHCI-

SIINFEKL Tetramer was obtained from Beckman-Coulter. Cells

were washed with FACS Buffer [16 PBS, 0.2% bovine serum

antigen (Sigma), 1 mM EDTA (Invitrogen)], stained with LIVE/

DEAD Fixable Aqua Dead Cell marker (Invitrogen) and

incubated in Fc block [99.5% FACS Buffer, 0.5% normal rat

serum (Invitrogen), 1 mg/ml 2.4G2 (BD)] prior to staining. The

following antibodies were used for staining: Ki67 Alexa Fluor 488

(BD, B56), CD3 APC-eFluor 780 (eBioscience, 17A2), CD8 eFluor

450 (eBioscience, 53-6.7), CD11a PerCP-Cy5.5 (Biolegend, H155-

78), MHCII PE (eBioscience, M5/114.15.2), NK1.1 PE (BD,

PK136), CD19 PE (eBioscience, 1D3), Foxp3 eFlour 450

(eBioscience, FJK-16a), CD4 Pe-Cy7 (eBioscience, GK1.5), CD3

FITC (BD, 145-2C11), NK1.1 FITC (eBioscience, PK136), CD19

FITC (eBioscience, 1D3), Gr-1 PerCP-Cy5.5 (eBioscience, RB6-

8C5), CD11c PE-Cy7 (eBioscience, N418), CD11b APC-eFluor

780 (eBioscience, M1/70), MHCII AF700 (Biolegend, M5/

114.15.2), MHCI APC (AlexaFlour647 AF6-88.5), CD86 APC

(eBioscience, GL1), CD40 APC (eBioscience 1C10), CD8 eFlour

650 NC (eBioscience, 53-6.7), CD45.2 APC-eFluor 780

(eBioscience, 104), polyclonal rabbit anti-T. gondii [a generous gift

from Fausto G. Araujo (Palo Alto Medical Foundation, Palo Alto,

CA)], and polyclonal Goat anti-Rabbit Alexa Fluor 680 (Jackson).

Intracellular staining was performed using the Foxp3/Transcrip-

tion Factor Staining Buffer Set (eBioscience) following the

manufacturer’s instructions. Samples were run on a FACSCanto

(BD) or LSR Fortessa (BD) and analyzed using FlowJo Software

(TreeStar). Images were obtained using the ImageStream and

analysis was performed using IDEAS software (Amnis).

Sorting
Splenic dendritic cells were obtained from mice injected

subcutaneously with Flt3L-secreting b16 tumor cells [89,90] and

Figure 7. Infected cells are sufficient to induce CD4+ and CD8+ T cell responses. Bone marrow-derived dendritic cells were cultured
overnight with Violet-labeled, mCherry-expressing cpsII parasites. The following day, dendritic cells were sorted into mCherry+veViolet+ve (infected)
and mCherry+veViolet2ve (uninfected) populations and 104 dendritic cells from each population were administered to mice. In parallel, dendritic cells
that had phagocytosed T. gondii were obtained by sorting on bone marrow-derived dendritic cells that were incubated with invasion-blocked Violet-
labeled, mCherry-expressing cpsII parasites. 10 days later, mice were sacrificed and CD4+ (a) and CD8+ (b) T cell responses in the peritoneal cavity and
spleen were analyzed. Populations shown depicting CD4+-tetramer binding are enriched for the tetramer+ve population and these cells were isolated
from the spleen (a, bottom). All other cell populations shown were harvested from the peritoneal cavity, although similar trends were apparent when
splenocytes were examined. Flow plots are gated on Foxp32ve CD4+ T cells (a, top), CD4+ T cells (a, bottom) or CD8+ T cells (b). Parasite burdens from
the PECS of mice transferred infected dendritic cells or dendritic cells that have phagocytosed T. gondii 5 days post-challenge with 103 tachyzoites of
a highly virulent, replicating strain of T. gondii, administered 6 weeks following vaccination with 104 infected or uninfected dendritic cells, analyzed by
flow cytometry (c). Significance in (c) was determined using a Mann-Whitney U-test. *p,0.05; **p,0.005. AVG6SE.
doi:10.1371/journal.ppat.1004047.g007
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magnetically enriched using CD11c microbeads (Miltenyi Biotech)

and LD MACS separation columns (Miltenyi Biotech), following

the manufacturer’s instructions. Bone marrow-derived dendritic

cells were obtained by culturing bone marrow cells in the presence

of 40 ng/ml of GM-CSF, which was added at days 0,3,6 and 9

post-seeding. Dendritic cells or bone marrow-derived macrophag-

es were cultured overnight with parasites at 37uC and collected the

following day. Dendritic cells were then stained for MHCII,

CD11c, CD45, and free parasites, and sorted for mCherry+veVio-

let+ve, mCherry+veViolet2ve or mCherry2veViolet2ve populations

that were CD45+MHCIIHICD11cHI, and negative for free

parasites using the FACSAria (BD). Macrophages were stained

for CD45 and free parasites and sorted into mCherry+veViolet+ve,

mCherry+veViolet2ve or mCherry2veViolet2ve populations that

were CD45+ and negative for free parasites.

