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Parkinson’s disease is characterized by a gradual loss of dopaminergic neurons, which is associated with altered neuronal activity

in the beta-band (13–30 Hz). Assessing beta-band activity typically involves transforming the time-series to get the power of the sig-

nal in the frequency domain. Such transformation assumes that the time-series can be reduced to a combination of steady-state

sine- and cosine waves. However, recent studies have suggested that this approach masks relevant biophysical features in the beta-

band—for example, that the beta-band exhibits transient bursts of high-amplitude activity. In an exploratory study, we used mag-

netoencephalography to record beta-band activity from the sensorimotor cortex, to characterize how spontaneous cortical beta

bursts manifest in Parkinson’s patients on and off dopaminergic medication, and compare this to matched healthy controls. We

extracted the time-course of beta-band activity from the sensorimotor cortex and characterized bursts in the signal. We then com-

pared the burst rate, duration, inter-burst interval and peak amplitude between the Parkinson’s patients and healthy controls. Our

results show that Parkinson’s patients off medication had a 5–17% lower beta bursts rate compared to healthy controls, while

both the duration and the amplitude of the bursts were the same for healthy controls and medicated state of the Parkinson’s

patients. These data thus support the view that beta bursts are fundamental underlying features of beta-band activity, and show

that changes in cortical beta-band power in Parkinson’s disease can be explained—primarily by changes in the underlying burst

rate. Importantly, our results also revealed a relationship between beta burst rate and motor symptom severity in Parkinson’s dis-

ease: a lower burst rate scaled with increased severity of bradykinesia and postural/kinetic tremor. Beta burst rate might thus serve

as a neuromarker for Parkinson’s disease that can help in the assessment of symptom severity in Parkinson’s disease or in the evalu-

ation of treatment effectiveness.
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Introduction
Parkinson’s disease is a neurodegenerative disease that,

most often, initially diagnosed by the occurrence of

motor symptoms tremor, rigidity and bradykinesia. The

neurodegenerative process is characterized by a loss of

dopamine and death of dopaminergic neurons throughout

the basal ganglia–thalamic–cortical system (Rodriguez-

Oroz et al., 2009; Kalia and Lang, 2015). The dopamine

loss leads to widespread functional changes in brain ac-

tivity; for instance, throughout the basal ganglia–thalam-

ic–cortical network, oscillatory activity in the beta band

(13–30 Hz) exhibits systematic disease-related changes in

Parkinson’s disease (Jenkinson and Brown, 2011). The

direct influence of dopamine has for example been dem-

onstrated to increase beta band power in the sub-thalam-

ic nucleus (STN) when Parkinson’s patients are off

dopaminergic medication as compared to on medication

(Alonso-Frech et al., 2006; Kühn et al., 2006; Mallet

et al., 2008; Giannicola et al., 2010; Neumann et al.,

2017). Increased beta power in the STN and the basal

ganglia has further been linked to increased severity of

bradykinesia and rigidity in Parkinson’s patients (Kühn

et al., 2006; Martin et al., 2018). Disease-related changes

in the beta band are found not only in STN and basal

ganglia in Parkinson’s patients but are also present in the

cortex, from where brain activity can be recorded non-in-

vasively while patients are at rest, using magnetoencepha-

lography (MEG) and electroencephalography (EEG).

Studies using MEG to assess neural activity while the partici-

pants were at rest show that Parkinson’s patients have

decreased cortical beta power compared to healthy controls

(Bosboom et al., 2006; Heinrichs-Graham et al., 2014).

However, in the early stages of Parkinson’s disease, there

seems to be an increase in beta power at rest compared

to healthy controls (Pollok et al., 2012). Treatments for

Parkinson’s disease also seem to be effective through

modulation of the cortical beta activity. Administration

of dopaminergic medication increases the cortical beta

power in Parkinson’s patients (Heinrichs-Graham et al.,

2014; Melgari et al., 2014). Similarly, Parkinson’s

patients treated with electrical deep brain stimulation

showed an increase in cortical sensorimotor beta power

following deep brain stimulation compared to off treat-

ment (Airaksinen et al., 2012; Cao et al., 2017).

However, other studies have reported that deep brain

stimulation leads to a broader suppression of 5–25 Hz

power in frontal and sensorimotor cortex (Abbasi et al.,

2018; Luoma et al., 2018).

It is currently unclear whether the different directions

of these disparate findings are due to differences in the

Parkinson’s patients cohorts (e.g. early-stage versus later-

stage Parkinson’s disease) or if they are due to uncertain-

ties in the methods used to quantify beta activity. Beta

activity is traditionally assessed by analysing the MEG/

EEG data in the frequency-domain, using various forms

of Fourier-transforms (e.g. wavelet-analysis) of the data.

Fourier-based methods assume that the oscillatory activity

in the time-series can be resolved as a sum of steady-state

sine and cosine waves of varying frequency. There is,

however, converging evidence that the oscillatory activity

in the beta band does not occur at a steady state but in-

stead consists of short transient bursts lasting only one to

a few beta band cycles (Leventhal et al., 2012; Bartolo

and Merchant, 2015; Feingold et al., 2015; Sherman

et al., 2016). From the resulting power spectral densities
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(PSD) it is impossible to tell whether changes in beta

band reflect a general change in the amplitude of steady-

state oscillations, or if it reflects changes in the occur-

rence or amplitude of transient beta bursts. In all three

cases, the output from the Fourier-transform will sum up

to a shift in beta band power.

Several recent studies have explored the functional role

of transient beta bursts in the somatosensory cortex of

healthy subjects. For instance, Shin et al. (2017) showed

that the detection rate of a tactile stimulation was higher

when the probability of a beta burst immediately before

the stimulation was low, suggesting that the beta bursts

exhibit a transient inhibitory effect on the processing of

incoming sensory signals. The negative relationship be-

tween the probability of a beta burst and the detection

rate of tactile stimulation were consistent in mice, mon-

keys and humans (Sherman et al., 2016; Shin et al.,

2017). Similarly, Little et al. (2019) showed a negative

relationship between the probability of cortical beta

bursts before a cued movement and reaction time in a

cued reaction task, demonstrating that beta bursts have

an inhibitory effect on outgoing movement initiation.

Assessment of changes in beta activity in terms of transi-

ent bursts—rather than averaging in the frequency do-

main—may contribute to a better understanding of what

aspect of the beta-band activity changes in Parkinson’s

disease due to disease and medication.

