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Abstract

Appropriate inspection protocols and mitigation strategies are a critical component of effec-

tive biosecurity measures, enabling implementation of sound management decisions. Sta-

tistical models to analyze biosecurity surveillance data are integral to this decision-making

process. Our research focuses on analyzing border interception biosecurity data collected

from a Class A Nature Reserve, Barrow Island, in Western Australia and the associated

covariates describing both spatial and temporal interception patterns. A clustering analysis

approach was adopted using a generalization of the popular k-means algorithm appropriate

for mixed-type data. The analysis approach compared the efficiency of clustering using only

the numerical data, then subsequently including covariates to the clustering. Based on

numerical data only, three clusters gave an acceptable fit and provided information about

the underlying data characteristics. Incorporation of covariates into the model suggested

four distinct clusters dominated by physical location and type of detection. Clustering

increases interpretability of complex models and is useful in data mining to highlight patterns

to describe underlying processes in biosecurity and other research areas. Availability of

more relevant data would greatly improve the model. Based on outcomes from our research

we recommend broader use of cluster models in biosecurity data, with testing of these mod-

els on more datasets to validate the model choice and identify important explanatory

variables.

Introduction

Preventing non-indigenous species (NIS) establishing in new locations is key to effective biose-

curity. Strategies to prevent establishment include prevention of NIS arrival, early detection,

and eradication [1]. Preventing NIS arriving, followed by early detection, are the most effective

forms of biosecurity [2], as once NIS are established, eradication is problematic [3]. Adverse
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consequences of invasions vary from the mere presence of NIS in areas where they have not

previously been detected, that are deemed undesirable and detrimental, to the destruction of

entire ecosystems [4]. As such, it is imperative that NIS are intercepted before they become

established. Stringent border detection contributes significantly to this outcome [5].

Developing robust inspection protocols and surveillance strategies are critical components

of plant and animal biosecurity measures. Optimizing the use of all available biosecurity detec-

tion data, even when these data are incomplete, coupled with detailed analyses, will enhance

the capacity to make effective biosecurity decisions. If biosecurity measures are sufficiently

competent, there is often a large proportion of zero values for detections, a good indicator that

materials brought in are complying with sanitary and phytosanitary measures [6]. Generally,

biosecurity risk material and pests occur at low densities during biosecurity border inspec-

tions, making biosecurity surveillance inevitably imperfect [7]. When organisms are detected,

values may range from a single organism/unit to extreme values depending on the type and

origin of commodity inspected, pre-border and in-transit quarantine protocols, and the intro-

ductory pathways [8, 9]. The very nature of this data, with large proportions of zeros, a mixture

of distributions and the count nature of data can make statistical analyses of biosecurity data

challenging.

Biosecurity border inspections are important to any biosecurity management programme

in that: 1) interception data provides information about risks associated with individual or

groups of NIS species pests to inform biosecurity actions; 2) inspections provide information

about risks associated with specific commodities and introduction pathways; 3) inspections

monitor and evaluate the effectiveness of phytosanitary treatments and pre-border biosecurity

protocols and: 4) in wider context, border inspections identify problematic importing agents

for refusal of entry of consignment, destruction or fines, or for targeting with more rigorous

inspections [10, 11].

Probability of border interception changes with inspection effort relative to the volume and

type of cargo, the introductory pathway, and the biological characteristics of the NIS that influ-

ence detection e.g. growth stage [12]. Border interception rate is a useful proxy for arrival rate

for individual species, and was previously thought to be correlated with establishment proba-

bility [13]. However, it has since been established that the relationship between interception

and establishment is weak, and interception rates are poor predictors of an incursion [14].

Biosecurity border inspection data are rarely made available other than to designated orga-

nizations and departments [5]. Data inaccessibility is primarily due to the complexity of the

databases, sensitivity of the information, confidentiality and privacy concerns, and the poten-

tial for misinterpretation and misuse of information, as evidenced in trade disputes [15]. This

lack of data availability makes statistical analysis and interpretation of biosecurity data prob-

lematic, limiting the scope for statisticians to explore underlying patterns in biosecurity data.

A common aim when analyzing any data set is to choose an appropriate statistical model

from a set of candidates. Fitting an appropriate statistical model is crucial for correct data

interpretation. The choice of fitted distributions is dictated by either the stochastic process

governing the outcome of interest or by observing its empirical distribution [16]. Common

statistical approaches include normal linear regression with a log-transformed response and

generalized linear models (GLM) with Poisson or negative binomial distributions for the

response [17–19].

With biosecurity data, overdispersion is a problem as data are comprised of counts, and

invalid inferences may occur if overdispersion is not addressed. Overdispersion may result

from population heterogeneity, misspecification of the model, omission of important covari-

ates, presence of outliers, non-independence of data, and a high proportion of zero events in

relation to the Poisson distribution [20–22]. The negative binomial distribution allows for
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some forms of over-dispersion, notably caused by rare events, and improves on the use of the

standard Poisson [23]. Using zero-inflated or hurdle models is a common approach to deal

with an excess number of zero counts as well as over-dispersion [24]. Both models can reduce

bias from extreme non-normality of the data and can provide more accurate estimates of

model coefficients than the standard models [25]. As such, these models are better suited than

others to cope with the idiosyncrasies associated with biosecurity data.

