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Abstract
The incorporation of nanomaterials (NMs), including metal(loid) oxide (MOx) nanoparticles (NPs), in the most diversified
consumer products, has grown enormously in recent decades. Consequently, the contact between humans and these materials
increased, as well as their presence in the environment. This fact has raised concerns and uncertainties about the possible risks of
NMs to human health and the adverse effects on the environment. These concerns underline the need and importance of assessing
its nanosecurity. The present review focuses on the main mechanisms underlying theMOx NPs toxicity, illustrated with different
biological models: release of toxic ions, cellular uptake of NPs, oxidative stress, shading effect on photosynthetic microorgan-
isms, physical restrain and damage of cell wall. Additionally, the biological models used to evaluate the potential hazardous of
nanomaterials are briefly presented, with particular emphasis on the yeast Saccharomyces cerevisiae, as an alternative model in
nanotoxicology. An overview containing recent scientific advances on cellular responses (toxic symptoms exhibited by yeasts)
resulting from the interaction with MOx NPs (inhibition of cell proliferation, cell wall damage, alteration of function and
morphology of organelles, presence of oxidative stress bio-indicators, gene expression changes, genotoxicity and cell dead) is
critically presented. The elucidation of the toxic modes of action of MOx NPs in yeast cells can be very useful in providing
additional clues about the impact of NPs on the physiology and metabolism of the eukaryotic cell. Current and future trends of
MOx NPs toxicity, regarding their possible impacts on the environment and human health, are discussed.

Key points
• The potential hazardous effects of MOx NPs are critically reviewed.
• An overview of the main mechanisms associated with MOx NPs toxicity is presented.
• Scientific advances about yeast cell responses to MOx NPs are updated and discussed.
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Introduction

Nanomaterials (NMs) are defined as “chemical substances or
materials with particle sizes between 1 to 100 nm in at least
one dimension” (ECHA 2020). Due to their nanometer size,
they present huge surface-to-volume ratios, exhibiting unique
physical and chemical properties (such as catalytic, optical,
magnetic, electronic and mechanical) that are different from
those of materials on a larger or “bulk” scale (Klaine et al.
2013). The exceptional properties exhibited by NMs have led
to their incorporation in many products in various sectors such
as agriculture, automotive, construction, cosmetics, electron-
ics, environment, food, home appliance, medicine, petroleum
and printing (NPD 2020).
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The rapid expansion of production and use of NMs inevita-
bly raised concerns about their safety for human health and the
environment. The physical form and the chemical reactivity that
makes NMs distinctive also provide them the potential to inter-
fere with biological processes and produce hazardous effects.
Humans can be intentional (through nanomedicine or personal
healthcare products) or unintentionally exposed to NMs (re-
leased from food packaging); additionally, occupational expo-
sure (as consequence of industrial processes) should also be
considered (Lombi et al. 2019; Klaper 2020). Examples of in-
tentional application of NMs in the environment include their
use in environmental remediation (Guerra et al. 2018; Qian
et al. 2020) or in agricultural practices (Servin et al. 2015;
Usman et al. 2020). Unintentionally release of NMs in the
environment includes the following: (i) the release due to the
life cycle of products incorporating NPs, such as paints, cos-
metics, sunscreens (Sun et al. 2016; Wu et al. 2020); and, (ii)
accidental spills or industrial liquid effluents, such as those
emitted by textile industries during the washing of nanotextiles
(Yetisen et al. 2016). It was estimated that of the global NMs
produced, 63–91% reach landfills, 8–28% are released into
soils, 0.4–0.7% in natural water bodies, and 0.1–1.5% are re-
leased into the atmosphere (Keller et al. 2013).

NMs can be divided into five categories: carbon-based
(single and multi-walled carbon nanotubes, graphene and ful-
lerenes); metal-based (metal(loid) oxides; zerovalent metals
such as iron, silver and gold); dendrimers (hyperbranched
polymers, dendrigraft polymers and dendrons); semiconduc-
tor nanocrystals, known as quantum dots; and composites
(constituted by two different NMs or NMs combined with
larger, bulk-type materials; and NMs combined with synthetic
polymers or resins) (EPA 2017).

Among NMs, metal(loid) oxide (MOx) nanoparticles
(NPs) have received considerable attention largely due to their
variety of uses namely in optics and electronics, healthcare,
construction, automotive and personal care products (Laurent
et al. 2018), and it will be the subject of the present review.
The market for MOx NPs is expected to growth at a com-
pound annual growth over 7% globally during the period of
2020–2025. However the current framework of uncertainty
arising from the COVID-19 pandemic it may hinder the
growth of this market sector (Mordor Intelegence 2020).

In the last five years, several review papers have been pub-
lished about NMs, NPs or more specifically on MOx NPs.
Some reviews refer more broadly to NMs, namely about their
behaviour, fate, bioavailability and effects on the environment
(Pulido-Reyes et al. 2017; Lead et al. 2018; Spurgeon et al.
2020; Zhao et al. 2020) or the toxicity mechanisms associated
with NMs over algal cells (Chen et al. 2019). Within NMs,
reviews on NPs, namely about the influence of their physico-
chemical properties on ecotoxicology, in terrestrial and aquat-
ic systems (Bundschuh et al. 2018; Nguyen et al. 2020; Roma
et al. 2020), the effects on freshwater organisms (Deniel et al.

2019), genotoxicity (Mortezaee et al. 2019) or the mecha-
nisms associated with cell dead by necrosis, apoptosis and
autophagy (Mohammadinejad et al. 2019; Paunovic et al.
2020) have been published. A more specific review about
the toxic effects of NiO in aquatic organisms (Meyer et al.
2020) was recently published.

The present work summarises the mainmechanisms under-
lying MOx NPs toxicity. The biological models used to assess
nanotoxicity are briefly presented, with particular emphasis on
the yeast Saccharomyces cerevisiae as a valuable and alterna-
tive model in nanotoxicology. An updated overview of yeast
cell responses to stress induced by MOx NPs is critically
reviewed. Finally, current and future trends in the assessment
of MOx NPs toxicity, regarding their possible impact on the
environment and human health, are discussed.

Biological models used in nanotoxicology

Brief overview of the models used in nanotoxicity
assessment

An array of biological models have been used in ecotoxicity
studies, which include (in parentheses it can be found typical
examples employed): bacteria (Escherichia coli and Vibrio
fischeri), yeasts (S. cerevisiae), microalgae (Pseudokirchneriella
subcapitata and Chlorella vulgaris), protozoa (Tetrahymena
thermophila), rotifers (Brachionus plicatilis), crustaceans
(Daphnia magna), annelids (Eisenia fetida), nematodes
(Caenorhabditis elegans), cnidarians (Hydra attenuata), molluscs
(Potamopyrgus antipodarum), echinoderms (Lytechinus pictus),
amphibians (Xenopus laevis) and fishes (Danio rerio) (Juganson
et al. 2015; Minetto et al. 2016; Libralato et al. 2017).

Although animal testing is still the predominant model
use for the risk assessment of chemicals (Hartung and
Rovida 2009), due to the pressure from public opinion
and legal demand, supported by ethical reasons, the re-
placement of animals for cheaper and more human-
relevant alternatives have been proposed based on the use
of cell lines. Thus, different mammalian cell lines have
been used in toxicity assays with MOx NPs (Al2O3, CuO,
NiO, TiO2 and ZnO), comprising models of different hu-
man systems, such as respiratory, digestive, renal, immune
and skin (Ivask et al. 2014; Naseer et al. 2018; Czyzowska
and Barbasz 2020).

The yeast S. cerevisiae as an important tool in
nanotoxicology

S. cerevisiae is the most commonly used yeast in industrial
applications, receiving the status of Generally Recognized As
Safe (GRAS) microorganism by the United States Food and
Drug Administration (FDA 2018). This yeast is easy to

1380 Appl Microbiol Biotechnol (2021) 105:1379–1394



manipulate and cultivate, does not require expensive ingredi-
ents in the formulation of the culture media and presents a
short generation time. It was the first eukaryotic organism
with the genome completely sequenced (Goffeau et al. 1996).

The yeast S. cerevisiae presents a cellular structure and
organization related to animal cells. About 30% of genes as-
sociated with human diseases have a yeast orthologue (Foury
1997), whichmakes this yeast an attractive model organism to
study diseases in humans. Mitochondrial respiration can be
manipulated by the loss of mitochondrial DNA or by chang-
ing the growth conditions, making this yeast an appropriate
model for elucidating the role of mitochondria in ROS gener-
ation, as well as mitochondrial diseases associated with oxi-
dative phosphorylation (Malina et al. 2018); this information
can be readily transported to higher eukaryotes via the Gene
Ontology (Howe et al. 2018).

This yeast features a set of important tools that include the
complete gene deletion collection (Giaever and Nislow 2014)
and the possibility of achieving high-throughput data, such as
obtained from transcriptomics, proteomics and metabolomics
analysis (Braconi et al. 2016). The use of yeasts in the assessment
of toxicity of environmental pollutants (including NMs) does not
raise ethical issues and is well suited in a first toxicity screening,
because reduces costs and toxic wastes and replaces/limits the
use of animal models (dos Santos and Sa-Correia 2015).

However, this model also has limitations. The unicellular
nature of this organism does not make possible to provide spe-
cific toxicological data about tissues or organs. In addition, it
presents a cell wall (in contrast to animal cells), which can act as
a barrier to toxicants, many efflux pumps and detoxification
mechanisms, which can be the cause of the greater tolerance
of yeasts to toxics, compared with eukaryotic cells of higher
organisms (dos Santos et al. 2012; Braconi et al. 2016).

Global mechanisms underlying to MOx NPs
toxicity

MOxNPs can present a toxic effect by several mechanisms, in
some cases even by more than one. The main mechanisms are
summarised below and depicted in Fig. 1.

NPs solubilisation: release of toxic ions

MOx NPs dissolution, to a greater or lesser extent, is a com-
mon transformation process, which is dependent on their
physico-chemical properties (chemical composition and size),
presence of stabilizing agents and chemical composition of the
medium, namely, pH, ionic strength (IS), presence of anions
(phosphate and sulphate) and natural organic matter (Quigg
et al. 2013; Amde et al. 2017).

Once in solution, the ions diffuse in the medium and reach
the cells, where they produce a deleterious effect after

intracellular accumulation (Fig. 1A). Metal ions, as charged
chemical species, do not diffuse freely across the plasma mem-
brane. Thus, different membrane transport proteins (pumps and
channels) are involved in their influx (Argueello et al. 2012).