Electron microscopy
Bone marrow-derived macrophages from C57BL/6 mice were

activated with IFN-c and LPS for 18–24 hours or left untreated in

macrophage media lacking uracil [DMEM (Gibco) supplemented

with 4 mM L-glutamine (Sigma) and 10% dialyzed fetal bovine

serum (Hyclone)]. Where indicated, cells were infected with freshly

egressed parasites, washed three times with PBS then fixed at

2 hours or 24 hours post-infection. For ultrastructural analysis,

cells were fixed in 2% paraformaldehyde/2.5% glutaraldehyde

(Polysciences Inc., Warrington, PA) in 100 mM phosphate buffer,

pH 7.2 for 1 hour at room temperature, processed and examined

as described previously [91].

Immunofluorescence assays
Immunofluorescence assays were performed in C57BL/6 bone

marrow-derived macrophages. Bone marrow-derived macrophag-

es for these experiments were derived as described previously [91].

Cells were activated with 100 U/ml IFN-c and 0.1 ng/ml LPS in

macrophage media lacking uracil. Macrophages were infected

with freshly egressed parasites at an MOI of 1, washed at 3 hours

post-infection five times with PBS, and incubated in uracil-free

media supplemented with IFN-c and LPS for the indicated time.

Heat-killed parasites were incubated at 65uC for 10 minutes and

infected at an MOI of 5. Cells for immunofluorescence were fixed

in 4% formaldehyde, permeabilized with 0.05% saponin, and

stained using primary antibodies as described. Parasite vacuoles

were localized using mouse monoclonal Tg17-43 against GRA1 or

rabbit polyclonal sera against GRA7. Host LAMP-1 was localized

with rat monoclonal antibody 1D4B and Irgb6 was localized using

rabbit polyclonal sera raised against recombinant protein [92]. All

secondary antibodies used in immunofluorescence were highly-

cross adsorbed Alexa Fluor conjugated antibodies (Invitrogen).

Samples were visualized using a Zeiss Axioskop 2 MOT Plus

microscope equipped for epifluorescence and using a 636
PlanApochromat lens, N.A. 1.40 (Carl Zeiss, Inc., Thornwood,

NY). Images were acquired with an AxioCam MRm camera (Carl

Zeiss, Inc.) using Axiovision v4.6, and processed using similar

linear adjustments for all samples in Photoshop CS4 v9.

Spinning disk confocal microscopy
Bone marrow-derived macrophages were cultured with inva-

sion-blocked or untreated mCherry-expressing cpsII parasites

(MOI = 1) and LysoTracker Green DND-26 (Life Technologies)

was added prior to imaging, following the manufacturer’s

instructions. Images were collected using a Leica DMI4000

microscope equipped with a Yokogawa CSU10 spinning disk

confocal unit and a Hamamatsu ImagEM EMCCD camera.

Images were analyzed using ImageJ software.

Statistical analysis
Statistical analysis was performed using PRISM software

(Graphpad Software). Significance was calculated using an

unpaired two-tailed student’s t-test except when otherwise noted.

Supporting Information

Figure S1 Images of mCherry+veViolet+ve (a) or mCherry+ve-

Violet2ve (b–c) bone marrow-derived macrophages 18 hours

following exposure to Violet-labeled, mCherry-expressing cpsII

parasites, which were pre-treated with DMSO (a,b) or 4-p-bpb (c).

(PDF)

Figure S2 Subcellular localization of cpsII parasites. Invasion-

blocked (4-p-bpb treated) or untreated mCherry-expressing cpsII

parasites were incubated with bone marrow-derived macrophages

for 1 hour or 9 hours, and acidified compartments were identified

by staining with LysoTracker. Images were obtained by confocal

microscopy.

(TIFF)

Figure S3 Images of mCherry+veViolet+ve (a) and mCherry+ve-

Violet2ve (b,c) cells isolated from the PECS of mice 18 hours post-

administration of 106 DMSO-treated (a,b) or 4-p-bpb-treated (c)

Violet-labeled, mCherry-expressing cpsII parasites.