A more general approach to analysis of biosecurity data is to consider that the data are a

mixture of subgroups. The composition of these clusters can then be examined to provide new

insights into the distribution of the data and the underlying system or process [26]. Clustering

is unsupervised classification where data are classified without the knowledge of the class labels

and provides intuitive interpretation of the relevant aspects of the data at hand [27]. A cluster-

ing approach can be used to describe diverse forms of over-dispersion and population hetero-

geneity where the distribution might be multimodal, skewed, or non-standard [28, 29]. For

example, in the context of this case study, clusters can be constructed to describe the large pro-

portions of zero and single counts, as well as relatively large values. Clusters can also provide

more insight into characterization of the cluster components with respect to environmental,

geographic, and other covariates.

Biosecurity data used in this study were collected as part of industrial development on a

remote island (Barrow Island, Australia) and analyzed to inform biosecurity management

decisions. The industrial project on the island was permitted with the proviso that no new NIS

be introduced to the island [30, 31]. Non-indigenous species (NIS), referred to also as non-

native, alien, or exotic organisms) are species that have been introduced outside of their natu-

ral previous or present range by human activities and if established, can threaten the local bio-

diversity or ecosystems [32]. Invasive alien species are those introduced to a novel

environment with negative ecological, economic, or social impacts [33]. The current biosecu-

rity surveillance monitoring programme on Barrow Island is monitoring all NIS, inclusive of

invertebrates, vertebrates, plants, and marine species except microorganisms. There are a

range of NIS species that have been classified as high-risk to the island and are on a priority

watch list across the biosecurity continuum as their establishment on the island have undoub-

tably devastating impacts on the natural ecosystem of Barrow Island [34]. High risk species

were identified from a suite of species based on their potential to be introduced, the difficulty

of detecting the species, and the amount of damage they were perceived to cause should they

establish [34, 35]. Species were also identified based on their known invasiveness elsewhere in

the world, for example the highly invasive species Rattus rattus (black rat), Cenchrus ciliaris
(buffel grass), Hemidactylus frenatus (Asian House Gecko), Monomorium destructor (Singa-

pore ant) and Pheidole megacephala (big-headed ant) were prominent on the surveillance

radar [36, 37]. It should be highlighted that for Barrow Island, all NIS were unacceptable, and

detection was mandatory [34, 38, 39]. There are 22 confirmed or putative non-indigenous

invertebrate species recorded on Barrow Island and no established vertebrate non-indigenous

species [40, 41].

To help achieve this, biosecurity surveillance and management has been conducted on Bar-

row Island since 2009 and will continue for the life of the project. Biosecurity surveillance data

are used to assess the success of the various aspects of an on-going environmental program

complemented by pre-border inspection protocols, a border clearance program, and post-bor-

der biosecurity surveillance program [30]. All NIS species that have been detected on Barrow

Island have been eradicated, e.g. the Asian House Gecko in 2015, or are under a quarantine

response like the buffel grass [42]. To date, on-going NIS species surveillance has not detected

the presence of these species [5].
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For our study, we used border inspection data collected on Barrow Island between 2009

and 2015 during the construction phase of the liquefied natural gas (LNG) plant on the island.

The data were used to assess the contribution of type of detection, phase of project, season,

and physical inspection location on the island in characterizing biosecurity border detection

events.

The motivation to conduct this study was to find a more effective way of assessing biosecu-

rity data, data that are often complex, skewed by a large proportion of zeros, a mixture of dis-

tributions and has a count nature. All these factors make statistical analysis problematic, often

violating assumptions of common statistical tests. The aim of this paper is to assess the perfor-

mance of a clustering approach to characterizing biosecurity interception data in terms of its

capacity to manage these difficulties and assess the data both temporally and spatially. Imple-

menting Huang’s k-prototypes algorithm for mixed-type data, we explore the clustering

approach using a specific set of explanatory variables collected as part of border interception

biosecurity data for terrestrial NIS collected at Barrow Island [43, 44]. Two complementary

analyses approaches were used, without and with covariates included in the model. This paper

follows preliminary analyses conducted on invasive terrestrial species on Barrow Island by

Scott, 2017 [5]. The overarching goal of the research is to improve biosecurity management

protocols and strategies to minimize the introduction of NIS in a global context.

Material and methods

Study site

Barrow Island (BWI) is located at 200 45´S, 115025´E, and 56 km off the mainland of Austra-

lia. It is 25 km long, 10 km wide, covering an area of approximately 23 400 hectares above the

high-tide mark [31] (Fig 1). The Gorgon Liquefied Natural Gas Project (LNG) plant is situated

on BWI and was developed to process extensive gas resources from the Gorgon and Jansz-Io

gas fields in the North-West Basin, Australia. The Gorgon LNG Plant occupies 300 ha, about

1.3% of the Barrow Island land area.

Biosecurity system and border biosecurity inspection protocols. The Quarantine Man-

agement System (QMS) was developed by Chevron and implemented to protect the conserva-

tion values of Barrow Island [5, 37]. The overarching aim of the QMS was to prevent the

introduction and establishment of vertebrate, invertebrate, and plant NIS [45]. The biosecurity

protocols implemented were specific to identified risks and the implementation of safeguards

for the diverse types of cargo and within the logistic chain, e.g., site management, quarantine

management plans for contractors and vendors. Types of biosecurity risk material were cate-

gorized into five groups: vertebrates, invertebrates, seed, soil/organic matter, and other plant

material.