In certain MOx NPs, the ions dissolved seem to be the
major factor in their ecotoxicity. This is the case of the toxic
impact of ZnO NPs over bacteria (Heinlaan et al. 2008; Li
et al. 2011; Wang et al. 2016), yeasts (Kasemets et al. 2009;
Bayat et al. 2014), crustaceans (Heinlaan et al. 2008; Wiench
et al. 2009; Vimercati et al. 2020), microalgae (Franklin et al.
2007; Miller et al. 2010; Lee and An 2013; Aravantinou et al.
2015; Schiavo et al. 2016) or mammalian cell lines (Brunner
et al. 2006; Zhang et al. 2012), which is totally or mainly
caused by solubilized Zn ions. A Multi-omics approach (tran-
scriptomics, metabolomics and lipidomics) confirmed that
metal ions mediated the main toxicological pathways of
ZnO NPs in lung epithelial A549 cells (Dekkers et al. 2018).
In the same line, CuONPs toxicity over bacteria (Bondarenko
et al. 2012), yeasts (Kasemets et al. 2009; Kasemets et al.
2013; Bayat et al. 2014; Bao et al. 2015), green algae
(Aruoja et al. 2009; von Moos et al. 2015), crustaceans
(Heinlaan et al. 2008; Jo et al. 2012) or human cell lines
(Cohen et al. 2013; He et al. 2020) was partially or completely
explained by dissolved Cu ions. The toxicity of NiO and SnO2

over P. subcapitata (Sousa et al. 2018b; Sousa et al. 2019b) or
Mn3O4 and Y3O3 over S. cerevisiae (Moriyama et al. 2019;
Sousa et al. 2019a) can also be mainly attributed to the respec-
tive ions leached from the NPs.

NPs passage through wall pores versus release of
metal ions on NPs-cell surface interface

The cell wall, present in plants, in most bacteria, yeasts and in
many microalgae, is the primary site of interaction and the first
barrier to the passage of NPs from the extracellular medium to
the cytoplasm. This cellular structure is absent in animal cells
and protozoa. The second barrier is the plasma membrane,
common to all cells. Chemical composition and architecture
of the cell wall vary according to the organism, being their
thickness an important factor in the determination of the NPs
internalisation (Chen et al. 2019). This cell structure is generally
seen as a porous matrix. For instance, the yeast S. cerevisiae
presents cell wall pores of 200 nm, which can be enlarged up to
400 nm under stress conditions (Pereira and Geibel 1999). Cell
wall pore diameter of 7–8 nm in marine macro algae (Zemke-
White et al. 2000) and pore channels with an average diameter
of 20–200 nm in unicellular green microalgae were also de-
scribed (Anissimova and Staer 2018). It is conceivable that, in
organisms with cell wall, NPs and NPs homoagglomerates
smaller than wall pores can pass through this cellular structure
and reach the plasma membrane (Fig. 1B, top). Conversely,
NPs and NPs homoagglomerates larger than pore size are very
unlikely to pass through cell wall (sieve effect).
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Itwas described thatCeO2NPs, coatedwith polyvinylpyrrolidone
and presenting a size of 4–5 nm, could cross the cell wall
of the microalga Chlamydomonas reinhardtii being
internalised into intracellular vesicles (Taylor et al. 2016).
Using different microscopy techniques, the internalisation of
CuO NPs in S. cerevisiae (Vasco et al. 2017) and in the
C. reinhardtii (Yin et al. 2020) was also described. In the case
of C. reinhardtii, CuO NPs were largely accumulated in the
vacuoles (Yin et al. 2020). Conversely, it has been suggested
that the internalisation of CeO2 NPs (with a nominal size of
25 nm and presenting in solution agglomerates with an aver-
age size of 146 nm) in C. reinhardtii was rather unlikely (nee
Rohder et al. 2018). A similar conclusion was achieved in
other studies with algae (Rodea-Palomares et al. 2011;
Pulido-Reyes et al. 2015; Angel et al. 2015) and cyanobacte-
rium (Rodea-Palomares et al. 2011). In this line, the examina-
tion by transmission electron microscopy (TEM)-energy-dis-
persive X-ray spectroscopy of yeast cells treated with CuO
(Bao et al. 2015), NiO (Sousa et al. 2018a), or ZnO NPs

(Zhang et al. 2016) did not detect MOx NPs inside cells,
suggesting that these NPs could not be taken by yeast cells.
In resume, although examples of NPs internalisation in organ-
isms with cell wall can be found in the literature, this is a
debatable issue, especially the passage through the cell wall
of agglomerated NPs.

However, different studies have attributed the toxic ef-
fects of MOx NPs to the NPs themselves rather than to
the ions coming from them. This is the case of NiO
(Sousa et al. 2018a), SiO2 (Sousa et al. 2019a) and TiO2

(Bayat et al. 2014) over yeasts as well as Al2O3, CeO2,
Fe3O4, Mn3O4 and WO3 NPs on microalgae (Aruoja et al.
2015; Angel et al. 2015; Sousa et al. 2019b). In this con-
text, MOx NPs can present a toxic effect by an indirect
mechanism: particles adhere tightly to the cell wall of the
microorganisms and enhance the release of metals at the
NP-cell wall interface, leading to the activation of toxic
responses (Fig. 1B, bottom). This indirect mechanism was
suggested for to explain the antibacterial activity of
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Fig. 1 Outline of the main toxic mechanisms associated with metal(loid)
oxide nanoparticles. Please see text for details. a NPs solubilisation:
release of toxic ions. b NPs passage through wall pores versus release
of metal ions on NPs-cell surface interface. c Direct effect on the cell
surface. d Cellular uptake of NPs. e Oxidative stress. f Shading effect

(on photosynthetic microorganisms): homoagglomeration of NPs. g
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Fe2O3, Co3O4 and NiO NPs (Wang et al. 2016) and the
toxicity of CuO and NiO on yeasts (Kasemets et al. 2013;
Bao et al. 2015; Sousa et al. 2018a) and CeO2 NPs on
microalgae (Angel et al. 2015).

Direct effect on the cell surface

After contact and adsorption to the cell wall, NPs can clog the
pores of the wall, limiting the exchange of chemical species
(including nutrients) between the surrounding medium and
the cell (Fig. 1C, top) or induce physical damage to the cell
wall (Fig. 1C, bottom).

In agreement with the first possibility, it was described that
C. reinhardtii incubated with TiO2 presented the cell surface
coated with NPs, which can hinder the exchange of substances
between the cell and the surrounding milieu (Chen et al. 2012).
The functionalization and the type of functionalization of CuO
and ZnO can influence the level of NPs adsorption to
S. cerevisiae and C. reinhardtii cell wall and the respective
anti-fungi and anti-algal activity (Halbus et al. 2019; Halbus
et al. 2020).

The damage of the cell wall of algae and yeast cells incu-
bated with ZnONPs was described (Suman et al. 2015; Zhang
et al. 2016; Babele et al. 2018). In the same way, it has been
reported that TiO2 NPs or TiO2NPs surface-bound humic acid
adhered to algal cells (Chlorella spp., Karenia brevis,
Nitzschia closterium and Skeletonema costatum) and could
destroy the cell wall and enter the cells, inducing plasmolysis
(Lin et al. 2012; Xia et al. 2015; Li et al. 2015). In the same
mode, it has been proposed that the toxic effect of CeO2 NPs
on P. subcapitata can be mediated, mainly, by a physical
effect due to a close adsorption of the NPs on the cell surface
(Manier et al. 2013). This possibility is in line with other
observations that describe that CeO2 NPs are strongly
adsorbed to Anabaena sp. and completely disrupt cyanobac-
terium cell wall andmembrane (Rodea-Palomares et al. 2011).
It is important to note that the adhesion ofMOxNPs to the cell
wall does not necessarily imply the triggering of a toxic effect.
For instance, the attachment of La2O3 NPs to the cell wall did
not produce morphological changes on Chlorella spp.
(Balusamy et al. 2015).

Cellular uptake of NPs

After crossing the cell wall (in organisms with a cell wall and
when such passage is possible), MOx NPs meet the cell mem-
brane and two types of events can occur: damage of the mem-
brane (due to physical disruption) (Chen et al. 2019) or passage
through the membrane by endocytosis (Fig. 1D), a process well
known in mammalian cells (Oh and Park 2014). Endocytosis
was also suggested in microalgae and bacteria but their predom-
inance and mechanisms are unknown (von Moos et al. 2014).

Once inside the cells, MOx NPs can undergo several alter-
ations, such as redox transformations and complexation (Chen
et al. 2019) or can be solubilized inside of acidic lysosomes
(Fig. 1D) and exerts their toxicity by a Trojan horse-type mech-
anism (Oh and Park 2014). The intracellular dissolution mech-
anism affords the trafficking of toxic metal ions into the cells.
Thus, CuO and ZnONPs intracellular dissolution and release of
Cu and Zn ions, respectively, were described in different mam-
malian (including human) cell lines (Xia et al. 2008; Cronholm
et al. 2013; Condello et al. 2016; He et al. 2020).

Oxidative stress

Oxidative stress (OS) occurs when it is observed an imbalance
between the generation of reactive species (RS) and the level
of antioxidant defences, either enzymatic or non-enzymatic
(Halliwell and Gutteridge 2015). MOx NPs themselves, or
the metals released from them, can present a pro-oxidant po-
tential, i.e. the capacity to generate the production of RS or
hindering/consuming antioxidant defences (Nel et al. 2006).
Reactive oxygen species (ROS) production (such as superox-
ide radical (O2·

−), hydroxyl radical (HO.) and hydrogen per-
oxide (H2O2)) can occur under a cell free milieu, i.e. extracel-
lularly (abiotic ROS) or via interaction of NPs (or the released
ions) with biologicals systems (biotic ROS) (Fig. 1E).

ROS can be generated at the NP surface (Fig. 1E, top). The
bioavailability and valence state of redox-active elements in-
fluences strongly the level of ROS generation by NPs. In a
general way, the capacity of MOx NPs to generate ROS is
dependent on their chemical composition, purity, (particle)
size, shape and surface reactivity (von Moos and
Slaveykova 2014). In certain NPs, such as TiO2, the ability
to produce ROSmay also require light or an ultraviolet source
to excite the NPs surface (Xia et al. 2008; Guo et al. 2011)
(Fig. 1E, top). ROS generation, in abiotic conditions, by
CeO2, Co3O4, CuO and Sb2O3 NPs were described (Xia
et al. 2008; Bayat et al. 2014; Aruoja et al. 2015).