(PDF)

Figure S4 CD4+ and CD8+ T cell responses to cpsII-OVA

vaccination in Flt3L2/2 mice. Flt3L2/2 mice were vaccinated

with 105 cpsII-OVA parasites intraperitoneally and CD4+ and

CD8+ T cell responses from the spleen and lymph nodes (pooled)

were examined at 10 days post-vaccination. CD4+ T cell responses

are shown (a). Flow plots shown in A are gated on Foxp32ve CD4+

T cells (top) or total CD4+ T cells (bottom), and the populations

examined at the bottom of A were enriched for the tetramer+ve

population. CD8+ T cell responses in the spleen and lymph nodes

(pooled) were also examined (b). Flow plots shown in B are gated

on CD8+ T cells. *p,0.05; **p,0.005. ***p,0.0005. AVG6SE.

(EPS)

Figure S5 CD4+ and CD8+ T cell responses in WT and Batf3

KO mice. WT or Batf3 KO mice were vaccinated with 105 cpsII-

OVA parasites and examined 10 days post-vaccination. CD4+ T

cell responses from the cells isolated from the spleen and lymph

nodes (pooled) are shown (a). Flow plots in A are gated on

Foxp32veCD4+ T cells (top), or total CD4+ T cells (bottom) and

the populations examined in the bottom flow plots are enriched for

the tetramer+ve population. CD8+ T cell responses from cells

isolated from the spleen and lymph nodes (pooled) are also shown

(b). Flow plots in B are gated on CD8+ T cells. *P,0.05. CD4+

and CD8+ T cell data shown are from two separate experiments.

AVG6SE.

(EPS)

Figure S6 CD4+ and CD8+ T cell responses in WT and

CCR22/2 mice. WT or CCR22/2 mice were vaccinated with 105

cpsII-OVA parasites and CD4+ and CD8+ T cell responses were

examined 10 days post-infection. CD4+ T cell responses from cells

isolated from the spleen are shown (a) and flow plots in A are gated

on Foxp32veCD4+ T cells (top), or total CD4+ T cells (bottom)

and the populations examined in the bottom flow plots are

enriched for the tetramer+ve population. CD8+ T cell responses

from cells isolated from the spleen and lymph nodes (pooled) are

also shown (b). Flow plots in B are gated on CD8+ T cells.

*P,0.05. AVG6SE.

(EPS)
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Figure S7 CD4+ and CD8+ T cell responses to live or heat-killed

cpsII-OVA parasites. CD4+ and CD8+ T cell responses to 105

untreated cpsII-OVA parasites, 105 heat-killed cpsII-OVA para-

sites, or 107 heat-killed cpsII-OVA parasites. Mice were adminis-

tered parasites intraperitoneally, and CD4+ (a) and CD8+ (b) T cell

responses were measured 10 days post-infection. Flow plots shown

are gated on splenic CD4+ or CD8+ T cells. The populations

depicted in the flow plots showing the tetramer-specific CD4+ T

cells were enriched for the tetramer+ve population. Parasite burden

in the PECS is shown five days post-intraperitoneal challenge with

103 tachyzoites of a highly virulent (RH) strain engineered to

express OVA and the fluorescent protein dTomato, which was

administered 3 weeks after vaccination with 105 live cpsII-OVA

parasites or 107 heat-killed cpsII-OVA parasites (c).

(PDF)

Figure S8 Infected macrophages induce CD4+ and CD8+ T cell

responses to cpsII parasites. Bone marrow-derived macrophages

were harvested and incubated overnight with Violet-labeled,

mCherry-expressing cpsII parasites and FACS-sorting was used the

following day to isolate mCherry+veViolet+ve cells (infected cells) or

mCherry2veViolet2ve (uninfected) cells. In parallel, 4-p-bpb-

treated (invasion-blocked) parasites were incubated with bone

marrow-derived macrophages and mCherry+veViolet2ve cells (cells

that have phagocytosed parasites) were isolated by FACS sorting.

104 cells from each of these populations were then administered to

populations of mice and CD4+ (a) and CD8+ (b) T cell responses

were measured 10 days post-transfer. Flow plots depicting total

CD4+ T cell responses (a, top) are gated on CD3+CD4+Foxp32ve

splenocytes and flow plots depicting tetramer-binding CD4+ T

cells (a, bottom) are gated on CD3+CD4+ splenocytes. The

population depicted in the flow plots demonstrating CD4+

tetramer binding is enriched for tetramer+ve cells. Flow plots

depicting CD8+ T cell responses (b) are gated on CD3+CD8+

splenocytes. Six weeks following the transfer of infected macro-

phages, uninfected macrophages, or macrophages that had

phagocytosed T. gondii, mice were challenged with 103 tachyzoites

of a highly virulent, replicating strain of T. gondii, and parasite

burden was measured in the PECS 5 days post-challenge (c).

(TIF)
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