Border inspection methods included visual, manual, and physical inspection, detector dogs,

and x-ray technology [47]. A cabinet x-ray was used for passenger screening at airports [35]. A

colour-coded tagging system and inspection process was implemented to ensure compliance

with all biosecurity management activities. This ensured that one hundred percent of cargo

transported to Barrow Island was inspected [5].

Statistical methodology

Data collection. The dataset used for this study was collected during the construction

phase on Barrow Island, between 2009 and 2015. The unit of inspection, termed the Material

Management Ticket (MMT), was used for biosecurity inspection on the island. The MMT is a

system used to track the movement of materials and can include one or several containers, or

groupings of similar materials for biosecurity inspection [5]. An MMT can also encompass
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Fig 1. Physical definitions of biosecurity borders inspection points on Barrow Island, Australia. The map is an indicative

representation of the biosecurity inspection sites between 2009 and 2015. Map created using the Free and Open Source QGIS.

https://qgis.org/en/site/ [46]. The shapefiles were provided by Chevron Australia Pty Ltd. This work has been licensed under

CC BY 4.0.

https://doi.org/10.1371/journal.pone.0272413.g001

PLOS ONE Mixed-type data clustering for temporal and spatial distribution of biosecurity border interceptions

PLOS ONE | https://doi.org/10.1371/journal.pone.0272413 August 9, 2022 5 / 22

https://qgis.org/en/site/
https://doi.org/10.1371/journal.pone.0272413.g001
https://doi.org/10.1371/journal.pone.0272413


one or more inspections. When no NIS was found during cargo inspection, results of inspec-

tion were recorded as zero. Otherwise, a detailed set of records was recorded for positive detec-

tions. A detection was either a specimen of an organism or multiple specimens of an organism

[5]. A unit was an individual count of the type of material detected.

When an MMT was identified as positive, appropriate remedial treatment action was

applied, e.g., fumigation or the item was refused entry. Cargo were re-inspected at sites where

the goods were to be used and can be considered as a quality assurance measure to ensure that

the cargo reaching the island was free of NIS [5].

The following variables were identified as covariates to be used in the analysis, namely; 1.

physical location (biosecurity border inspection entry point), 2. type of detection, 3. construc-

tion phase of the project, and 4. season.

1. Physical location (biosecurity border inspection entry point)

In biosecurity, a border is the point of entry of goods by land, air, or sea into a designated area

for quarantine purposes [48]. Border inspection points at BWI are identified as Barrow Island

Airport, BWI Material Offloading Facilities (MOF), and Western Australian Petroleum Land-

ing Site Landing (WAPET Landing) (Fig 1). Secondary border inspection occurred after final

cargo clearance and included points where the consignments are offloaded for use on BWI,

such as the Gorgon LNG Plant, the Construction Village, the Production Village, and Western

Australia (WA) Oil Camp. Border detection was primarily through biosecurity surveillance

and secondly by citizen science, since all personnel coming to work on the island are trained

and obligated to report any suspected NIS plant or animal species [42].

2. Type of detection

These were classified as vertebrates, invertebrates, seeds, and plant materials. Vertebrates

included mammals, birds, reptiles (snakes and geckos) and amphibians. Invertebrates included

arthropods, termites, worms, ants, and terrestrial molluscs. Plant materials included twigs,

leaves, grass, roots, and remnants of fruits. All the detection events were recorded and classi-

fied according to their impact on biodiversity on BWI. The detections were subsequently and

taxonomically classified to genus level depending on the condition of the specimen.

3. Construction phase of the project

Construction activities were described as phases: early construction (2009–2011), main con-

struction phase (2012–2014), and transition phase (2015). Early construction phase consisted

mostly of site preparations and earthworks; while main construction phase consisted mainly of

major construction activities relating to the building of the three liquefied natural gas (LNG)

processing plants and all the supporting infrastructure, such as gas turbine generators, slug

catchers, Boil Off Gas (BOG) flare, MR/PR compressors. Finally, the transitional phase con-

sisted of preparations for start-up, commissioning tests and eventual start-up and initial opera-

tions [49].

4. Season

Data were classified into four seasons representing the time periods: January-March (autumn—1),

April-June (winter—2), July-September (spring—3) and October-December (summer—4). Bar-

row Island is arid and has a subtropical climate. Summer and autumn are characterised by high

temperatures (20–34˚C) with high humidity while winter is characterised by moderate
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temperatures (17–26˚C) with fine weather [50]. Annual average rainfall is 320 mm with cyclonic

events bringing 30mm—300 mm of rainfall in one cyclonic event [51].

As such, the amount of cargo, type of cargo and personnel reaching biosecurity borders on

the island varied significantly as the project progressed, directly impacting the number of bio-

security detections. Table 1 gives a summary of the covariates which were considered for the

clustering algorithm.

Clustering. Distance-based algorithms, such as k-means, are very popular due to their

simplicity, interpretability, and ease of implementation [52, 53]. Further, statistically desirable

characteristics of the clusters include the stability of identified clusters, independence of vari-

ables within a cluster, and the degree to which a cluster can be well-represented by its centroid

in mixed data type [54]. A popular approach that allows for mixed-type data is Huang’s k-pro-

totypes algorithm [43, 44], which calculates the distances between objects and cluster centroids

for categorical and continuous variables, and combines them in a single objective function

[44]. For k-prototypes, cluster centres are represented by mean values for numeric features

and mode values for categorical features.