Intracellular (biotic) ROS can have origin in the endoplas-
mic reticulum, peroxisomes and in electron transport process-
es in mitochondria and chloroplasts (in eukaryotic photosyn-
thetic organisms) (Lesser 2006; del Rio and Lopez-Huertas
2016) (Fig. 1E, bottom). MOx NPs, even containing redox-
inactive metals, such as NiO (Siddiqui et al. 2012; Ahamed
et al. 2013; Oukarroum et al. 2017; Sousa et al. 2018c; Sousa
et al. 2018b) and ZnO NPs (De Berardis et al. 2010; Kumar
et al. 2011; Alarifi et al. 2013; Lu et al. 2015; Ng et al. 2017)
can induce intracellular ROS and oxidative stress. It was
shown that P. subcapitata algal cells exposed to NiO NPs
presented a reduced activity of the photosystem II (ɸPSII)
and a decreased electron flow in the electron transport chain
(ETC). The electrons deflected from photosynthetic ETC
probably are used to generate ROS (Sousa et al. 2018b)
(Fig. 1E, bottom). Compatible with this possibility,
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intracellular ROS accumulation and decrease of ɸPSII were
also observed in microalgae (P. subcapitata or C. reinhardtii)
exposed to Al2O3, CeO2, Cr2O3, Mn3O4, SiO2 or SnO2 NPs
(Rodea-Palomares et al. 2012; da Costa et al. 2016; Sousa
et al. 2019b) and in the cyanobacterium Anabaena CPB4337
exposed to CeO2 NPs (Rodea-Palomares et al. 2012).

It was proposed that in P. subcapitata cells exposed to NiO
NPs, the disturbance of photosynthetic performance and the
increase of intracellular ROS, combined with a reduction of
metabolic (esterasic) activity may cause the arrest of algal cell
cycle which, in turn, may origin the increase of cell volume
and the appearance of aberrant morphology and, ultimately,
the arrest of algal growth (Sousa et al. 2018b). Similarly, it
was observed that Al2O3, Mn3O4 and SiO2 NPs induced the
growth inhibition of P. subcapitata as a consequence of the
cumulative effect of adverse outcomes, such as intracellular
ROS accumulation, loss of metabolic activity and reduction of
ɸPSII (Sousa et al. 2019b). A reduction of chlorophyll a con-
tent and increase of ROS was also observed in C. minutissima
exposed to Co3O4 NPs (Sharan and Nara 2020).

OS is associated with the damage of biological molecules
such as cellular lipids (via lipid peroxidation, LPO), carbohy-
drates, proteins and DNA (Halliwell and Gutteridge 2015) being
considered a major mechanism of NPs toxicity (Nel et al. 2006;
Xia et al. 2006). Accordingly, ROS production by various MOx
NPs, namely, Al2O3, Ce2O, CuO, Mn3O4, NiO, SiO2, SnO2,
TiO2 and ZnO with the consequent cell oxidative disturbances,
which include, LPO and cell membrane damage (loss of integri-
ty), overwhelmed antioxidant defence system, reduced mito-
chondrial function, chromatin condensation, DNA damage and
cell death via apoptotic pathway, over different biologicalmodels
have been described; examples are the following: bacteria
(Kumar et al. 2011; Rodea-Palomares et al. 2012), yeasts
(Zhang et al. 2016; Babele et al. 2018; Sousa et al. 2018c;
Sousa et al. 2019a), freshwater and marine microalgae (Rodea-
Palomares et al. 2012; von Moos et al. 2015; Xia et al. 2015;
Suman et al. 2015; vonMoos et al. 2016; Oukarroum et al. 2017;
Dauda et al. 2017; Sendra et al. 2018; Sousa et al. 2018b; Sousa
et al. 2019b), carp (Cyprinus carpio) larva (Naeemi et al. 2020)
and human cell lines (Karlsson et al. 2008; Park et al. 2008; Lu
et al. 2015; Duan et al. 2015; Rajiv et al. 2016; Subramaniam
et al. 2020).

Shading effect (on photosynthetic microorganisms):
homoagglomeration of NPs

MOxNPs, in aqueousmedium, can interact with each other and
form clusters of NPs (homoagglomerates), which can have an
important impact on their bioavailability, fate in the environ-
ment and toxicity (Vale et al. 2016). The homoagglomeration
process (as well as heteroagglomeration—please see below)
depends on the concentration and characteristics of the NPs
(chemical composition, morphology and charge), the NPs

surface functionalisation, the physico-chemical properties of
the medium where they are suspended, namely, IS (influenced
by water salinity and hardness), pH of the solution (which af-
fects the NPs surface charge) and the existence of natural or-
ganic matter (NOM). NOM can adsorb to the NPs surface and
origin their steric stabilisation or act as bridges promoting the
agglomeration of NPs (Amde et al. 2017; Yu et al. 2018). The
adsorption of NOM to NPs, with the formation of coated NPs
(corona-coated NPs), can be associated with the transfer of
these NMs from algae to higher trophic levels consumers (crus-
taceans and fish) presenting unknown environmental and hu-
man health risks (Xu et al. 2020).

Aqueous suspensions of dispersed or homoagglomerated
MOx NPs are, sometimes, opaque. Due to light absorption or
scattering by NPs or NPs homoagglomerates, a reduction of
the light availability can occur (shading effect, Fig. 1F). This
effect can influence the photosynthetic efficiency of organ-
isms like cyanobacteria and algae (Navarro et al. 2008). In
agreement with this possibility, a significant decrease in light
absorbance of C. reinhardtii algal suspensions, in comparison
with control (NPs free), due to CuO NPs at concentrations
higher than 1 mg L−1 was described (Cheloni et al. 2016).
Sadiq et al. (2011) suggested that the growth inhibition and
chlorophyll content reduction observed in algal cells incubat-
ed with Al2O3 could be attributed to the decrease of light
availability owing to the attachment of the NPs onto cell wall
of Chlorella spp. A shading effect was also attributed to Co
NPs in the inhibition of S. costatum growth (Chen et al. 2018).

However, other authors did not observe any significant
effect on the 72 h growth of the alga P. subcapitata, regardless
of the concentrations of CeO2, CuO and ZnO NPs tested; in
the case of TiO2, even for the relative opaque suspensions,
containing easily settled NPs homoagglomerates, a growth
reduction was not observed (Aruoja et al. 2009; Rogers et al.
2010; Hartmann et al. 2010). A shading effect was also ex-
cluded, as the main mechanism of ZnO nanotoxicity on
Chlorella spp. (Ji et al. 2011) and TiO2 on K. brevis and
S. costatum, although the algae were almost entirely covered
by TiO2 NPs agglomerates (Li et al. 2015). This means that, at
least, for the organisms and NPs reported above, the shading
effect does not appear to be the main mechanism of toxicity.

Physical restraint: heteroagglomeration

Another possibility of NPs inducing a toxic effect is through the
co-agglomeration of NPs (or NPs homoagglomerates) with
cells—formation of heteroagglomerates. These micro or even
macroscopic heteroagglomerates can lead to the reduction of
light, nutrients, or oxygen availability, due to the trapping of
cells inside the agglomerates (Fig. 1G). In this context, Aruoja
et al. (2009) described the co-agglomeration of TiO2 NPs with
algal cells of P. subcapitata; the formation of large clusters
entrapped almost all algae. Thus, it was suggested that the

1384 Appl Microbiol Biotechnol (2021) 105:1379–1394



observed growth inhibition could be attributed to the reduced
availability of light in entrapped cells. According to the authors,
the shading effect may contribute (or play a major role) to the
toxicity of TiO2 NPs on algae. A similar mechanism (limitation
of essential nutrients due to physical restriction caused by
heteroagglomeration) has been proposed for cyanobacterium
cells exposed to CeO2 NPs; bacteria incubated with CeO2

NPs were found completely entrapped inside the
heteroagglomerates, which leads the authors not to exclude
the possibility that the nutrients transport into the cells may
have been severely impaired (Rodea-Palomares et al. 2011).
However, phosphate or micronutrients depletion, due to the
adsorption on NPs surface, alone, did not allow to explain
CeO2 toxicity to P. subcapitata (Rogers et al. 2010).

The formation of heteroagglomerates and the respective
algal entrapment, may, by itself, not induce a toxic effect. In
fact, it was reported that Al2O3, Mn3O4 and SnO2 NPs form
heteroagglomerates with algal cells. The observation of cells
inside, at the periphery of the structures and in the surrounding
medium, together with the easy dispersibility of the agglom-
erates makes it hardly plausible that the toxicity induced by
these NPs may be due to nutritional limitations induced by
hetero agglomeration (Sousa et al. 2019b).

Yeast responses to MOx NPs stress

Although different yeasts have been used in the assessment of
antifungal properties of MOx NPs, the main workhorse in
ecotoxicity studies with these NMs is the yeast S. cerevisiae.
Thus, unless stated otherwise, when in the text below it is
mentioned the word “yeast”, it means S. cerevisiae.

The knowledge of the cellular responses (toxic symptoms
exhibited by yeasts) to MOx NPs (described below and
depicted in Fig. 2) is important in the identification of poten-
tial targets and biomarkers of the toxic action of NPs.
Additionally, these information can be useful in the elucida-
tion of the specific modes of action by which MOx NPs inter-
act with the eukaryotic cells and affect their physiology and
metabolism.

Inhibition of cell proliferation

The impact of MOx NPs on the ability of a cell to divide (yeast
proliferation) has been evaluated either by a clonogenic assay
(viability assay) or in a liquid culture medium (growth inhibi-
tion assay). A reduction of the % of viability, in a dose-
dependent way, was observed when yeast cells were exposed
to different NPs: Al2O3, NiO, Mn3O4, SiO2 and SnO2 (Sousa
et al. 2018a; Sousa et al. 2019a). 24 h-IC50 values of 4.8 mg/L
CuO (Kasemets et al. 2013) and 5–20 mg/L ZnO (Babele et al.
2018) were described. Higher NPs concentrations were re-
quired to inhibit growth. Thus, yeast growth inhibition, in rich

medium, was described for CuO (8 h-EC50 of 20.7 mg/L) and
for ZnO NPs (8 h-EC50 121–134 mg/L) in malt extract (ME)
medium (Kasemets et al. 2009). However, no growth inhibition
in yeast peptone dextrose (YPD) broth was observed when
yeast cells were exposed to 100 mg/L Al2O3, NiO, Mn3O4,
SiO2, and SnO2 NPs (Sousa et al. 2018a; Sousa et al. 2019a).