There is similar evidence on the functional role of tran-

sient beta bursts from research assessing beta-band activ-

ity in midbrain structures. The overall power changes in

the beta band in the STN can, for example, be explained

as changes in the occurrence of short periods with high

beta amplitude (Tinkhauser et al., 2017a, 2018). The

high-amplitude beta bursts in STN showed both increased

rate and longer durations when the patients were off

dopaminergic medication than on medication. Lofredi

et al. (2019) used similar measurements from STN in

patients undergoing surgery to find a decrease in beta

bursts in the period leading up to a movement in a cued

reaction task. The relation between beta bursts and

movement initiation makes beta burst a potential tool for

understanding loss of control and slowing of movement

in Parkinson’s disease (Tinkhauser et al., 2017b; Lofredi

et al., 2019).

Analysis of beta activity at the level of beta bursts ap-

pear to be a functionally relevant approach for further

understanding sensory-motor processing and may provide

new insights into the function of the sensory-motor sys-

tem that is lost in average-based analysis method.

Assessment of spontaneous beta bursts in Parkinson’s

patients from non-invasive recordings, such as MEG

might provide a more sensitive assessment on how the

beta band activity changes due to the disease and may

help to resolve the apparently conflicting results that

emerge when assuming beta-band activity consist of

steady-state beta oscillations.

In this study, we used non-invasive MEG measurements

from Parkinson’s patients off and on dopaminergic medi-

cation, and measurements from matched healthy controls,

to investigate the occurrence of spontaneous transient

beta bursts in the sensorimotor cortex. Our primary aim

was to compare the characteristics (such as duration,

amplitude and rate) of spontaneous beta burst in the sen-

sorimotor cortex of Parkinson’s patients to healthy con-

trols. Our secondary aim was to explore whether any of

the beta bursts characteristics changed with the presence

of dopaminergic medication. Finally, a third aim was to

investigate whether any of the beta bursts characteristics

were linked to the severity of disease symptoms in

Parkinson’s disease.

Materials and methods

Participants

Twenty patients diagnosed with Parkinson’s disease (age

41–85; five female) and 20 healthy controls (age 54–76;

eight female) participated in the study. The study

was approved by the regional ethics committee

(Etikprövningsnämden Stockholm, DNR: 2016/911-31/1)

and followed the Declaration of Helsinki. All participants

gave written informed consent before participating.

The patients were recruited from the Parkinson’s

Outpatient Clinic, Department of Neurology, Karolinska

University Hospital, Stockholm, Sweden. The inclusion

criteria for the Parkinson’s patients were a diagnosis of

idiopathic Parkinson’s disease according to the UK

Parkinson’s Disease Society Brain Bank Diagnostic

Criteria with Hoehn and Yahr stages 1–3 (Hoehn and

Yahr, 1967), under treatment with Levodopa, Catechol-

O-methyltransferase inhibitor (COMT) inhibitors,

Monoaminoxidase-B (MAO-B) inhibitors or dopamine re-

ceptor agonists. Besides the diagnosis of Parkinson’s dis-

ease, the patients were healthy according to a physical

and neurological examination.

Healthy controls were recruited among healthy partici-

pants who previously had participated in studies within

the preceding year, or amongst the patients’ spouses.

Exclusion criteria for both groups were a diagnosis of

major depression, dementia, history or presence of schizo-

phrenia, bipolar disorder, epilepsy or history of alcohol-

ism or drug addiction according to the Diagnostic and

Statistical Manual of Mental Disorders DSM-V (American

Psychiatric Association, 2013). Additional exclusion crite-

ria for the healthy controls were a diagnosis of

Parkinson’s disease or any form of movement disorder.

One patient cancelled the participation in the study due

to severe tremor in the non-medicated state. One healthy

control only completed one session and was not included

in the analysis. The analysis includes 19 patients and 19

healthy controls.
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Procedure

The patients were instructed to omit their morning dose

of dopaminergic medication on the day of participation.

Thus, the non-medicated state was defined as a with-

drawal period of 12 h after the last dopaminergic medica-

tion. Patients were further instructed to bring their

prescribed dose of medication, which they had to take

during the experiment. All patients followed the

instructions.

Preparation for the MEG recordings began as soon as

the participants were briefed about the procedure and

signed the written informed consent. The recordings con-

sisted of 3 min where the participants sat with their eyes

closed in the MEG scanner. Text on a screen placed in

front the participants initially instructed the participants

to close their eyes. Participants were instructed not to

open their eyes before being told to, and to avoid moving

until they were allowed to open their eyes. The record-

ings began once the experimenter through video observa-

tion had assured that participant’s eyes were closed. The

participants then did two unrelated tasks in the same

recording session consisting of an active tapping task and

a task with passive movements (Vinding et al., 2019).

Each MEG recording session took about1 h.

When the first session was over, participants had a

break outside the scanner. During the break, the partici-

pants performed the neurological tests described below,

and the patients took medication. The second MEG

measurement began �1 h after medication. The healthy

controls were measured twice with a 1-h break in-be-

tween to accommodate the potential effect of the fixed

order of the off/on medication measurements in patients.

Motor function was assessed in all participants using

the motor subscale of the Movement Disorder Society’s

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS-

III) (Goetz et al., 2007), by neurologists certified in the

use of MDS-UPDRS. Patients were assessed immediately

after the first MEG session in the non-medicated state

and again after the second MEG session on medication.

Montreal Cognitive Assessment (MoCA) test was done

on medication.

MEG recordings

MEG data were recorded with an Elekta Neuromag

TRIUX 306-channel MEG system, with 102 magneto-

meters and 102 pairs of orthogonal planar gradiometers,

inside a two-layer magnetically shielded room (model

Ak3B, Vacuumschmelze GmbH), with internal active

shielding active to suppress electromagnetic artefacts.

Data were recorded at 1000 Hz with an online 0.1 Hz

high-pass filter and 330 Hz low-pass filter. The subjects’

positions and movements inside the MEG scanner were

measured during recordings with head-position indicator

coils attached to subjects’ heads. The location of the

coils—and additional points giving a representation of

the subjects’ head shape—was digitalized with a

Polhemus Fastrak motion tracker before the measure-

ments. The head shapes were later used to co-register

MEG data and structural MRI. Horizontal and vertical

electrooculogram and electrocardiogram were recorded

simultaneously with the MEG.