Two clustering analyses were considered here. The first involved clustering only the

response count data and the second included both the response variable and covariates.

For the first cluster analysis, many available software packages analyze univariate continu-

ous data [55, 56]. Here, the Ckmeans.1d.dp algorithm [57] was implemented using

Ckmeans.1d.dp in R software, to determine the clusters using univariate log-transformed

detection counts. The algorithm guarantees the optimality of clustering by ensuring that the

total of within-cluster sums of squares is always the minimum given the number of clusters k.

For the second analysis, several software packages in R are available for clustering mixed-

type data (clustMixType [58], clustMD [59], Gower’s similarity matrix [60], ClustOfVar [61]

and CluMix [62]). Here, the clustMixType package in R [58] based on Huang’s k-prototype

algorithm [44] was used to assess the role of covariates: seasons, construction phases, and

Table 1. Description of covariates used in the cluster model based on biosecurity detections from Barrow Island

from 2009 to 2015.

Covariate Levels Factor levels

Physical location (biosecurity

border inspection entry point)

8 1. Barrow Island Airport (BAirport)

2. Barge -floating accommodation

3. Construction Village (ConstV)

4. Production Village (ProdV)

5. WAPET Landing

6. Materia Offloading Facility (MOF)

7. LNG Plant (LNGP)

8. Others

Type of detection 4 1. Invertebrates

2. Seeds

3. Vertebrates

4. Plant material

Phase 3 1. Early construction (2009–2011)

2. Major construction (2012–2014

3. Transition (2015)

Season 4 1. January-March (autumn—1)

2. April -June (winter– 2)

3. July–September (spring– 3)

4. October -December (summer– 4)

N.B: Other includes Permanent Operating Facility (POF), Gas Treatment Plant (GTP), Quarantine Approved

Premises (QAP).

https://doi.org/10.1371/journal.pone.0272413.t001
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physical locations/sites where the biosecurity inspection was done. This package allows using

combination of both numeric and categorical data in model fitting. The k-prototypes algo-

rithm used belongs to the family of partitional cluster algorithms [63].

The steps of the algorithm were:

i. Select k initial prototypes for k clusters from the date set X

ii. For each observation:

a. assign observations to its closest prototype according to d ().

b. update cluster prototypes by cluster-specific means/modes for all variables.

iii. Repeat Step 2 until no data object has changed clusters after a full cycle test of X.

Clusters are assigned using: [58]

d x; yð Þ ¼ d euclidð Þ x; yð Þ þ l d simple; matchingf g x; yð Þ Eq 1

For numeric explanatory variables, results are given as summary statistics for each cluster,

while for categorical variables, the results are as a proportion of the contribution of each factor

level across each cluster in a tabular form. Further, summary profile histograms of the explana-

tory variables are given as well. The clusters are mutually exclusive.

The covariates represent the temporal aspect of the data since the data were collected over a

period (2009–2015) where seasonality and other construction activities have a direct impact

on the number and type of units detected.

An alternative partitioning method widely used, though not addressed in this paper, are

finite mixture models, in which each cluster is assumed to follow some parametric distribu-

tion, the parameters of which are then typically estimated using the EM (expectation-maximi-

zation) algorithm [26, 64–66]. The data collected for this study were number of units detected

(counts), the data is non-parametric. K-clustering which uses “hard” assignment, with the

probability distribution of the data is unknown while the Expectation-Maximization (EM)

algorithm uses “soft” assignment mechanism and each data point is assigned to every cluster

centre according to its probability of generating the data thus optimizing the marginal likeli-

hood of the data using a defined probability distribution, usually the Gaussian [67]. More

recently, the work done by Behzadi, Müller [68] using ClicoT (Clustering mixed type data

Including COncept Trees), though not on biosecurity data might be an alternative approach

to clustering mixed type data and complement other techniques for data classification.

Results

Data description

In total, over 600,000 inspections were conducted during the period December 2009 to

December 2015, with only 5,380 biosecurity risk material detections, which translates to

approximately 1% of the inspections. For this study, soil/organic matter data were excluded as

it was privy to a different type of biosecurity assessment and analyses, hence the final sample

size used was 5,325 units (Table 2).

A high percentage (73%) of the border detection were at the primary biosecurity entry

points, namely, the WAPET Landing and the Material Offloading Facility, contributing 42%

and 31% respectively. The bulk of the construction material/consignments were received at

these points. At final clearance inspection, detections constituted the remaining 27% of the

detections (Fig 2), which were found at human-inhabited areas associated with food and
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perishables and at construction sites where high volumes of imported construction materials

were delivered.

Single unit detections comprised 69.1% of the border detections, while 11.4% were two-

unit detections. The remaining 19% of detections, ranged between three and 100 units per

inspection and only 0.2% ranged from over 100 to a maximum of 1000 units (Fig 3). Since the

detections were recorded between 2009 and 2015, temporal autocorrelation between the mea-

surements was intrinsic, recognizing annual, monthly, and seasonal trends. The resulting time

series shows a general linear decline in detection counts, with significant spikes at specific

points during the inspection period (Fig 4). These detection events were anomalous and

mainly comprised of seeds.