The incubation of yeast cells in water or a buffer solution
revealed to be a more sensitive method for the assessment of
MOx NPs toxicity rather than protein-rich liquid culture me-
dium (ME or YPD) (Kasemets et al. 2013; Suppi et al. 2015;
Sousa et al. 2018a; Sousa et al. 2019a). This difference of
sensitivity can be partially explained by the presence of pro-
teins in the culture media which can be adsorbed to NPs, and
form a protein layer, which is called protein corona
(Kharazian et al. 2016); the “coating” of MOx NPs with pro-
teins can reduce their toxicity (Nguyen and Lee 2017).
Additionally, the organic ligands, in rich medium, complex
the toxic ions making them less bioavailable and thus less
toxic (Hughes and Poole 1991).

Cell wall damage

The exposure of S. cerevisiae to ZnO NPs induced cell wall
damage (Babele et al. 2018). Yeasts with morphology
changed from elliptical to irregular shape and with cell wall
deformed, with sunken areas or deficiencies or even broken or
partially broken were described after being exposed to ZnO
NPs (Zhang et al. 2016). Yeast cells treated with TiO2 and
CuO NPs presented the wall with an undulating appearance.
In cells exposed to CuO NPs, a cell wall with a thicker and
folded appearance was also described (Bayat et al. 2014).

Mutant strains with deficient genes associated with cell
wall organization and biogenesis (such as KRE6, HOC1 and
BCK1) were more sensitive to ZnO NPs than the respective
wild-type strain; the increased susceptibility of ZnO treated
cells to sonication confirmed that ZnO NPs affected cell wall
function and integrity (Márquez et al. 2018).

An increase in the chitin content, a marker of cell wall stress
and an upregulation in the expression of chitin synthesis (CHS1,
CHS3 and CHS5) genes were described in S. cerevisiae treated
with ZnO NPs (Babele et al. 2018). Similarly, the yeast Pichia
pastoris incubated with TiO2 NPs presented an increased chitin
content in the cell wall (Liu et al. 2016).

Modification of metabolic activity

Another option used to assess the toxicity of MOx NPs in
yeasts is to evaluate its impact on the general metabolic status
of the cells. For this purpose, different fluorescent probes have
been used such as fluorescein diacetate (FDA), 2-chloro-
4-(2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-
methylidene)-1-phenylquinolinium iodide (FUN-1), and
resazurin (Alamar Blue reagent). Yeast cells exposed to
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CuO NPs presented a reduction of metabolic (reductase) ac-
tivity (Mashock et al. 2016). In the same way, yeasts treated
with Al2O3, Mn3O4, NiO, SiO2 and SnO2 NPs presented a
reduced metabolic capability traduced by a decreased ability
to process the probe FUN-1 and by a diminished esterase
activity (Sousa et al. 2018a; Sousa et al. 2019a). It was sug-
gested that the reduction of esterasic activity could be a con-
sequence of OS (Sousa et al. 2019a), since intracellular ROS
accumulation could lead to the oxidation of sensitive amino
acid residues of the enzymes, such as those containing aro-
matic side chain or sulfhydryl groups (Cecarini et al. 2007).

A disturbance in lipids biosynthesis was described in yeasts
treated with MOx NPs. The modification in the cellular distri-
bution of lipid biosynthetic enzymes (Fas1 and Fas2) and the
induction and accumulation of lipids droplets (LDs) in yeast
cells treated with ZnO (Babele et al. 2018) or CuONPs (Bayat
et al. 2014) was observed. In the same way, an enhancement
in LDs, a decrease of the relative content of saturated fatty
acids, an increase of the content of unsaturated fatty acids
(UFA), and an upregulation of the genes involved in UFA
synthesis (FAD9A, FAD9B, FAD12 and FAD15) was de-
scribed in the yeast P. pastoris exposed to TiO2 NPs (Yu
et al. 2015).

Using powerful techniques such as proteomics, metabolo-
mics and system biology-based pathway analysis it was found
that in S. cerevisiae cells exposed to ZnO NPs, almost 40% of
proteins are down regulated and the metabolome deregulated.
More specifically, it was found that a wide range of key me-
tabolites involved in central carbon metabolism, cofactors
synthesis, amino acid and fatty acid biosynthesis, purines
and pyrimidines, nucleoside and nucleotide biosynthetic path-
ways were repressed (Babele 2019). By a similar approach
(transcriptomic and proteome profile analysis), it was found
that ZnO and ZnFe2O4 NPs induced dysfunction of cholester-
ol biosynthesis in an alveolar rat macrophage cell line
(Doumandji et al. 2020).

Intracellular ROS generation

S. cerevisiae cells exposed to Al2O3, Mn3O4, NiO, SiO2,
SnO2 and ZnO NPs accumulated significantly more intracel-
lular ROS than control (Zhang et al. 2016; Babele et al. 2018;
Sousa et al. 2018c; Sousa et al. 2019a). The co-incubation of
yeast cells with Al2O3, Mn3O4, NiO, SiO2 and SnO2 NPs and
the antioxidants ascorbic acid or N-tertbutyl-α-phenylnitrone
quenched intracellular ROS and significantly restored cell
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viability and metabolic activity, suggesting a ROS-mediated
mechanism in cytotoxicity induced by these NPs over yeast
cells (Sousa et al. 2018c; Sousa et al. 2019a). TiO2 NPs also
induced a dose-dependent accumulation of intracellular ROS
in the yeast P. pastoris (Chen et al. 2019).

Mitochondrial respiratory chain seems to be an important
source of ROS since wild-type yeast cells under nitrogen at-
mosphere as well as mutants lacking respiratory chain (with-
out mitochondrial DNA, ρ0) presented decreased intracellular
levels of ROS and augmented resistance to NiO NPs (Sousa
et al. 2018c). It was hypothesised that the Ni ions released
from NPs can disturb the electron transport at mitochondria
by displacing iron from the ETC of the inner mitochondrial
membrane. Probably, the leakage of electrons from the ETC to
oxygen lead to the production of O2·

− which, in turn, is most
likely the main origin of H2O2 (Sousa et al. 2018c). In fact,
both ROS types (O2·

− and H2O2) were detected in
S. cerevisiae cells treated with NiO NPs (Sousa et al. 2018c).

Transcriptomic analysis revealed that Y3O3 NPs, at high
concentration (1–4 g L−1), induced the upregulation of oxida-
tive stress genes in S. cerevisiae (Moriyama et al. 2019).

Reduction of non-enzymatic and enzymatic antioxi-
dant defences

Yeast cells present non-enzymatic (which the most abundant
is reduced glutathione, GSH) and enzymatic defence mecha-
nisms such as superoxide dismutases (SOD1 and SOD2), cat-
alases (CatT and CatA), glutathione peroxidases (such as
Gpx3 and Grx1) and thioredoxin peroxidases (like, Tsa1 and
Prx1) to preserve intracellular redox equilibrium and survive
(Jamieson 1998; Herrero et al. 2008).

Reduced glutathione seems to be involved in the fight
against OS induced by NiO as revealed by the decrease of
cellular GSH level in yeasts incubated with these NPs.
Supporting this observation, it was shown that mutant strains
without (gsh1Δ) or with a reduced level of GSH (gsh2Δ) pre-
sented augmented levels of ROS and susceptibility to NiO NPs
(Sousa et al. 2018c). The depletion of the GSH levels can be a
consequence of the increased consumption in the scavenging of
free oxygen radicals induced by NPs or due to the affinity of
metal ions (such as Ni2+) to cysteine residue of GSH, leading to
a reduction of cellular antioxidant defences (Sousa et al. 2018c).
Similarly, TiO2 NPs induced an accentuated reduction in GSH
concentration in the yeast P. pastoris (Liu et al. 2016).

Single-gene mutant strains devoid of the main antioxidant
enzymatic defences (Sod1p, Sod2p, Ctt1p, Cta1p, Gpx3p,
Grx1p, Tsa1p and Pprx1p) did not present augmented vulnera-
bility to NiO NPs comparatively to wild-type strain (Sousa et al.
2018c); the absence of a sensitive phenotype, in these deleted
strains, can be attributed to gene redundancy or the presence of
compensatory parallel pathways (Dawes 2004). A similar effect
was observed with sod1Δ and sod2Δmutant strains exposed to

CuONPs (Kasemets et al. 2013). However, the yeast P. pastoris
treated with TiO2 NPs presented a downregulation of the genes
(cSOD, GLR1, GPX1 and TRR1) encoding to enzymes associ-
ated with ROS scavenging system (Liu et al. 2016).

Loss of cell membrane integrity

One of the outcomes of high ROS levels is the lipid per-
oxidation. Large-scale lipid peroxidation leads to in-
creased membrane fluidity, efflux of cytosolic compo-
nents and, ultimately, loss of plasma membrane integrity
and cell death (Avery 2011). Consistent with this scenar-
io, it was shown that the exposure of yeasts to NiO NPs
leads to a progressive depolarization (reduction of the
membrane potential) and an increase of permeability of
the yeast plasma membrane, in cells under oxidative stress
(Sousa et al. 2019c). Similarly, yeasts incubated with ZnO
NPs displayed intracellular ROS and an augmented cell
membrane permeability (Babele et al. 2018). It was ob-
served that strains with deletion of genes involved in the
biosynthesis of ergosterol (ERG2 and ERG28), a sterol
that affects membrane fluidity, and in transmembrane
transport (PKR1), displayed enhanced susceptibility to
ZnO NPs, which suggested that these NPs disrupt cell
membrane integrity and impair their proper function
(transport) (Márquez et al. 2018).

The impact of MOx NPs on yeast cell membrane can be
dose-dependent. Thus, the incubation of yeasts for 24 h with
100 mg L−1 Al2O3, In2O3, Mn3O4, SiO2 and SnO2 did not
induce the permeabilization of the cell membrane (Sousa
et al. 2019a). However, the exposure of the same yeasts to
some of these NPs (Al2O3, Mn2O3 and SiO2), but at higher
concentration (1000mg L−1), during 10 h, caused a significant
loss of membrane integrity (Garcia-Saucedo et al. 2011;
Otero-Gonzalez et al. 2013).