Data processing

MEG data were processed off-line by applying temporal

signal space separation to suppress artefacts from outside

the scanner helmet and correct for head movement dur-

ing the recordings (Taulu and Simola, 2006). The tem-

poral signal space separation had a buffer length of 10 s

and a cut-off correlation coefficient of 0.95. Movement

correction was done by shifting the head position to a

position based on the median head position during the

recording. We then did an independent component ana-

lysis for each subject using the fastica algorithm

(Hyvarinen, 1999) implemented in MNE-Python

(Gramfort et al., 2013) in Python 2.7. Components

related to saccadic eye-movements and heartbeats were

identified based on their correlation with the electroocu-

logram or electrocardiogram and removed from the data.

We then applied source reconstruction to the data

using noise weighted minimum-norm estimates (dSPM)

(Dale et al., 2000). The noise covariance matrix was esti-

mated from 2 min of empty room data recorded before

each session. The source space consisted of 5124 evenly

spaced points sampled across the white matter surfaces.

The surfaces were obtained with the automatic routine

for extracting cortical surfaces in Freesurfer (Dale et al.,

1999) from individual T1 weighted MRI that were

obtained on a GE Discovery 3.0 T or a Siemens Prisma

3.0 T MR scanner. One subject did not complete an MR

scan, so we used an MRI template (Holmes et al., 1998)

warped to the subject’s head shape as a substitute. From

the MRI, we obtained the inner skull boundary, which

was used to create a single compartment volume conduct-

or model to estimate the forward model.

The cortical surface was then segmented into anatomic-

al labels based on the automatic labelling algorithm in

Freesurfer (Destrieux et al., 2010). Based on the labels,

we extracted data from all point within a region of inter-

est (ROI) consisting of the pre- and post-central gyri and

central sulcus of the left hemisphere (Fig. 1). We then

obtained a combined ROI time course as the first right-

singular vector of a singular value decomposition of the

source time courses within the ROI, with the sign of the

vector normalized relative to the source orientations.

The ROI time-series was band-pass filtered between 13

and 30 Hz using a zero-phase finite impulse response fil-

ter to get the beta band time-course. The filter had a

transition bandwidth of 3.25 Hz for the lower pass-band

edge and a transition bandwidth of 7.5 Hz for the upper

edge. We then applied a Hilbert transformation to the fil-

tered time-series to obtain the instantaneous beta power.
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Defining beta bursts

To assess and compare beta burst, we defined high-amp-

litude bursts in the envelope of the time-series above a

fixed threshold defined in order of medians above the

median of the envelope for each participant. To deter-

mine the value of the threshold, we took the correlation

coefficient between the average amplitude of the signal

envelope and the number of bursts within consecutive

3.0 s of data. This gave a single correlation coefficient

per threshold per subject, which were averaged across all

subjects. The threshold with the highest correlation was

used as the fixed threshold in the comparisons (Fig. 1B).

Defining the threshold in orders of medians, rather than

an absolute cut-off value, gives a threshold that preserved

the statistical properties at the group-level but fitted to

the dynamic range of the individual subjects’ time-series.

Similar methods for defining thresholds have been used

to identify beta bursts in event-related studies (Feingold

Figure 1 Overview of data processing from raw MEG data to characterising beta bursts. (A) We recorded 3 min of resting-state

MEG. The raw MEG data were first processed with temporal signal space separation and independent component analysis to remove artefacts.

We then did a dSPM source reconstruction and extracted the time-series from an ROI consisting of the pre-/post-central gyri and central sulcus.

The ROI time-series was filtered to the beta range (13–30 Hz) and Hilbert-transformed. (B) Beta bursts were determined based on a threshold

defined as the cut-off that had the highest correlation between the number of bursts and the mean amplitude in consecutive 3.0 s segments. The

vertical line indicates the threshold used in the analysis. (C) Once the threshold was defined, we compared four features of the beta bursts: rate,

duration (blue arrow), the inter-burst interval (red arrow) and peak amplitude (black arrow). PD ¼ Parkinson’s disease; MEG ¼
magnetoencephalography; ICA ¼ independent component analysis; dSPM ¼ dynamic statistical parametric mapping; ROI ¼ region of interest.
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et al., 2015; Shin et al., 2017). Here we extended the

method to resting-state MEG.

Once the threshold was defined, we extracted four fea-

tures of the beta bursts (Fig. 1C). The first feature was

the rate of occurrence within the 3-min time-series. The

purpose of the first feature was to answer if the beta

band were more ‘bursty’ in one group compared to the

other and whether it changed due to medication. The se-

cond feature was the burst duration, defined as the time

between the burst reached the half-max of the peak value

until it once again reached the half-max of the peak

value. The purpose of the second feature was to answer

if the beta bursts resembled ‘true’ bursts, i.e. with dura-

tions approximating one or two beta cycles or perhaps

showed prolonged high-amplitude activity in one of the

groups. The third feature was the inter-burst interval,

defined as the time from the offset of one burst to the

onset of the next. The fourth and final feature was the

peak amplitude of the envelope within each burst.

Power spectral densities

To compare how the time-domain analysis compares to

Fourier-based analysis of beta power in the frequency do-

main, we calculated the PSD of the unfiltered ROI time-

series in the spectrum from 1 to 48 Hz. We divided the

time-series into consecutive epochs of 3 s with a 50%

overlap and applied a Hanning taper before applying a

fast Fourier transform using FieldTrip (Oostenveld et al.,

2011) in MATLAB (R2016b; MathWorks Inc.).

To quantify and compare the PSD between groups and

across sessions we quantified the relative beta power, the

1/f broadband characteristic of the PSD and the beta

power with the beta band, with the 1/f broadband char-

acteristic removed. The relative power was calculated by

integrating the PSD in the beta range (13–30 Hz) and

dividing it by integral of the full spectrum.