Cluster analysis of detections. Three clusters were identified as optimal for the trans-

formed detection counts using Ckmeans.1d.dp algorithm (Fig 5A). These were from single

organism detections, 2 to 6-unit count detections and remaining 7 to 1000 units per detection

(Table 3). Single units’ detections accounted for the bulk of the detections (69.4%). The distri-

bution of the 3 clusters is given as a scatter plot (Fig 5B).

Cluster analysis of detections and covariates. Four clusters were identified when the fol-

lowing covariates were incorporated into the model using the clustMixType package in R:

Table 2. Summary statistics for the Barrow Island biosecurity detection events between 2009 and 2015.

Type of detection Proportion N Mean Median min max std dev Variance

Invertebrate 0.62 3325 3.61 1 1 1000 28.1 790.0

Plant material 0.09 469 2.41 1 1 100 5.5 29.7

Seed 0.26 1392 5.82 1 1 1000 33.7 1133.0

Vertebrate 0.03 139 1.58 1 1 20 2.3 5.3

Grand Total 1.00 5325 4.03 1 1 1000 28.2 793.2

https://doi.org/10.1371/journal.pone.0272413.t002

Fig 2. Comparison of biosecurity border inspection detections by physical border entry location for Barrow

Island from 2009 to 2015. NB: Others included Barrow Island shore waters and pre-commissioning sites.

https://doi.org/10.1371/journal.pone.0272413.g002
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physical location, type of detection, phase, and season. The initial cluster profile of the 4 clus-

ters is shown in Fig 6.

The clusters associated with covariates phase and season had the greatest representation in

the detections (Table 4). The parameter lambda (λ = 0.2337) is a measure of the interplay of

the different data types for distance calculation during clustering, where small values of λ
emphasize numeric variables while larger values show an increased influence of the categorical

variables.

Fig 3. Distribution of detections by type of biosecurity risk material inspected and the number of units detected

per inspection for Barrow Island from 2009 to 2015.

https://doi.org/10.1371/journal.pone.0272413.g003

Fig 4. Time series model for total border detection counts between January 2010 and September 2015 for Barrow

Island.

https://doi.org/10.1371/journal.pone.0272413.g004
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The clusters were primarily distinguished by season, with no detections in autumn and

summer for cluster 1, and no detections in spring for cluster 3. Most of the detections were

found in the major construction phase (Table 5). Invertebrates dominated the type of detection

for all clusters, constituting 62% of the counts. Cluster 3 is highly associated with WAPET

Landing (0.633) and cluster 4 with MOF (0.696) (See S1 Appendix).

The clustering profiles across the different variables showed variations in the distribution of

the detection counts within each of the four clusters and by each of the covariates (Fig 7A–7D).

Cluster performance evaluation

The full cluster model (including both numeric and categorical variables) was compared

against the models using numeric variables (k-means) only (Table 6) and using categorical var-

iables (k-mode) (Table 7) using the Rand index [69] as computed in the packages klaR [70]

and clusteval in R [71]. The Rand index has a value between 0 and 1, with 0 indicating that

the two data clusterings do not agree on any pair of points and 1 indicating that the data clus-

terings are exactly the same. The rand indices of 0.542 (k-means) and 0.6394 (k-modes) were

not high, although the k-modes index was higher and better correlated to both the numerical

and categorical variable model. The k-means univariate model accounted for 90.2% of the

total variation in the data.

Fig 5. Determining the optimal number of clusters and showing the distribution of the data. a. Scree plot for optimal number of clusters using

univariate clustering using ckmeans algorithm for log-transformed data using detection data for Barrow Island from 2009 to 2015. b. Univariate clustering

using ckmeans algorithm for log10- transformed data using data for Barrow Island from 2009 to 2015.

https://doi.org/10.1371/journal.pone.0272413.g005

Table 3. Summary statistics for univariate clustering using ckmeans algorithm for log-transformed data for Barrow Island from 2009 to 2015.

Cluster Size Proportion Mean std dev min median max variance

1 3697 69.4 0.0 0 0 0 0 0

2 1185 22.3 0.1185 0.441 0.163 0.301 0.778 0.0264

3 443 8.3 1.23 0.362 0.845 1.15 3 0.131

Total 5325 100.0 4.030 28.164 1 1 1000 793.2207

https://doi.org/10.1371/journal.pone.0272413.t003
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Of note was cluster 2 (Table 5) which included the whole range of the detection counts

from 1 to 1000 (Fig 8). This cluster represents on a smaller scale the characteristics of biosecu-

rity data commonly encountered. This specific cluster 2 consisting of 724 units, was further

analyzed to ascertain whether any extra information would be obtained to better explain the

results (Table 8).

This new subpopulation of data (cluster 2) identified four clusters that were exclusively

from the major construction phase of the project (Table 9). These were characterized by clus-

ters 1 and 2 in which seed were predominantly detected at the LNG Plant and Material Off-

loading Facility (MOF) respectively. Conversely, clusters 3 and 4 were dominated by

invertebrates detected at the WAPET Landing. Cluster 4 did not have any plant material and

vertebrates associated with it (See S2 Appendix).