Alteration of function and morphology of
mitochondria and endoplasmic reticulum

Mitochondrial membrane potential (ΔΨm) is an essential
component for energy-producing and non-producing mito-
chondrial functions (Zorova et al. 2018). The depolarization
of the mitochondrial membrane, i.e. the dissipation of mito-
chondrial membrane potential in yeast cells treated with NiO
NPs (Sousa et al. 2019c) and the alteration of the architecture
of mitochondria in cells incubated with ZnO NPs were de-
scribed (Babele et al. 2018).

The exposure to ZnO NPs also severely affected the archi-
tecture and function of the endoplasmic reticulum, in yeasts,
through modulation of unfolded protein response (Babele
et al. 2018).
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Modification of vacuole architecture and induction of
autophagy

Yeast cells treated with ZnO NPs presented a drastic modifi-
cation of vacuoles morphology (Bayat et al. 2014; Babele
et al. 2018) and a redistribution of Atg8-GFP to vacuoles,
indicating the induction of autophagy (Babele et al. 2018). It
was observed (by TEM) the modification of vacuole shape
and its disruption, in yeasts incubated with TiO2 and CuO
NPs, respectively. Dark deposits in vacuoles (TiO2 treated
cells) or in vesicles (ZnO or CuO treated cells) were also
described (Bayat et al. 2014).

Mitochondrial and genomic DNA damage

DNA damage is commonly found during OS, being mitochon-
drial DNA (mtDNA) a very sensitive target (Richter et al.
1988). Exposure of S. cerevisiae cells to NiO NPs led to the
mtDNA damage with the consequent abolition of respiration
(incapacity to grow on non-fermentable carbon sources) and the
formation of typical respiratory-deficient colonies, commonly
known as petite mutants (Sousa et al. 2019c).

Using the canavanine assay, it was shown the damage of
nuclear DNA in yeasts incubated with NiO NPs (Sousa et al.
2019c). Nuclear DNA damage, measured using the comet
assay, in yeast cells treated with CuO, TiO2 and ZnO NPs
was also described (Bayat et al. 2014).

Apoptotic cell death

The exposure of yeast cells to NiO NPs induced regulated cell
death, with typical apoptotic hallmarks such as damage of cell
membrane, loss of cell viability, phosphatidylserine exposure
at the outer cytoplasmic membrane leaflet, and nuclear chro-
matin condensation, in a process dependent on de novo pro-
tein synthesis and apoptotic regulators/executors (Yca1p and
Aif1p) (Sousa et al. 2019c). The sequence of events associated
with the induction of cell death in S. cerevisiae by NiO NPs
was described (Sousa et al. 2019c). Other studies also indicat-
ed a cell dead apoptotic pathway in human cell lines exposed
to CuO (Siddiqui et al. 2013), NiO (Siddiqui et al. 2012), ZnO
(Keerthana and Kumar 2020), or binary mixtures of Al2O3

and ZnO NPs (Koerich et al. 2020).

Concluding remarks

Products containing NMs grown enormously in the last de-
cades. Nanotechnology Consumer Products Inventory, up-
dated in 2013, listed 1814 consumer products containing
NMs, from 622 companies, in which products containing
metals and metal oxides correspond to the largest group, con-
stituting 37% of products (Vance et al. 2015). Concomitant,

and understandably, concerns about environmental, health
and safety implications of NMs have also raised.

Over the last decade, and thanks to a substantial research
effort, important progress concerning the impact of NPs in
terrestrial and aquatic systems as well as about their mecha-
nisms of toxicity has been observed. However, substantial
gaps still exist that require further attention, namely regarding
to MOx NPs concentrations used in the assays, the time and
the type of exposure.

Although it is difficult to accurately detect NPs in aquatic
environments, it is estimated that their concentration in sur-
face waters varies from ng L−1 to μg L−1 (Gottschalk et al.
2013). However, it is common to find studies that use NPs
concentrations greater than 100 mg L−1, reaching 1000 mg
L−1 or even more. Another challenge is to study the impact
of sub-lethal concentrations of NPs during a long-term expo-
sure (covering multiple generations of the organism), in a
repeated way, to get more information on chronic exposure
to MOx NPs, in order to adopt the necessary protective mea-
sures regarding the use of products containing MOx NPs.

A more systematic approach is needed in nanotoxicology
research. Thus, future studies should combine high-throughput
molecular profiling technologies (transcriptomics, proteomics
and metabolomics) with more traditional approaches (physiolog-
ical studies), to give a holistic understanding of cellular responses
to MOx NPs (and NMs in a general way) and allow the elucida-
tion of the mechanisms associated with its toxicity.

Author contribution ES and HS conceived the review. ES and HS wrote
the manuscript. ES conceived and designed the figures. All authors read
and approved the manuscript.

Funding This work was supported by National funds through FCT -
Foundation for Science and Technology under the scope of the projects
UIDB/50006/2020, UID/BIO/04469/2020 unit and BioTecNorte opera-
tion (NORTE-01-0145-FEDER-000004) funded by the European
Regional Development Fund under the scope of Norte2020 - Programa
Operacional Regional do Norte.

Declarations

This article does not contain any studies with human participants or an-
imals performed by any of the authors.

Conflict of interest The authors declare no competing interests.

References

Ahamed M, Ali D, Alhadlaq HA, Akhtar MJ (2013) Nickel oxide nano-
particles exert cytotoxicity via oxidative stress and induce apoptotic
response in human liver cells (HepG2). Chemosphere 93:2514–
2522. https://doi.org/10.1016/j.chemosphere.2013.09.047

Alarifi S, Ali D, Alkahtani S, Verma A, AhamedM, AhmedM, Alhadlaq
HA (2013) Induction of oxidative stress, DNA damage, and apopto-
sis in a malignant human skin melanoma cell line after exposure to

1388 Appl Microbiol Biotechnol (2021) 105:1379–1394

https://doi.org/10.1016/j.chemosphere.2013.09.047


zinc oxide nanoparticles. Int J Nanomedicine 8:983–993. https://doi.
org/10.2147/IJN.S42028

Amde M, Liu J-F, Tan Z-Q, Bekana D (2017) Transformation and bio-
availability of metal oxide nanoparticles in aquatic and terrestrial
environments. A review. Environ Pollut 230:250–267. https://doi.
org/10.1016/j.envpol.2017.06.064

Angel BM, Vallotton P, Apte SC (2015) On the mechanism of
nanoparticulate CeO2 toxicity to freshwater algae. Aquat Toxicol
168:90–97. https://doi.org/10.1016/j.aquatox.2015.09.015

Anissimova OV, Staer OV (2018) Morphology of cell wall pore channels
in the genus Euastrum ralfs (Desmidiales). Moscow Univ Biol Sci
Bull 73:28–31. https://doi.org/10.3103/S0096392518010029

Aravantinou AF, Tsarpali V, Dailianis S, Manariotis ID (2015) Effect of
cultivation media on the toxicity of ZnO nanoparticles to freshwater
and marine microalgae. Ecotoxicol Environ Saf 114:109–116.
https://doi.org/10.1016/j.ecoenv.2015.01.016

Argueello JM, Raimunda D, Gonzalez-Guerrero M (2012) Metal trans-
port across biomembranes: emerging models for a distinct chemis-
try. J Biol Chem 287:13510–13517. https://doi.org/10.1074/jbc.
R111.319343

Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of
nanopar t ic les of CuO, ZnO and TiO2 to microalgae
Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–
1468. https://doi.org/10.1016/j.scitotenv.2008.10.053

Aruoja V, Pokhrel S, Sihtmaae M, Mortimer M, Maedler L, Kahru A
(2015) Toxicity of 12 metal-based nanoparticles to algae, bacteria
and protozoa. Environ Sci 2:630–644. https://doi.org/10.1039/
c5en00057b

Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434:
201–210. https://doi.org/10.1042/BJ20101695

Babele PK (2019) Zinc oxide nanoparticles impose metabolic toxicity by
de-regulating proteome and metabolome in Saccharomyces
cerevisiae. Toxicol REPORTS 6:64–73. https://doi.org/10.1016/j.
toxrep.2018.12.001

Babele PK, Thakre PK, Kumawat R, Tomar RS (2018) Zinc oxide nano-
particles induce toxicity by affecting cell wall integrity it pathway,
mitochondrial function and lipid homeostasis in Saccharomyces
cerevisiae. Chemosphere 213:65–75. https://doi.org/10.1016/j.
chemosphere.2018.09.028

Balusamy B, Tastan BE, Ergen SF, Uyar T, Tekina T (2015) Toxicity of
lanthanum oxide (La2O3) nanoparticles in aquatic environments.
Environ Sci IMPACTS 17:1265–1270. https://doi.org/10.1039/
c5em00035a

Bao S, Lu Q, Fang T, Dai H, Zhang C (2015) Assessment of the toxicity
of CuO nanoparticles by using Saccharomyces cerevisiae mutants
with multiple genes deleted. Appl Environ Microbiol 81:8098–
8107. https://doi.org/10.1128/AEM.02035-15

Bayat N, Rajapakse K, Marinsek-Logar R, Drobne D, Cristobal S (2014)
The effects of engineered nanoparticles on the cellular structure and
growth of Saccharomyces cerevisiae. Nanotoxicology 8:363–373.
https://doi.org/10.3109/17435390.2013.788748

Bondarenko O, Ivask A, Kaekinen A, Kahru A (2012) Sub-toxic effects
of CuO nanoparticles on bacteria: kinetics, role of Cu ions and
possible mechanisms of action. Environ Pollut 169:81–89. https://
doi.org/10.1016/j.envpol.2012.05.009

Braconi D, Bernardini G, Santucci A (2016) Saccharomyces cerevisiae as
a model in ecotoxicological studies: a post-genomics perspective. J
Proteomics 137:19–34. https://doi.org/10.1016/j.jprot.2015.09.001

Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK,
Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanopar-
ticles: comparison to asbestos, silica, and the effect of particle solu-
bility. Environ Sci Technol 40:4374–4381. https://doi.org/10.1021/
es052069i

Bundschuh M, Filser J, Luderwald S, Mckee MS, Metreveli G,
Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the

environment: where do we come from, where do we go to? Environ
Sci Eur 30. https://doi.org/10.1186/s12302-018-0132-6