PSDs of neural signals tend to follow a 1/f distribution

where the PSD is approximately linear in log–log space,

except for peaks usually found at the alpha or beta

bands. By regressing the 1/f broadband characteristics

out, one can yield an estimate of band-specific power

that is unbiased by differences in broadband characteris-

tics. For this purpose, we used the fitting oscillations &

one over f (FOOOF) toolbox (Haller et al., 2018) to ana-

lyse the broadband characteristics and calculate the beta

band power with the 1/f broadband characteristics

removed. In short, the procedure consists of an iterative

linear regression to the full log-transformed spectra. The

log-linear function is then subtracted from the data, and

Gaussian functions are then fitted to the peaks in the

remaining spectra in acceding order starting with the

largest peak in the PSD. The centre of the Gaussians will

then corresponded to the centre frequency of the peak

and the height to the power of the peak. The Gaussian

fits are then subtracted from the PSD, and a new log-lin-

ear function is fitted to the PSD. The log-linear function

and Gaussian functions are then combined to assess the

goodness of fit. For the fitting set a restriction to fit a

maximum of eight Gaussian functions to avoid

overfitting.

We ran this procedure on the PSD for each participant

to find the parameters of the linear function fitted to the

broadband spectra, to compare the 1/f characteristics and

to assess the power of the beta band without the contri-

bution of the 1/f broadband characteristics.

Statistical analysis

Group characteristics

First, we tested for differences in age, sex ratio and

MoCA score between the Parkinson’s patients and

healthy controls to ensure that the demographics of the

two groups were matched. Comparison of age and

MoCA score by ‘Bayesian t-tests’ (Rouder et al., 2009)

using the BayesFactor package (Morey and Rouder,

2018) for R (R Core Team, 2013). The test gives the

ratio of evidence for the hypothesis that there is a group

difference versus the null hypothesis of no difference be-

tween groups. To test for difference in the male–female

ratio between groups, we used a Bayesian test for un-

equal multinomial distributions (Gûnel and Dickey,

1974).

Power spectral densities

The statistical comparison of the relative beta power was

done by pairwise Bayesian t-tests with the BayesFactor

package in R. The same test was done for the beta

power subtracted the 1/f broadband characteristics esti-

mated from the combined 1/f and Gaussian regression

model and the estimated peak frequency. For the analysis

of 1/f and oscillatory features of the PSD, we compared

the intercept and slope of the linear fit to the 1/f broad-

band characteristic between the patient and control

groups and across sessions with pairwise Bayesian t-tests.

Beta burst features

The burst rate, burst duration, inter-burst interval and

peak amplitudewere all analysed by Bayesian mixed-effect

regression, estimated in R with the brms package

(Bürkner, 2017). The models used uninformative priors

and were estimated by Markov-Chain Monte-Carlo sam-

pling drawing 20 000 samples across four chains and dis-

carding the first half of each chain. The convergence of

the chains was confirmed by checking R̂ � 1 (Gelman

and Rubin, 1992).

We analysed the burst rate by mixed-effect Poisson re-

gression containing Group (patient/control) and Session

(first/second) as fixed effects with subjects as a random

effect. The analysis of burst duration, inter-burst interval

and peak amplitude used the respective values for each

burst by modelling the value of the ith burst for partici-

pant j as a function of Group and Session by mixed-ef-

fect regression. The inter-burst interval model used a
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lognormal link function. The models for burst duration

and peak amplitude used shifted lognormal link

functions.

Since the study was explorative, i.e. we did not have a

clear hypothesis about how or if there would be differen-

ces in the quantifications of beta bursts, we aimed for a

Bayesian statistical approach that does not rely on testing

if there is a distinction between groups/session, but pro-

vide evidence for or against differences. Comparison be-

tween groups and sessions was done by comparing the

marginal evidence—or Bayes factor (BF)—between models

with and without the factors Group, Session and the

interaction Group � Session as fixed effects. BF > 1 is

evidence for the alternative hypothesis, whereas BF < 1

is evidence for the null hypothesis. We use the nomencla-

ture by Wetzels et al. (2011) on the strength of the evi-

dence where BF > 3 and BF < 0.33 is taken as

conclusive support for the, respectively, alternative or null

hypnosis. Values between 0.33 and 3 are inconclusive

evidence. Post hoc hypothesis testing was done by deter-

mining if at least 95% posterior distribution of individual

parameters did not contain zero. The resulting test statis-

tic is the probability P ranging from 0 to 1. P close to 0

is evidence for a difference between conditions, whereas

P close to 1 provides evidence against a difference. We

used the 95% posterior distribution corresponding to crit-

ical alpha ¼ 0.05.

Sensitivity and specificity analysis

In addition to the inferential statistical comparison be-

tween groups, we did a sensitivity/specificity analysis to

assess how well the various beta band features could de-

termine if a participant belonged to the patient or control

group. For the features of beta bursts (burst rate, inter-

burst interval, duration and amplitude), and the quantifi-

cations of the PSD (relative beta power, beta peak power

and the slope and intercept of the 1/f log-linear regres-

sion), we fitted logistic regression models with the differ-

ent quantitative measurements as predictor and the group

as outcome variable. From the logistic models, we then

calculated the area under the receiver operating character-

istic (ROC) curve and the value of the optimal threshold.

Comparison across thresholds

To explore if the inference from the primary analysis was

dependent on the threshold used to define bursts in the

signal, we repeated the comparison of the burst rate be-

tween groups and sessions across thresholds. At each

threshold—starting at the median to five times the order

of median in steps of 0.1—we defined bursts as described

above. The number of beta bursts at each threshold was

analysed by mixed-effect Poisson regression as in the pri-

mary analysis. We then compared models with and with-

out the factor Group, Session and the interaction

between Group and Session to get BFs for each factor at

each threshold. The model used uninformative priors and

was estimated by Markov-Chain Monte-Carlo sampling

drawing 4000 samples across four chains and discarding

the first half of each chain.

Similar as described above, we calculated the ROC

curves across thresholds to test how the sensitivity/specifi-

city analysis to differentiate between the patient and con-

trol groups were dependent on the threshold used to

define beta bursts.

Beta burst rate and motor symptoms

In addition to the group-level comparisons, we investi-

gated the relationship between the burst rate and motor

symptom severity measured with MDS-UPDRS-III for the

Parkinson’s patients. Since previous studies have shown

that beta-band PSD is correlated with specific motor

symptoms of rigidity and bradykinesia (Airaksinen et al.,

2012, 2015; Melgari et al., 2014), we divided the MDS-

UPDRS-III scores into six subscales of different motor

symptoms according to the factors described by Goetz

et al. (2008) with the exception that left- and right-side

bradykinesia was combined into one factor. Each MDS-

UPDRS-III factor (midline function, rest tremor, rigidity,

bradykinesia, postural and kinetic tremor, lower limb

bradykinesia) was modelled by mixed-effect Poisson re-

gression as a linear function of the burst rate with subject

and session as random intercepts. With these models, we

tested the association between beta burst rate and the

MDS-UPDRS-III factor scores by testing if at least 95%

of the posterior distribution did not contain zero. All

models used uninformative priors and was estimated with

brms (Bürkner, 2017) by Markov-Chain Monte-Carlo

sampling drawing 20 000 samples across four chains and

discarding the first half of each chain.