Discussion

Mixed-data clustering is used to analyse data measured on different scales where the analysis

approach is integrative and can identify patterns which are not apparent from univariate

Fig 6. Cluster profile using a boxplot for log10 transformed detection frequency for the four-component cluster

model utilizing both numerical and categorical variables for data from Barrow Island from 2009 to 2015.

https://doi.org/10.1371/journal.pone.0272413.g006

Table 4. Summary statistics of clustering using the response variable only (counts) for Barrow Island from 2009 to 2015.

Cluster Size prop Mean std dev min median max variance

1 904 17.0 1.329 0.662 1 1 4 0.438

2 724 13.6 21.452 74.070 3 9 1000 5486

3 2189 41.1 1.149 0.517 1 1 4 0.268

4 1508 28.3 1.468 0.822 1 1 6 0.675

Total 5325 100.0 4.030 28.164 1 1 1000 793.2207

https://doi.org/10.1371/journal.pone.0272413.t004
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analysis of the data [62]. It is also useful for complex high-dimensional data in identifying

underlying patterns. Based on our analyses of exemplar biosecurity data collected over a six-

year period, we report here that a clustering approach to analysis is useful in interpreting com-

plex patterns in multivariate biosecurity data. Our study indicates that in the Barrow Island

(Australia) example, biosecurity border surveillance data for terrestrial non-indigenous species

are characterized by homogenous subgroups within a heterogenous population. These data

characteristics are analogous to many biosecurity systems globally. Worldwide, the assem-

blages of organisms transported depends upon the pathway, commodity and suitable environ-

mental conditions, or a combination of these factors. As such, biosecurity data are commonly

characterized by presence/absence data (binomial distribution) and clumping and extreme

events, which can be characterized by a mixture of distribution models including Poisson, neg-

ative binomial distributions, and variants of these such as zero-inflated and hurdle models. Sta-

tistical methods used to analyze biosecurity data will be dictated by these distributions.

Table 5. Clustering using both numeric and categorical variables using data from Barrow Island between 2009 and 2015.

k-prototype Cluster size Mean counts Detection type Season

Cluster Invertebrates Plant Seed Vertebrate Season

1 904 1.3 0.468 0.124 0.372 0.037 Spring

2 724 21.5 0.503 0.077 0.409 0.011 Winter

3 2189 1.2 0.618 0.093 0.262 0.027 Summer

4 1508 1.45 0.789 0.065 0.123 0.025 Autumn

NB. All clusters were associated with major construction phase. Clusters 1, 2 and 3 were identified with physical location WAPET Landing while cluster 4 with MOF.

(See S1 Appendix).

https://doi.org/10.1371/journal.pone.0272413.t005

Fig 7. a. Cluster profile by type of detection for the four-component cluster model using data from Barrow Island

from 2009 to 2015. b. Cluster profile by seasons for the four-component cluster model using data from Barrow Island

from 2009 to 2015. c. Cluster profiles by project phase of construction for the four-component cluster model using

data from Barrow Island from 2009 to 2015. d. Cluster profile by physical location of detection event for the four-

component cluster model using data from Barrow Island from 2009 to 2015.

https://doi.org/10.1371/journal.pone.0272413.g007
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Determining the most influential variables in biosecurity data is necessary to implement

effective biosecurity measures and hence reduce the potential for incursions. In this case study,

1) invertebrates and seeds were demonstrated to be the most abundant NIS detected (contrib-

uting 62% and 26% respectively), 2) the highest number of detections were at the WAPET

Landing and Material Offloading Facility, which were the primary receival points of cargo at

BWI, and 3) most of the detections were during the major construction phase due to the peak

in construction activities and human movement. Invertebrates were the most commonly inter-

cepted, as the majority of them are hitchhiker pests attaching themselves to exposed surfaces

of ships. A hitchhiker pest is a pest organisms that is moved from one place to another

(directly/indirectly) by its opportunistic association with a commodity or item where there is

no biological host relationship on/in the conveyance (airplane, maritime vessel, shipping con-

tainer) used for transport [72].

The ckmeans algorithm identified a three-cluster model as the best model fit based on

numerical data. The univariate three-cluster log-normal model provided the best insight into

the distribution of the data by dividing data according to their distinct characteristics. Firstly,

the model identified point mass detection of single units and the existence of extreme values

accounting for the top 2% of the data. Given that biosecurity data often contain extreme values,

the log-normal cluster model can be a useful tool for biosecurity management as the transfor-

mation allows analysis of all the data collected.

By including categorical covariates in the model, model precision improved by allowing

more information to be available to describe the clusters. This was evident by the increase in

the number of clusters from three to four. Approximately 90% of the variation in the data was

explained by increasing the number of clusters to four using the univariate k-prototype algo-

rithm, a slight improvement from 88.4% with three clusters. This shows inclusion of covariates

is important for driving cluster generation.

The four clusters identified in the analysis were mainly distinguished by one of the four sea-

sons and by location on the island, reflecting seasonal and location variations in the data. For

example, cluster 1 did not record any detections in summer and autumn, whilst cluster 3 had

no detections in spring. In addition, some locations on the island were prominent in the clus-

tering (WAPET Landing and the Material Offloading Facility) because these had the highest

number of detections as they were the primary inspection points before the cargo was

Table 6. Summary statistics using numerical variable only for detection data from Barrow Island between 2009 and 2015.