Cecarini V, Gee J, Fioretti E, Amici M, Angeletti M, Eleuteri AM, Keller
JN (2007) Protein oxidation and cellular homeostasis: emphasis on
metabolism. Biochim Biophys Acta-Mol Cell Res 1773:93–104.
https://doi.org/10.1016/j.bbamcr.2006.08.039

Cheloni G, Marti E, Slaveykova VI (2016) Interactive effects of copper
oxide nanoparticles and light to green alga Chlamydomonas
reinhardtii. Aquat Toxicol 170:120–128. https://doi.org/10.1016/j.
aquatox.2015.11.018

Chen L, Zhou L, Liu Y, Deng S, Wu H, Wang G (2012) Toxicological
effects of nanometer titanium dioxide (nano-TiO2) on
Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 84:155–162.
https://doi.org/10.1016/j.ecoenv.2012.07.019

Chen X, Zhang C, Tan L, Wang J (2018) Toxicity of Co nanoparticles on
three species of marine microalgae. Environ Pollut 236:454–461.
https://doi.org/10.1016/j.envpol.2018.01.081

Chen F, Xiao Z, Yue L, Wang J, Feng Y, Zhu X,Wang Z, Xing B (2019)
Algae response to engineered nanoparticles: current understanding,
mechanisms and implications. Environ Sci 6:1026–1042. https://
doi.org/10.1039/c8en01368c

Cohen D, Soroka Y, Ma’or Z, Oron M, Portugal-Cohen M, Bregegere
FM, Berhanu D, Valsami-Jones E, Hai N, Milner Y (2013)
Evaluation of topically applied copper(II) oxide nanoparticle cyto-
toxicity in human skin organ culture. Toxicol Vitr 27:292–298.
https://doi.org/10.1016/j.tiv.2012.08.026

Condello M, De Berardis B, Ammendolia MG, Barone F, Condello G,
Degan P, Meschini S (2016) ZnO nanoparticle tracking from uptake
to genotoxic damage in human colon carcinoma cells. Toxicol Vitr
35:169–179. https://doi.org/10.1016/j.tiv.2016.06.005

Cronholm P, Karlsson HL, Hedberg J, Lowe TA, Winnberg L, Elihn K,
Wallinder IO, Moeller L (2013) Intracellular uptake and toxicity of
Ag and CuO nanoparticles: a comparison between nanoparticles and
their corresponding metal ions. SMALL 9:970–982. https://doi.org/
10.1002/smll.201201069

Czyzowska A, Barbasz A (2020) A review: zinc oxide nanoparticles-
friends or enemies? Int J Environ Health Res. https://doi.org/10.
1080/09603123.2020.1805415

da Costa CH, Perreault F, OukarroumA,Melegari SP, Popovic R,Matias
WG (2016) Effect of chromium oxide (III) nanoparticles on the
production of reactive oxygen species and photosystem II activity
in the green alga Chlamydomonas reinhardtii. Sci Total Environ
565:951–960. https://doi.org/10.1016/j.scitotenv.2016.01.028

Dauda S, Chia MA, Bako SP (2017) Toxicity of titanium dioxide nano-
particles to Chlorella vulgaris Beyerinck (Beijerinck) 1890
(Trebouxiophyceae, Chlorophyta) under changing nitrogen condi-
tions. Aquat Toxicol 187:108–114. https://doi.org/10.1016/j.
aquatox.2017.03.020

Dawes IW (2004) Stress responses. In: Dickinson JR, Schweizer M (eds)
The metabolism and molecular physiology of Saccharomyces
cerevisiae, 2nd edn. Taylor and Francis, Ltd, London, pp 376–439

De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G,
Meschini S (2010) Exposure to ZnO nanoparticles induces oxidative
stress and cytotoxicity in human colon carcinoma cells. Toxicol
Appl Pharmacol 246:116–127. https://doi.org/10.1016/j.taap.2010.
04.012

Dekkers S, Williams TD, Zhang J, Zhou J, Vandebriel RJ, la Fonteyne
LJJ, Gremmer ER, He S, Guggenheim EJ, Lynch I, Cassee FR, De
Jong WH, Viant MR (2018) Multi-omics approaches confirm metal
ions mediate the main toxicological pathways of metal-bearing
nanoparticles in lung epithelial A549 cells. Environ Sci 5:1506–
1517. https://doi.org/10.1039/c8en00071a

del Rio LA, Lopez-Huertas E (2016) ROS generation in peroxisomes and
its role in cell signaling. PLANT CELL Physiol 57:1364–1376.
https://doi.org/10.1093/pcp/pcw076

1389Appl Microbiol Biotechnol (2021) 105:1379–1394

https://doi.org/10.2147/IJN.S42028
https://doi.org/10.2147/IJN.S42028
https://doi.org/10.1016/j.envpol.2017.06.064
https://doi.org/10.1016/j.envpol.2017.06.064
https://doi.org/10.1016/j.aquatox.2015.09.015
https://doi.org/10.3103/S0096392518010029
https://doi.org/10.1016/j.ecoenv.2015.01.016
https://doi.org/10.1074/jbc.R111.319343
https://doi.org/10.1074/jbc.R111.319343
https://doi.org/10.1016/j.scitotenv.2008.10.053
https://doi.org/10.1039/c5en00057b
https://doi.org/10.1039/c5en00057b
https://doi.org/10.1042/BJ20101695
https://doi.org/10.1016/j.toxrep.2018.12.001
https://doi.org/10.1016/j.toxrep.2018.12.001
https://doi.org/10.1016/j.chemosphere.2018.09.028
https://doi.org/10.1016/j.chemosphere.2018.09.028
https://doi.org/10.1039/c5em00035a
https://doi.org/10.1039/c5em00035a
https://doi.org/10.1128/AEM.02035-15
https://doi.org/10.3109/17435390.2013.788748
https://doi.org/10.1016/j.envpol.2012.05.009
https://doi.org/10.1016/j.envpol.2012.05.009
https://doi.org/10.1016/j.jprot.2015.09.001
https://doi.org/10.1021/es052069i
https://doi.org/10.1021/es052069i
https://doi.org/10.1186/s12302-018-0132-6
https://doi.org/10.1016/j.bbamcr.2006.08.039
https://doi.org/10.1016/j.aquatox.2015.11.018
https://doi.org/10.1016/j.aquatox.2015.11.018
https://doi.org/10.1016/j.ecoenv.2012.07.019
https://doi.org/10.1016/j.envpol.2018.01.081
https://doi.org/10.1039/c8en01368c
https://doi.org/10.1039/c8en01368c
https://doi.org/10.1016/j.tiv.2012.08.026
https://doi.org/10.1016/j.tiv.2016.06.005
https://doi.org/10.1002/smll.201201069
https://doi.org/10.1002/smll.201201069
https://doi.org/10.1080/09603123.2020.1805415
https://doi.org/10.1080/09603123.2020.1805415
https://doi.org/10.1016/j.scitotenv.2016.01.028
https://doi.org/10.1016/j.aquatox.2017.03.020
https://doi.org/10.1016/j.aquatox.2017.03.020
https://doi.org/10.1016/j.taap.2010.04.012
https://doi.org/10.1016/j.taap.2010.04.012
https://doi.org/10.1039/c8en00071a
https://doi.org/10.1093/pcp/pcw076


Deniel M, Errien N, Daniel P, Caruso A, Lagarde F (2019) Current
methods to monitor microalgae-nanoparticle interaction and associ-
ated effects. Aquat Toxicol 217:217. https://doi.org/10.1016/j.
aquatox.2019.105311

dos Santos SC, Sa-Correia I (2015) Yeast toxicogenomics: lessons from a
eukaryotic cell model and cell factory. Curr Opin Biotechnol 33:
183–191. https://doi.org/10.1016/j.copbio.2015.03.001

dos Santos S, Teixeira M, Cabrito T, Sá-Correia I (2012) Yeast
toxicogenomics: genome-wide responses to chemical stresses with
impact in environmental health, pharmacology, and biotechnology.
Front Genet 3:63. https://doi.org/10.3389/fgene.2012.00063

Doumandji Z, Safar R, Lovera-Leroux M, Nahle S, Cassidy H,
Matallanas D, Rihn B, Ferrari L, Joubert O (2020) Protein and lipid
homeostasis altered in rat macrophages after exposure to metallic
oxide nanoparticles. Cell Biol Toxicol 36:65–82. https://doi.org/10.
1007/s10565-019-09484-6

Duan W-X, HeM-D, Mao L, Qian F-H, Li Y-M, Pi H-F, Liu C, Chen C-
H, Lu Y-H, Cao Z-W, Zhang L, Yu Z-P, Zhou Z (2015) NiO nano-
particles induce apoptosis through repressing SIRT1 in human bron-
chial epithelial cells. Toxicol Appl Pharmacol 286:80–91. https://
doi.org/10.1016/j.taap.2015.03.024

ECHA - European Chemicals Agency 2020 Nanomaterials. https://echa.
europa.eu/regulations/nanomaterials. Accessed 7 Aug 2020

EPA - United States Environmental Protection Agency (2017)
Nanomaterials - technical fact sheet. EPA 505-F-17-002

FDA – Food and Drug Administration (2018) Microorganisms &
microbial-derived ingredients used in food (partial list). In: FDA.
https://www.fda.gov/food/generally-recognized-safe-gras/
microorganisms-microbial-derived-ingredients-used-food-partial-
list. Accessed 7 Aug 2020

Foury F (1997) Human genetic diseases: a cross-talk between man and
yeast. Gene 195:1–10. https://doi.org/10.1016/S0378-1119(97)
00140-6

Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS
(2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO,
and ZnCl2 to a freshwater microalga (Pseudokirchneriella
subcapitata): the importance of particle solubility. Environ Sci
Technol 41:8484–8490. https://doi.org/10.1021/es071445r

Garcia-Saucedo C, Field JA, Otero-Gonzalez L, Sierra-Alvarez R (2011)
Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the
yeast, Saccharomyces cerevisiae. J Hazard Mater 192:1572–1579.
https://doi.org/10.1016/j.jhazmat.2011.06.081

Giaever G, Nislow C (2014) The yeast deletion collection: a decade of
functional genomics. Genetics 197:451–465. https://doi.org/10.
1534/genetics.114.161620