Data availability

The datasets collected for the current study contains pa-

tient information that cannot be made public. The dataset

is available from the corresponding author for review

purpose or on reasonable request. Scripts for running the

analysis presented in the paper are available at www.

github.com/mcvinding/PD_beta_bursts.

Results

Group characteristics

The groups are adequately matched for comparison, as

there were no systematic differences in the demographic

variables: male/female ratio (BF ¼ 0.60), age (BF ¼
0.41), and cognitive ability (BF ¼ 0.39), see Table 1. The

Parkinson’s patients showed 26–72% (mean 49%) reduc-

tion of motor symptoms on the MDS-UPDRS-III in the

medicated state compared to the non-medicated state (BF

¼ 4.70 � 107).
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Power spectral densities

Comparison of the relative beta power of the sensori-

motor ROI time-series (Table 2 and Fig. 2B) gave evi-

dence against a difference between the first and second

session for the controls (BF ¼ 0.37) and against a differ-

ence between on/off medication for the Parkinson’s

patients (BF ¼ 0.34). On the other hand, the comparison

between the groups in the first session/non-medicated

state showed evidence for a difference between the groups

but only as inconclusive evidence (BF ¼ 1.27) and gave

inconclusive evidence against a difference between the

groups in the second session (BF ¼ 0.87).

All participants showed peaks in the beta band after

removing the 1/f characteristics of the broadband PSD—

Table 2 show summaries of the peak frequency and peak

power across groups and session. The pairwise compari-

sons of the peak frequency all gave evidence against

group differences in the peak beta PSD frequency in the

first session (BF ¼ 0.32) and seconds session (BF ¼
0.35), as well as within-group between sessions (BF ¼
0.30 for patients and BF ¼ 0.39 for controls). A similar

analysis for alpha and theta band is presented in the sup-

plementary material. The between-group comparison of

the beta PSD peak power (Fig. 2C) gave evidence against

differences in both the first session (BF ¼ 0.35) and se-

cond session (BF ¼ 0.43) and for the comparisons within

groups (BF ¼ 0.24 for patients and BF ¼ 0.40 for

controls).

Table 2 and Fig. 2D–E show the model parameters for

the linear fit to the broadband 1/f characteristics. As

hinted in the averaged PSD (Fig. 2A), there were differen-

ces in the slope of the log-linear 1/f regression (Fig. 2D)

between patients and healthy controls in both the first

(BF ¼ 8.9) and second session (BF ¼ 19.6). There was,

however, evidence against differences across sessions for

both the patient group (BF ¼ 0.27) and control group

(BF ¼ 0.62). The comparisons of 1/f intercept (Fig. 2E)

favoured no differences between groups in the first ses-

sion (BF ¼ 0.63) and second session (BF ¼ 0.80), though

both BFs are in the conclusive range. For the within-

group comparison, there were evidence against a

Table 1 Summary of the Parkinson’s group and control

group

Parkinson’s

patients

Healthy controls

N 19 19

Sex 5 females, 14 males 8 females, 11 males

Age 44–85 years (mean:

67.3 years)

54–76 years (mean:

69.3 years)

Disease duration 1–14 years (median:

4.5 years)

LEDD 300–1150 mg (me-

dian: 615 mg)

MDS-UPDRS-III

(non-medicated)

10–61 (median: 34)

MDS-UPDRS-III

(medicated)

5–39 (median: 16)

MoCA 25.5 (SD: 2.9) 26.1 (SD: 1.8)

LEDD ¼ levodopa equivalent daily dosage; MDS-UPDRS-III ¼ Movement Disorder

Society’s Unified Parkinson’s Disease Rating Scale part III; MoCA ¼ Montreal

Cognitive Assessment.

Figure 2 Characteristics of the PSD. (A) PSD for Parkinson’s patients (blue) and healthy controls (red). Solid lines are the first session/non-

medicated and dashed lines are the second session/medicated. (B) The relative power of the beta band (13–30 Hz) across groups and sessions.

(C) The power of the largest peak in the beta band relative to the 1/f broadband PSD across group and session. (D) The slope coefficient for

each participant of the log-linear regression of the broadband PSD across group and session. (E) The intercept of for each participant of the log-

linear regression of the broadband PSD across group and session. PD ¼ Parkinson’s disease; Ctrl ¼ healthy controls; BF ¼ Bayes factor.
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difference in intercept for both (BF ¼ 0.26) patients and

controls (BF ¼ 0.25).

Beta burst rate

The Parkinson’s patients showed an average rate of 106

bursts/min (SD: 8) in the first session/non-medicated and

108 bursts/min (SD: 11) in the second session/medicated.

The controls had an average rate of 120 bursts/min (SD:

11) in the first session and 116 bursts/min (SD: 15) in

the second session. Figure 3 shows the burst rate for all

subjects across groups and sessions.

The model comparison showed evidence for an effect

of Group (BF ¼ 10.4) but gave evidence against an effect

of Session (BF ¼ 0.064) and gave evidence against inter-

action between Group and Session (BF ¼ 0.23).

The Parkinson’s patients had 5–17% (median: 11%)

lower rate in the non-medicated state compared to

healthy controls (P< 0.001). In the medicated state, the

patients had between 13% less to 1% higher (median:

6% less) bursts rate than healthy controls (P¼ 0.06). The

change in burst rate in the patients from after taking the

medication varied from a 4% reduction to 8% increase

(median 2% increase) and did not significantly differ

from zero (P¼ 0.60). The healthy controls showed a

change in burst rate from the first to the second that

ranged from a 9% decrease to a 2% increase (median:

3% decrease). The change in burst rate between session

for the healthy controls was not significantly different

from zero (P¼ 0.22).

Burst duration

The beta bursts had a median duration between 73 and

75 ms in both sessions and groups (see Table 3), and

95% of the durations were within 35–170 ms. The me-

dian duration of the beta bursts corresponded roughly to

a single oscillatory cycle in the beta frequency range at

�13–14 Hz.