Using numeric variable only Cluster size Percentage Log(detection+1) Within cluster sum of squares

Cluster1 340 6.4 1.1368 10.592

Cluster2 4304 80.8 0.0424 47.248

Cluster3 616 11.6 0.6043 9.166

Cluster4 65 1.2 1.9085 8.680

https://doi.org/10.1371/journal.pone.0272413.t006

Table 7. Summary statistics using categorical variables only for detection data from Barrow Island between 2009 and 2015.

Cluster Cluster size Percentage �Within cluster Detection type Season Phase Physical location

Cluster1 2350 44.1 3335 Invertebrates Winter Major WAPET

Cluster2 1039 19.5 1213 Invertebrates Summer Major WAPET

Cluster3 799 15.0 811 Seed Summer Early WAPET

Cluster4 1137 21.4 959 Invertebrates Autumn Major MOF

N.B. �Within cluster simple-matching distance.

https://doi.org/10.1371/journal.pone.0272413.t007
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distributed to various locations on the island. This result supports experts estimates on the rel-

ative importance of entry points for incursions on Barrow Island [47, 73]. As such, including

categorical covariates in cluster analyses are critical in defining clusters, with specific categori-

cal factors having more weight than others. It is worth noting that the clustering of cluster 2

primarily identified data from the major construction phase, which was the height of construc-

tion activity, characterized by increased levels of movement of freight and hence more NIS

detection events.

The clustering was able to identify the specific pathways associated with specific cargo that

were prominent during the different phases of the project. Introductory pathways associated

with cluster 1 were free of NIS detections, namely Sand and Aggregate, Special and Sensitive

Goods, and Crated Goods. Further, no detections were recorded in summer and autumn

(October–March) for cluster 1. No detections were observed due to the nature of the goods,

the transportation pathways and the biosecurity protocols that were applied to their cargo. For

example, in the Sand and Aggregate pathway, the sand was deep-mined and stored and trans-

ported in containers. While for Crated Goods pathway, the wood was chemically treated

according to the Australian timber preservation standards (AS1604). Finally, the Special and

Fig 8. Time series model for biosecurity border detection counts between January 2010 and September 2015 for

cluster 2 using data from Barrow Island. N.B. The majority of the detections were single unit detections, with

extreme counts of 1000 counts also observed.

https://doi.org/10.1371/journal.pone.0272413.g008

Table 8. Summary descriptive statistics for cluster 2 for detection data from Barrow Island between 2009 and 2015.

Min 1st Quartile Median Mean 3rd Quartile Max

Original counts 1 1 1 4.03 2 1000

Log transformed data 0.4771 0.6990 0.9542 1.0025 1.2304 3.00

https://doi.org/10.1371/journal.pone.0272413.t008
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Sensitive Goods pathway goods were manufactured or assembled under clinical or hygienic

conditions and were thoroughly inspected before being placed in containers, hence no NIS

were detected (https://www.standards.org.au/standards-catalogue/sa-snz/building/tm-012/

as--1604-dot-1-2012) [74].

Biosecurity protocols in place at Barrow Island have to date resulted in a substantial propor-

tion of biosecurity border inspections (99%) in which no NIS were detected. From over

600,000 border inspections, there were only 5,380 positive detections of NIS i.e., 1% of the

total number of inspections. This reflects stringent preventative biosecurity protocols and the

limited number of entry points to the island i.e. the seaports and airport [75].

The k-clustering algorithm is generally robust when it comes to extreme values as demon-

strated in our biosecurity data as well as in other studies such as Janßen and Wan [76] and

Behzadi, Müller [68]. The border detections were highly skewed due to some "extreme values".

These extreme values constituted recordings of between 104 to 1000 detections per inspection

and were mainly seeds and invertebrate species. Propagule pressure has been identified as a

strong predictor of invasion success especially in plants and invertebrate species [12, 77].

Extreme counts, as well as high frequency of detection, are important for biosecurity manage-

ment strategies as they increase the likelihood of invasion through sufficient propagule pres-

sure [78]. There is increasing empirical and statistical evidence that propagule pressure in the

form of propagule sizes, propagule numbers, and temporal and spatial patterns of propagule

arrival are important in biological invasions [79]. Establishment success has been shown to

depend on propagule pressure in the range of 10 to 100 individuals tested across a broad range

of taxa and life histories, including invertebrates, herbaceous plants and long-lived trees, and

terrestrial and aquatic vertebrates [77]. As such, extreme detection counts (500+) reported in

this study, specifically for Typha seeds (bulrush) and one Hymenopteran species, theoretically

have the potential to start an invasion and as such provide information critical to biosecurity

management. Consequently, our use of clustering to ascertain detection patterns of NIS at the

border is highly relevant. Management policy aimed at preventing invasions should aim to

reduce detections to small counts or zeros irrespective of any other aspect of an invasion [77].

It is still under debate as to whether and incursion of over 100 individuals have the potential to

increase the success of an incursion event. However, extreme counts still need to be taken

under careful biosecurity consideration [52].

Given that the numbers required for sufficient propagule pressure are estimated to be 10

to100 individuals [77], the biosecurity protocols in place on Barrow Island limit propagule pres-

sure as 73% of the detections were either single or two-unit detections. However, the efficacy of

border controls cannot be evaluated precisely since the actual propagule pressure (frequency of

introductions) is unknown [14, 80]. This is often the case in biosecurity situations globally.