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H,
Galibert F, Hoheisel JD, Jacq C, JohnstonM, Louis EJ, Mewes HW,
Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with
6000 genes. Science (80- ) 274:546. https://doi.org/10.1126/science.
274.5287.546

Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of
engineered nanomaterials: review of modeling and analytical stud-
ies. Environ Pollut 181:287–300. https://doi.org/10.1016/j.envpol.
2013.06.003

Guerra FD, Attia MF, Whitehead DC, Alexis F (2018) Nanotechnology
for environmental remediation: materials and applications.
MOLECULES 23. https://doi.org/10.3390/molecules23071760

Guo Y, Cheng C, Wang J, Wang Z, Jin X, Li K, Kang P, Gao J (2011)
Detection of reactive oxygen species (ROS) generated by TiO2(R),
TiO2(R/A) and TiO2(A) under ultrasonic and solar light irradiation
and application in degradation of organic dyes. J Hazard Mater 192:
786–793. https://doi.org/10.1016/j.jhazmat.2011.05.084

Halbus AF, Horozov TS, Paunov VN (2019) Self-grafting copper oxide
nanoparticles show a strong enhancement of their anti-algal and
anti-yeast action. NANOSCALE Adv 1:2323–2336. https://doi.
org/10.1039/c9na00099b

HalbusAF, Horozov TS, PaunovVN (2020) Surface-modified zinc oxide
nanoparticles for antialgal and antiyeast applications. ACS Appl
NANO Mater 3:440–451. https://doi.org/10.1021/acsanm.9b02045

Halliwell B, Gutteridge JMC (2015) Oxidative stress and redox regula-
tion: adaptation, damage, repair, senescence, and death. In: Free
radicals in biology and medicine, 5th edn. Oxford University
Press, pp 199–283

Hartmann NB, der Kammer F, Hofmann T, BaaloushaM, Ottofuelling S,
Baun A (2010) Algal testing of titanium dioxide nanoparticles-
testing considerations, inhibitory effects and modification of cadmi-
um bioavailability. Toxicology 269:190–197. https://doi.org/10.
1016/j.tox.2009.08.008

Hartung T, Rovida C (2009) Chemical regulators have overreached.
Nature 460:1080–1081. https://doi.org/10.1038/4601080a

He H, Zou Z, Wang B, Xu G, Chen C, Qin X, Yu C, Zhang J (2020)
Copper oxide nanoparticles induce oxidative DNA damage and cell
death via copper ion-mediated p38 MAPK activation in vascular
endothelial cells. Int J Nanomedicine 15:3291–3302. https://doi.
org/10.2147/IJN.S241157

Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A (2008)
Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria
Vibrio f ischeri and crustaceans Daphnia magna and
Thamnocephalus platyurus. Chemosphere 71:1308–1316. https://
doi.org/10.1016/j.chemosphere.2007.11.047

Herrero E, Ros J, Belli G, Cabiscol E (2008) Redox control and oxidative
stress in yeast cells. Biochim Biophys Acta-Gen Subj 1780:1217–
1235. https://doi.org/10.1016/j.bbagen.2007.12.004

Howe DG, Blake JA, Bradford YM, Bult CJ, Calvi BR, Enge SR, Kadin
JA, Kaufman TC, Kishores R, Laulederkind SF, Lewis SE, Moxon
SAT, Richardson JE, Smith C (2018)Model organism data evolving
in support of translational medicine. Lab Anim (NY) 47:277–289.
https://doi.org/10.1038/s41684-018-0150-4

Hughes MN, Poole RK (1991) Metal speciation and microbial growth:
the hard (and soft) facts. J Gen Microbiol 137:725–734. https://doi.
org/10.1099/00221287-137-4-725

Ivask A, Juganson K, Bondarenko O, Mortimer M, Aruoja V, Kasemets
K, Blinova I, Heinlaan M, Slaveykova V, Kahru A (2014)
Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to
selected ecotoxicological test organisms and mammalian cells
in vitro: a comparative review. Nanotoxicology 8:57–71. https://
doi.org/10.3109/17435390.2013.855831

Jamieson DJ (1998) Oxidative stress responses of the yeast
Saccharomyces cerevisiae. YEAST 14:1511–1527.

Ji J, Long Z, Lin D (2011) Toxicity of oxide nanoparticles to the green
algae Chlorella sp. Chem Eng J 170:525–530. https://doi.org/10.
1016/j.cej.2010.11.026

Jo HJ, Choi JW, Lee SH, Hong SW (2012) Acute toxicity of Ag and CuO
nanoparticle suspensions againstDaphnia magna: the importance of
their dissolved fraction varying with preparation methods. J Hazard
Mater 227:301–308. https://doi.org/10.1016/j.jhazmat.2012.05.066

Juganson K, Ivask A, Blinova I, Mortimer M, Kahru A (2015) NanoE-
Tox: new and in-depth database concerning ecotoxicity of
nanomaterials. BEILSTEIN J Nanotechnol 6:1788–1804. https://
doi.org/10.3762/bjnano.6.183

Karlsson HL, Cronholm P, Gustafsson J, Moeller L (2008) Copper oxide
nanoparticles are highly toxic: a comparison between metal oxide
nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–
1732. https://doi.org/10.1021/tx800064j

Kasemets K, Ivask A, Dubourguier H-C, Kahru A (2009) Toxicity of
nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces
cerevisiae. Toxicol Vitr 23:1116–1122. https://doi.org/10.1016/j.
tiv.2009.05.015

Kasemets K, Suppi S, Kuennis-Beres K, Kahru A (2013) Toxicity of
CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741
wild-type and its nine isogenic single-gene deletion mutants.
Chem Res Toxicol 26:356–367. https://doi.org/10.1021/tx300467d

1390 Appl Microbiol Biotechnol (2021) 105:1379–1394

https://doi.org/10.1016/j.aquatox.2019.105311
https://doi.org/10.1016/j.aquatox.2019.105311
https://doi.org/10.1016/j.copbio.2015.03.001
https://doi.org/10.3389/fgene.2012.00063
https://doi.org/10.1007/s10565-019-09484-6
https://doi.org/10.1007/s10565-019-09484-6
https://doi.org/10.1016/j.taap.2015.03.024
https://doi.org/10.1016/j.taap.2015.03.024
https://echa.europa.eu/regulations/nanomaterials
https://echa.europa.eu/regulations/nanomaterials
https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list
https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list
https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list
https://doi.org/10.1016/S0378-1119(97)00140-6
https://doi.org/10.1016/S0378-1119(97)00140-6
https://doi.org/10.1021/es071445r
https://doi.org/10.1016/j.jhazmat.2011.06.081
https://doi.org/10.1534/genetics.114.161620
https://doi.org/10.1534/genetics.114.161620
https://doi.org/10.1126/science.274.5287.546
https://doi.org/10.1126/science.274.5287.546
https://doi.org/10.1016/j.envpol.2013.06.003
https://doi.org/10.1016/j.envpol.2013.06.003
https://doi.org/10.3390/molecules23071760
https://doi.org/10.1016/j.jhazmat.2011.05.084
https://doi.org/10.1039/c9na00099b
https://doi.org/10.1039/c9na00099b
https://doi.org/10.1021/acsanm.9b02045
https://doi.org/10.1016/j.tox.2009.08.008
https://doi.org/10.1016/j.tox.2009.08.008
https://doi.org/10.1038/4601080a
https://doi.org/10.2147/IJN.S241157
https://doi.org/10.2147/IJN.S241157
https://doi.org/10.1016/j.chemosphere.2007.11.047
https://doi.org/10.1016/j.chemosphere.2007.11.047
https://doi.org/10.1016/j.bbagen.2007.12.004
https://doi.org/10.1038/s41684-018-0150-4
https://doi.org/10.1099/00221287-137-4-725
https://doi.org/10.1099/00221287-137-4-725
https://doi.org/10.3109/17435390.2013.855831
https://doi.org/10.3109/17435390.2013.855831
https://doi.org/10.1016/j.cej.2010.11.026
https://doi.org/10.1016/j.cej.2010.11.026
https://doi.org/10.1016/j.jhazmat.2012.05.066
https://doi.org/10.3762/bjnano.6.183
https://doi.org/10.3762/bjnano.6.183
https://doi.org/10.1021/tx800064j
https://doi.org/10.1016/j.tiv.2009.05.015
https://doi.org/10.1016/j.tiv.2009.05.015
https://doi.org/10.1021/tx300467d


Keerthana S, Kumar A (2020) Potential risks and benefits of zinc oxide
nanoparticles: a systematic review. Crit Rev Toxicol 50:47–71.
https://doi.org/10.1080/10408444.2020.1726282

Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle
releases of engineered nanomaterials. J Nanoparticle Res:15.
https://doi.org/10.1007/s11051-013-1692-4

Kharazian B, Hadipour NL, Ejtehadi MR (2016) Understanding the
nanoparticle-protein corona complexes using computational and ex-
perimental methods. Int J Biochem Cell Biol 75:162–174. https://
doi.org/10.1016/j.biocel.2016.02.008

Klaine SJ, Edgington A, Seda B (2013) Nanomaterials in the environ-
ment. In: Férard J-F, Blaise C (eds) Encyclopedia of aquatic ecotox-
icology. Springer Science, Dordrecht, pp 767–779

Klaper RD (2020) The known and unknown about the environmental
safety of nanomaterials in commerce. Small 2000690:2000690.
https://doi.org/10.1002/smll.202000690

Koerich JS, Nogueira DJ, Vaz VP, Simioni C, Da Silva MLN, Ouriques
LC, Vicentini DS,MatiasWG (2020) Toxicity of binary mixtures of
Al2O3 and ZnO nanoparticles toward fibroblast and bronchial epi-
thelium cells. J Toxicol Environ Heal A-CURRENT ISSUES 83:
363–377. https://doi.org/10.1080/15287394.2020.1761496

Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011)
Engineered ZnO and TiO2 nanoparticles induce oxidative stress
and DNA damage leading to reduced viability of Escherichia coli.
Free Radic Biol Med 51:1872–1881. https://doi.org/10.1016/j.
freeradbiomed.2011.08.025

Laurent S, Boutry S, Muller RN (2018) Metal oxide particles and their
prospects for applications. In: Mahmoudi M, Laurent S (eds) Iron
oxide nanoparticles for biomedical applications. Elsevier, pp 3–42