The comparison of the burst durations showed evidence

against an effect of Session (BF¼ 0.047), gave evidence against

an effect of Group (BF ¼ 0.18) and gave evidence against the

interaction between Session and Group, though the evidence is

in the inconclusive range (BF¼ 0.57).

Inter-burst intervals

The inter-burst intervals had a skewed distribution with a

high probability of short intervals below 200 ms with few

longer intervals that could last up to seconds (Fig. 4B).

The model comparison showed evidence against an effect

of Session (BF ¼ 0.050) and strong evidence both for an

effect of Group (BF ¼ 294) and for an interaction be-

tween Group and Session (BF ¼ 5141).

The model showed a median inter-burst interval of

199 ms (mean: 653 ms, 95%-CI: 11–3805 ms) for patients

off medication, compared to a median inter-burst interval

of 136 ms (mean: 461 ms, 95%-CI: 7–2844 ms) for

healthy controls in the first session (P< 10�4). The me-

dian inter-burst interval decreased to 168 ms (mean:

560 ms, 95%-CI: 9–3470 ms) on medication, correspond-

ing to a 10% decrease (CI: 4–14%; P¼ 2 � 10�4). The

inter-burst interval changed in the opposite for the

healthy controls and increased by 8% (CI: 3–14%) be-

tween sessions (P¼ 0.004).

Peak amplitude

Figure 4A depicts averaged beta bursts time-locked to the

peak amplitude. The peak amplitude of the beta bursts

only differed between sessions, independent of the group.

The model comparison of the peak amplitude showed

Table 2 Summary of PSD features across groups and sessions (mean þ SD)

Group-session Relative beta power Broadband 1/f regression Beta

Intercept Slope Peak freq. Peak power

Parkinson’s patients 1/non-medicated 0.34 (0.047) �2.08 (0.50) 0.81 (0.20) 18.5 (4.2) 0.36 (0.13)

Parkinson’s patients 2/medicated 0.33 (0.046) �2.06 (0.51) 0.82 (0.23) 18.7 (3.4) 0.36 (0.13)

Healthy controls 1 0.36 (0.032) �2.27 (0.38) 0.64 (0.14) 19.2 (3.0) 0.33 (0.15)

Healthy controls 2 0.36 (0.043) �2.29 (0.38) 0.60 (0.17) 19.9 (4.3) 0.32 (0.13)

Relative beta power as the area under the curve in the beta band divided by the area under the curve of the entire spectrum. Intercept and slope of the linear fit to the 1/f character-

istics of the broadband PSD. Beta PSD peaks frequency and peak power in the beta band estimated by subtracting the contribution of the 1/f log-linear fit.

Figure 3 Beta burst rate in the sensorimotor cortex

across groups and sessions. The points represent the beta

bursts rate for each participant. The bars are means and standard

deviations.
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evidence for an effect of Session (BF ¼ 1.7 � 109), but evi-

dence against an effect of Group (BF ¼ 0.47), and evi-

dence against the model that included the interaction

between Session and Group (BF ¼ 0.42)—though the BFs

are in the inconclusive range for the two latter model com-

parisons. The peak amplitude increased for both controls

and patients in the second session; with an increase of 4%

(CI: 3–5%; P< 10�4) for controls and an increase of 2%

(CI: 1–3%; P¼ 0.002) for the Parkinson’s patients.

Table 3 Group-level summary of beta burst features (medians and 95%-predictive intervals)

Group-session Bursts/min Duration Inter-burst interval dSPM peak amplitude

Parkinson’s patients 1/non-medicated 106 (86–127) 75 ms (37–169) 199 ms (11–3805) 0.99 (0.62–1.73)

Parkinson’s patients 2/medicated 108 (88–130) 75 ms (37–168) 168 ms (9–3470) 1.01 (0.62–1.75)

Healthy controls 1 120 (98–142) 73 ms (36–162) 136 ms (7–2844) 0.95 (0.59–1.65)

Healthy controls 2 116 (94–138) 73 ms (35–164) 148 ms (7–3137) 0.98 (0.61–1.68)

dSPM ¼ dynamic statistical parametric mapping.

Figure 4 Beta burst features. (A) Average beta bursts time-

locked to the burst peak for each group/session. Thick lines are the

grand average, and coloured lines are individual subjects. Pooled

distributions of the burst duration (B) and inter-burst intervals

(C) across groups and sessions.

Figure 5 Receiver operating characteristic (ROC) curves.

The insert text is the area under the curve for the first session (solid

lines) and the second session (dashed lines). AUC ¼ area under the

curve; TPR ¼ true positive rate; FPR ¼ false positive rate.
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Sensitivity and specificity analysis

The ROC curves for classification of patients or controls

based on the various features of beta bursts and quantifi-

cations of the PSD is shown in Fig. 5. The highest rate

for correctly discriminating between groups was on the

burst rate and the inter-burst interval with an area under

the ROC curve of 0.87 and 0.88 in the first session

(Table 4). The burst duration was only at 0.60 and peak

amplitude was at baseline probability. For quantifications

of the PSD, the relative beta power and beta peak power

were both around 0.60. The slope of the 1/f log-linear fit

performed the best of the PSD measurements at 0.77 for

the first session/non-medicated.

For the second session/medicated, the intercept of the

lognormal regression performed the best of all the meas-

urements at 0.80. When the patients were on medication,

all other measurements dropped below 0.70 in the ana-

lysis of the second session/medicated.

Comparison across thresholds

To investigate how the threshold for defining beta bursts

influenced the inference, we repeated the comparison of

the burst rate across a range of thresholds. Figure 6B

shows the BFs of the comparison across the thresholds.

The model comparisons for all thresholds above one unit

of medians favoured a difference in the number of beta

bursts between controls and patients with the patients

having fewer beta bursts than the controls additional

ROC curves for the mean and mode is presented in the

supplementary material. At higher thresholds, the com-

parison favoured an interaction between Group and

Session, with an increase in the burst rate after taking

dopaminergic medication but also increased variation

(Fig. 6A). Since the inference one would draw at different

thresholds is consistent across thresholds (with the excep-

tion of the very low and high thresholds), we conclude

that the inference is not overtly dependent on the precise

numerical threshold used to define beta bursts to make

the inference in the main analysis invalid.