Our study revealed that clustering approach has the advantage of catering for heterogeneity of

data where subpopulations exist and the data is measured on different scales i.e. numerical or cat-

egorical [62]. Border detections at Barrow Island include heterogeneous subpopulations of dis-

tinct types of units (vertebrates, invertebrates, seeds, and plant material) because of the nature of

Table 9. Clustering using both numeric and categorical variables for detection data from Barrow Island between 2009 and 2015.

k-prototype Cluster size Mean counts Detection type Season Physical location

Invertebrates Plant Seed Vertebrate

Cluster1 101 1.1664 0.099 0.109 0.772 0.020 Winter LNGPlant

Cluster2 163 0.9806 0.264 0.086 0.632 0.018 Summer MOF

Cluster3 319 0.7337 0.605 0.097 0.288 0.009 Winter WAPET

Cluster4 141 1.519 0.837 0000 0.163 0000 Autumn WAPET

https://doi.org/10.1371/journal.pone.0272413.t009

PLOS ONE Mixed-type data clustering for temporal and spatial distribution of biosecurity border interceptions

PLOS ONE | https://doi.org/10.1371/journal.pone.0272413 August 9, 2022 16 / 22

https://www.standards.org.au/standards-catalogue/sa-snz/building/tm-012/as1604-dot-1-2012
https://www.standards.org.au/standards-catalogue/sa-snz/building/tm-012/as1604-dot-1-2012
https://doi.org/10.1371/journal.pone.0272413.t009
https://doi.org/10.1371/journal.pone.0272413


cargo and movement of personnel to the island. The characteristics and traits of these types of

units vary in their ability to withstand adverse conditions and survive transit, their associated

introductory pathway, and commodity. Visual inspections may not be reliable in detecting small

or cryptic pests, with the species intercepted possibly attributed to the inspection method used

rather than to the association of NIS with the commodity [14, 15]. Thus, even though the clusters

identified in statistical analyses may be fit for purpose, the data itself may have specific limitations

since not all the relevant data pertaining to biosecurity inspections were available. Factors that

might influence the number of detections include the type and quantities of cargo being

inspected, the inspection effort, and the method of inspection. This type of dis-segregation of

biosecurity data is a common problem faced by data analysts. Until various disciplines and orga-

nizations work together, statisticians must manage the available data in the most parsimonious

manner, targeting the most effective models for the data they have available.

Most border interception studies investigate a targeted family/phyla of pest or commodity

(e.g. the taxonomic and biogeographic patterns of invasion of ants arriving in Australia

between 1986 and 2010 [8], border interceptions of forest insects established in Australia

between 2003 and 2016 [81], termite interception at United States ports of entry between

1923–2017 [82]. More recent studies in biosecurity have used clustering techniques for auto-

mated crop damage assessment [83] and biosecurity investment strategies [84]. Clustering is

one of the most popular research topics in data mining and knowledge discovery [85] and

using mixed data type is more beneficial as both types of data i.e. numerical and categorical are

used together. However, this study looked holistically at all the biosecurity risk material being

intercepted at a biosecurity border longitudinally. The method we used produced comparable

results using real-life data instead of simulated data as in some studies. Dinh, Huynh [85] gave

a comprehensive suite of variations to clustering analysis which demonstrates the wide appli-

cation of this analysis technique in other areas of research other than biosecurity. However,

this study looked holistically at all the biosecurity risk material being intercepted at a biosecu-

rity border over a time and at physical biosecurity inspection points.

Conclusion

The study highlighted the explanatory variables that best differentiate the spatiotemporal clus-

ter memberships of biosecurity border detection events from a given set of explanatory vari-

ables namely type of detection, season, physical location of the detection event and the phase

of the project. Cluster models are increasingly becoming an integral component of ecological

and environmental data analyses due to their ability to handle diversified data types/mixed-

data type to explain the complexity of natural processes and the data itself. Biosecurity surveil-

lance data globally, is often comprised of data measured on different scales (categorical or

numerical) and mixed-type data clustering can provide interpretable cluster descriptions

which is useful for strategic management decisions in terms of inspection and detection of

non-indigenous species. Hence, clustering can be adopted as a tool for investigating and the

source and spread of invasive species. This highlights the need to use appropriate statistical

methods to explain complex patterns in data such that the information is more readily inter-

pretable for making management decision. Cluster models can identify where subpopulations

are aggregated, for example, due to the biological circumstances (e.g., diverse types of organ-

isms transported in the same commodity), but otherwise, exhibiting distinct biological charac-

teristics and traits. Adequate knowledge of how a biosecurity system works is the first step in

determining how best to improve the system, and cluster models can be an effective tool in

gaining this understanding and indicates that these models should be used more widely in bio-

security monitoring of non-indigenous species.
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Even when stringent biosecurity protocols are implemented throughout the biosecurity

continuum, it is an impossible task to completely eliminate cargo of contaminants or biosecu-

rity risk material. However stringent protocols minimize the risk of incursions and reduce

establishment of pests and diseases in the target environment. Tried and tested protocols, prac-

tical innovations and procedures should be shared and improved on progressively as they are

tried under different environments and circumstances.
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