The sensitivity/specificity analysis to discriminate be-

tween patients and controls across thresholds were similar

consistent across thresholds as in the main analysis

(Fig. 6C). At lower threshold (<1), there were less precise

classification between groups for both session 1/non-

medicated and session 2/medicated. The area under the

ROC curve was consistent across higher thresholds be-

tween 85–95% in the first session and 70–75% in the se-

cond session.

Table 4 Sensitivity/specificity of the summary measures

of beta-band activity

Measurement AUROC Optimal threshold

Session 1 Session 2 Session 1 Session 2

Relative beta power 0.61 0.67 0.34 0.36

1/f intercept 0.61 0.62 �1.87 �1.89

1/f slope 0.77 0.80 0.82 0.73

Beta peak power 0.59 0.61 0.39 0.36

Burst rate 0.87 0.69 115 105

Burst duration 0.63 0.75 67 66

Inter-burst interval 0.88 0.70 164 178

Peak amplitude 0.48 0.50 1.59 1.66

The area under the ROC curve and the optimal numerical threshold that gave the

highest performance in separating the two groups for each measurement. Bold values

signify the highest AUROCs for each session.

AUROC ¼ area under the receiver-operator characteristic curve.

Figure 6 Comparison across thresholds for defining beta

bursts. (A) The beta burst rate across thresholds used to define

beta bursts for both groups and sessions. (B) The results of the

Bayesian-model comparison across thresholds. The red area

indicates the interval where the BFs are considered ‘inconclusive

evidence’, and the dashed red lines indicate ‘substantial evidence’

for (upper line) or against (lower line) the alternative hypothesis,

following the guidelines by Wetzels et al. (2011). (C) Ideal observer

analysis showing the area under the ROC curves for detecting

Parkinson’s patients from healthy controls based on burst rate

across thresholds. The vertical dashed lines indicate the threshold

used in the primary analysis. logBF ¼ logarithm of Bayes factor;

AUROC ¼ area under the receiver-operator curve.
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Beta burst rate and motor
symptoms

Figure 7 shows the marginal predicted effects of the burst

rate and the subscales of the MDS-UPDRS-III from the

regression models. The burst rate scaled negatively with

bradykinesia (P¼ 0.006). The regression model predicted

a decrease in bradykinesia rating of 28% (95%CI: 9–

46%) when the burst rate increased by 10. The burst

rate further scaled negatively with postural/kinetic tremor

(P¼ 0.003), predicting 40% (95%CI: 16–59%) decrease

in symptom rating when the burst rate increased by 10.

We saw no evidence that midline function (P¼ 0.46), rest

tremor (P¼ 0.75), rigidity (P¼ 0.88) nor lower limb bra-

dykinesia (P¼ 0.22) scaled with the burst rate.

Discussion
The primary aim of this study was to explore whether

beta burst characteristics, recorded with MEG during a

3-min period at rest with eyes open, differed between

Parkinson’s patients and healthy controls. As a secondary

aim, we also explored whether beta burst characteristics

vary with the Parkinson patients’ dopaminergic medica-

tion. Finally, as a third aim, we explored whether beta

burst rate was related to symptom severity in Parkinson’s

disease.

Parkinson’s patients (off medication) showed a 5–17%

lower beta burst rate compared to healthy controls.

Neither the duration nor the amplitude of the beta bursts

differed between patients and controls. The consistency in

duration and amplitude suggests that the mechanisms

that generate the cortical beta bursts are preserved in

Parkinson’s disease and that it is primarily the burst rate

that underlies the disease-related changes in cortical beta

power often reported for Parkinson’s disease.

We did not find overwhelming evidence for a modula-

tion of burst rate by dopaminergic medication. Since the

study was exploratory and we did not have prior

expected effect size of medication and that our sample

size was relatively small (N¼ 19), there might be effects

of medication that we have not detected with this ana-

lysis approach. Worth noting is that at higher thresholds

for determining beta bursts (Fig. 7B), there was evidence

for an effect of medication on the burst rate. Most not-

ably, the inter-burst interval showed was effected by

medication. When the Parkinson’s patients were on medi-

cation, the distribution of the inter-bursts interval

changed to resemble the distributions of the healthy con-

trols. What this means in terms of disease-related mecha-

nisms is currently unclear, as the underlying dynamics

that drive the beta bursts are insufficiently understood.

Speculatively, it is possible that the shift in the inter-burst

interval following dopaminergic medication is driven by a

change in the distal drive from dopamine modulated ac-

tivity in basal ganglia or thalamus. However, more re-

search is needed to understand how the cortical beta

bursts are driven by deeper sources, which directions the

connection goes, and how this is modulated by dopamin-

ergic medication.

These results are in line with the research from

Sherman et al. (2016), who proposed that beta bursts in

Figure 7 Relation between the beta burst rate and MDS-UPDRS-III subscales. Coloured dots are individual measurements off

medication (red) and on medication (blue). The solid line is the regression model of burst rate on the score on MDS-UPDRS-III subscales. The

shaded lines are on k-fold cross-validation of the regression models. MDS-UPDRS-III ¼ Movement Disorder Society’s Unified Parkinson’s

Disease Rating Scale, part III.
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the cortex is caused by a short distal drive to the upper

laminar layers lasting around 50 ms, in combination with

a sustained excitatory proximal drive between the upper

and lower cortical layers. The reduction in spontaneous

cortical beta bursts could be driven by a reduction in dis-

tal connections from thalamus or basal ganglia leading to

a reduction in the beta burst rate. This might mean that

the affected mechanism leading to reduced activity in the

cortical beta band in Parkinson’s disease is the distal

drive that initiates the beta bursts rather than alterations

in the cortical generators themselves. The distal input to

the cortex could stem from structures in the midbrain

affected by the loss of dopamine in Parkinson’s disease.

Modulation of the dynamic changes in the beta activity

due to the dopaminergic medication has been shown in

deep brain recordings from STN in Parkinson’s patients

(Tinkhauser et al., 2017a, b).

The decrease in beta burst rate was associated with an

increase in symptom severity for bradykinesia and pos-

tural/kinetic tremor in the Parkinson’s patients. Such a

link between burst rate and bradykinesia is in line with

previous studies showing that decreased beta power in

the cortex is related to increased bradykinesia (Airaksinen

et al., 2012, 2015; Melgari et al., 2014).

Our results show a disease-related reduction in beta

burst rate in Parkinson’s patients compared to healthy

control and related to the manifestation of motor symp-

toms. This reduction of beta burst rate should translate

into changes in beta band PSD when data are analysed

using Fourier-based methods: a reduction in the beta

band PSD is compatible with the reduction in the number

of spontaneous beta bursts. However, in our results, we

did not observe any conclusive differences in beta band

PSD between Parkinson’s patients and healthy controls

that correspond to those we report for the analysis of

beta bursts (only an inconclusive trend for the relative

beta power). Importantly, frequency-domain analysis of

the beta band, using the traditional Fourier-transform

method, was less sensitive for picking up statistically

meaningful differences in beta activity between

Parkinson’s patients and healthy controls, as compared to

an analysis based the core features of the underlying beta

bursts. The sensitivity/specificity analysis showed that

burst rate and inter-burst intervals performed best in sep-

arating healthy controls from Parkinson’s patients off

medication. The sensitivity/specificity of the beta burst

features dropped when the patients were on medication.

However, the general slope of the broadband PSD

increased in sensitivity/specificity in separating

Parkinson’s patients when the patients were on dopamin-

ergic medication.

Though beta burst rate was the most sensitive in sepa-

rating Parkinson’s patients from controls, it is worth not-

ing that there was variation between the sessions for the

healthy controls. The variation may reflect the test–retest

variability of the measurements that, in this case, were

between a 9% decrease to a 2% increase in beta burst

rate. This variation could also reflect a circadian effect

on the spontaneous beta bursts. It has previously been

shown that the frequency domain beta power varies with

the time of the day (Wilson et al., 2014). It is plausible

that similar circadian effects apply to beta bursts in the

time-domain. All participants—Parkinson’s patients and

controls alike—were tested in the morning and again be-

fore noon on the same day in our study. It is therefore

interesting that the direction of the change from session

1/non-medicated to session 2/medicated were in opposite

directions: a trend towards decreased burst rate for

healthy controls and a trend towards increased burst rate

for the Parkinson’s patients. If the change in burst rate

for the healthy controls signifies a circadian effect, we

can speculate that such decrease in burst rate would

interfere with an increase in burst rate in the patients to

mask the medication effect. To answer this question, we

need more research into the short-term circadian changes

in beta burst rate.

The literature on Parkinson’s disease and cortical beta

band activity suggests that the presence of cortical beta

band activity is inversely related to motor function: a de-

crease in beta band activity indicates an increased sensi-

tivity to efferent and afferent sensorimotor signals,

whereas increased activity has been linked to inhibition

of sensorimotor signals (Brown, 2007; Engel and Fries,

2010). Indeed, close temporal proximity between beta

bursts and go cues leads to longer reaction times (Little

et al., 2019; Lofredi et al., 2019) and less likelihood of

detecting sensory stimuli close to the sensory threshold

(Shin et al., 2017), showing that the proximity of beta

bursts hinders immediate sensorimotor processing.

Spontaneous beta bursts thus seem to have a transient in-

hibitory effect on the sensorimotor processing, but might

at the same time serve as a signal that is necessary to

maintain an optimal state of sensorimotor processing

(Engel and Fries, 2010; Jenkinson and Brown, 2011).

This interpretation suggests that the beta bursts enable an

immediate updating of the sensorimotor system by inte-

grating the previous motor signal and proprioceptive sig-

nal (Leventhal et al., 2012). The beta bursts might hence

be inhibitive, as evidenced by their behavioural effects on

event-related sensorimotor tasks (Shin et al., 2017; Little

et al., 2019), but on the other hand, also serve to inform

and integrate information in the sensorimotor system

over a longer time. Following this reasoning, the inverse

relationship between the number of spontaneous beta

bursts and bradykinesia that we report in this study,

might hence be due to a deficit in the integration of in-

formation in the sensorimotor system, which leads to

suboptimal utilization of neural resources when initiating

and performing movements manifesting as bradykinesia

and kinetic tremors.

Beta band activity is altered in Parkinson’s disease,

which is often evident at the frequency domain on

decomposed and averaged time-series of electrophysio-

logical activity. However, that analysis approach
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implicitly assumes that the average spectral signal is rep-

resentative of the whole time-series. This appears not to

be the case, and hence that analysis approach is not opti-

mal. The neuronal oscillations in the beta band change

over time by exhibiting transient beta bursts lasting 70–

80 ms. We have shown that the beta burst amplitude

and duration is similar for both healthy adults and

Parkinson’s patients—but that the burst rate is reduced

by more than 10% to an average of 106 bursts per mi-

nute in Parkinson’s participants, as compared to the 120

in healthy controls.

The spontaneous burst dynamics in the beta band, such

as burst rate, might hold relevant information for under-

standing Parkinson’s disease and the neural underpinnings

of disease-related motor symptoms. That the beta band is

related to dopamine and altered in Parkinson’s disease

can also be clearly seen in recordings of beta bursts from

STN (Tinkhauser et al., 2017a, b). Beta bursts are there-

fore a potentially useful marker of Parkinson’s disease.

However, recordings of the electrical field in STN is only

done in patients who undergo brain surgery and thus not

feasible for diagnostic purposes. Showing that it is pos-

sible to detect differences, in the form of reduced beta

burst rate, between patients and healthy controls with

non-invasive MEG measurements is an important step to-

wards better understanding of the cortical beta band and

better quantification of beta-band activity, which poten-

tially can lead to new methods for detecting and diagnos-

ing Parkinson’s disease.

Supplementary material
Supplementary material is available at Brain

Communications online.
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Motor-cortical oscillations in early stages of Parkinson’s disease:

Suppression of motor cortical beta oscillations is altered in early PD.
J Physiol 2012; 590: 3203–12.

R Core Team. R: a language and environment for statistical comput-

ing. Vienna, Austria: R Foundation for Statistical Computing; 2013.
http://www.R-project.org (1 February 2020, date last accessed).

Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R,
Bezard E, et al. Initial clinical manifestations of Parkinson’s disease:
features and pathophysiological mechanisms. Lancet Neurol 2009;

8: 1128–39.
Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G. Bayesian t

tests for accepting and rejecting the null hypothesis. Psychon Bull
Rev 2009; 16: 225–37.

Sherman MA, Lee S, Law R, Haegens S, Thorn CA, Hämäläinen MS,
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