Lead JR, Batley GE, Alvarez PJJ, Croteau M-N, Handy RD,McLaughlin
MJ, Judy JD, Schirmer K (2018) Nanomaterials in the environment:
behavior, fate, bioavailability, and effects-an updated review.
Environ Toxicol Chem 37:2029–2063. https://doi.org/10.1002/etc.
4147

Lee W-M, An Y-J (2013) Effects of zinc oxide and titanium dioxide
nanoparticles on green algae under visible, UVA, and UVB irradi-
ations: no evidence of enhanced algal toxicity under UV pre-irradi-
ation. Chemosphere 91:536–544. https://doi.org/10.1016/j.
chemosphere.2012.12.033

Lesser MP (2006) Oxidative stress in marine environments: biochemistry
and physiological ecology. Annu Rev Physiol 68:253–278. https://
doi.org/10.1146/annurev.physiol.68.040104.110001

Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia
coli: mechanism and the influence of medium components. Environ
Sci Technol 45:1977–1983. https://doi.org/10.1021/es102624t

Li F, Liang Z, Zheng X, Zhao W, Wu M, Wang Z (2015) Toxicity of
nano-TiO2 on algae and the site of reactive oxygen species produc-
tion. Aquat Toxicol 158:1–13. https://doi.org/10.1016/j.aquatox.
2014.10.014

Libralato G, Galdiero E, Falanga A, Carotenuto R, de Alteriis E, GuidaM
(2017) Toxicity effects of ufnctionalized quantum dots, gold and
polystyrene nanoparticles on target aquatic biological models: a
e rv i ew . MOLECULES 22 . h t tp s : / / do i . o rg /10 .3390 /
molecules22091439

Lin D, Ji J, Long Z, Yang K,Wu F (2012) The influence of dissolved and
surface-bound humic acid on the toxicity of TiO2 nanoparticles to
Chlorella sp. WATER Res 46:4477–4487. https://doi.org/10.1016/
j.watres.2012.05.035

Liu Z, Zhang M, Han X, Xu H, Zhang B, Yu Q, Li M (2016) TiO2

nanoparticles cause cell damage independent of apoptosis and au-
tophagy by impairing the ROS-scavenging system in Pichia
pastoris. Chem Biol Interact 252:9–18. https://doi.org/10.1016/j.
cbi.2016.03.029

Lombi E, Donner E, Dusinska M, Wickson F (2019) A one health ap-
proach to managing the applications and implications of

nanotechnologies in agriculture. Nat Nanotechnol 14:523–531.
https://doi.org/10.1038/s41565-019-0460-8

Lu S, Zhang W, Zhang R, Liu P, Wang Q, Shang Y, Wu M, Donaldson
K, Wang Q (2015) Comparison of cellular toxicity caused by ambi-
ent ultrafine particles and engineered metal oxide nanoparticles. Part
Fibre Toxicol 12. https://doi.org/10.1186/s12989-015-0082-8

Malina C, Larsson C, Nielsen J (2018) Yeast mitochondria: an overview
of mitochondrial biology and the potential of mitochondrial systems
biology. FEMS Yeast Res 18. https://doi.org/10.1093/femsyr/
foy040

Manier N, Bado-Nilles A, Delalain P, Aguerre-Chariol O, Pandard P
(2013) Ecotoxicity of non-aged and aged CeO2 nanomaterials to-
wards freshwater microalgae. Environ Pollut 180:63–70. https://doi.
org/10.1016/j.envpol.2013.04.040

Márquez IG, Ghiyasvand M, Massarsky A, Babu M, Samanfar B, Omidi
K, Moon TW, Smith ML, Golshani A (2018) Zinc oxide and silver
nanoparticles toxicity in the baker’s yeast, Saccharomyces
cerevisiae. PLoS One 13:e0193111. https://doi.org/10.1371/
journal.pone.0193111

Mashock MJ, Kappell AD, Hallaj N, Hristova KR (2016) Copper oxide
nanoparticles inhibit the metabolic activity of Saccharomyces
cerevisiae. Environ Toxicol Chem 35:134–143. https://doi.org/10.
1002/etc.3159

Meyer JS, Lyons-Darden T, Garman ER, Middleton ET, Schlekat CE
(2020) Toxicity of nanoparticulate nickel to aquatic organisms: re-
view and recommendations for improvement of toxicity tests.
Environ Toxicol Chem. https://doi.org/10.1002/etc.4812

Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA
(2010) Impacts of metal oxide nanoparticles on marine phytoplank-
ton. Environ Sci Technol 44:7329–7334. https://doi.org/10.1021/
es100247x

Minetto D, Ghirardini AV, Libralato G (2016) Saltwater ecotoxicology of
Ag, Au, CuO, TiO2, ZnO and C-60 engineered nanoparticles: an
overview. Environ Int 92–93:189–201. https://doi.org/10.1016/j.
envint.2016.03.041

Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DO, Hosseini A,
Rahmati M, Dini L, Hussain S, Mandegary A, Klionsky DJ (2019)
Necrotic, apoptotic and autophagic cell fates triggered by nanopar-
ticles. Autophagy 15:4–33. https://doi.org/10.1080/15548627.2018.
1509171

Mordor Intelegence (2020) Metal oxide nanoparticles market - growth,
trends, and forecast (2020 - 2025). https://www.mordorintelligence.
com/industry-reports/metal-oxide-nanoparticles-market. Accessed
19 May 2020

MoriyamaA, Takahashi U,Mizuno Y, Takahashi J, HorieM, Iwahashi H
(2019) The truth of toxicity caused by yttrium oxide nanoparticles to
yeast Cells. J Nanosci Nanotechnol 19:5418–5425. https://doi.org/
10.1166/jnn.2019.16544

Mortezaee K, Najafi M, Samadian H, Barabadi H, Azarnezhad A,
Ahmadi A (2019) Redox interactions and genotoxicity of metal-
based nanoparticles: a comprehensive review. Chem Biol Interact
312:312. https://doi.org/10.1016/j.cbi.2019.108814

Naeemi AS, Elmi F, Vaezi G, Ghorbankhah M (2020) Copper oxide
nanoparticles induce oxidative stress mediated apoptosis in carp
(Cyprinus carpio) larva. GENE REPORTS 19. https://doi.org/10.
1016/j.genrep.2020.100676

Naseer B, Srivastava G, Qadri OS, Faridi SA, Islam RU, Younis K (2018)
Importance and health hazards of nanoparticles used in the food
industry. Nanotechnol Rev 7:623–641. https://doi.org/10.1515/
ntrev-2018-0076

Navarro E, BaunA, Behra R, Hartmann NB, Filser J,Miao A-J, QuiggA,
Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity
of engineered nanoparticles to algae, plants, and fungi.
ECOTOXICOLOGY 17:372–386. https://doi.org/10.1007/s10646-
008-0214-0

1391Appl Microbiol Biotechnol (2021) 105:1379–1394

https://doi.org/10.1080/10408444.2020.1726282
https://doi.org/10.1007/s11051-013-1692-4
https://doi.org/10.1016/j.biocel.2016.02.008
https://doi.org/10.1016/j.biocel.2016.02.008
https://doi.org/10.1002/smll.202000690
https://doi.org/10.1080/15287394.2020.1761496
https://doi.org/10.1016/j.freeradbiomed.2011.08.025
https://doi.org/10.1016/j.freeradbiomed.2011.08.025
https://doi.org/10.1002/etc.4147
https://doi.org/10.1002/etc.4147
https://doi.org/10.1016/j.chemosphere.2012.12.033
https://doi.org/10.1016/j.chemosphere.2012.12.033
https://doi.org/10.1146/annurev.physiol.68.040104.110001
https://doi.org/10.1146/annurev.physiol.68.040104.110001
https://doi.org/10.1021/es102624t
https://doi.org/10.1016/j.aquatox.2014.10.014
https://doi.org/10.1016/j.aquatox.2014.10.014
https://doi.org/10.3390/molecules22091439
https://doi.org/10.3390/molecules22091439
https://doi.org/10.1016/j.watres.2012.05.035
https://doi.org/10.1016/j.watres.2012.05.035
https://doi.org/10.1016/j.cbi.2016.03.029
https://doi.org/10.1016/j.cbi.2016.03.029
https://doi.org/10.1038/s41565-019-0460-8
https://doi.org/10.1186/s12989-015-0082-8
https://doi.org/10.1093/femsyr/foy040
https://doi.org/10.1093/femsyr/foy040
https://doi.org/10.1016/j.envpol.2013.04.040
https://doi.org/10.1016/j.envpol.2013.04.040
https://doi.org/10.1371/journal.pone.0193111
https://doi.org/10.1371/journal.pone.0193111
https://doi.org/10.1002/etc.3159
https://doi.org/10.1002/etc.3159
https://doi.org/10.1002/etc.4812
https://doi.org/10.1021/es100247x
https://doi.org/10.1021/es100247x
https://doi.org/10.1016/j.envint.2016.03.041
https://doi.org/10.1016/j.envint.2016.03.041
https://doi.org/10.1080/15548627.2018.1509171
https://doi.org/10.1080/15548627.2018.1509171
https://www.mordorintelligence.com/industry-reports/metal-oxide-nanoparticles-market
https://www.mordorintelligence.com/industry-reports/metal-oxide-nanoparticles-market
https://doi.org/10.1166/jnn.2019.16544
https://doi.org/10.1166/jnn.2019.16544
https://doi.org/10.1016/j.cbi.2019.108814
https://doi.org/10.1016/j.genrep.2020.100676
https://doi.org/10.1016/j.genrep.2020.100676
https://doi.org/10.1515/ntrev-2018-0076
https://doi.org/10.1515/ntrev-2018-0076
https://doi.org/10.1007/s10646-008-0214-0
https://doi.org/10.1007/s10646-008-0214-0


nee Rohder LA, Brandt T, Sigg L, Behra R (2018) Uptake and effects of
cerium(III) and cerium oxide nanoparticles to Chlamydomonas
reinhardtii. Aquat Toxicol 197:41–46. https://doi.org/10.1016/j.
aquatox.2018.02.004

Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the
nanolevel. Science 311:622–627. https://doi.org/10.1126/science.
1114397

Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH
(2017) Zinc oxide nanoparticles exhibit cytotoxicity and
genotoxicity through oxidative stress responses in human lung fi-
broblasts and Drosophila melanogaster. Int J Nanomedicine 12:
1621–1637. https://doi.org/10.2147/IJN.S124403

Nguyen VH, Lee B-J (2017) Protein corona: a new approach for
nanomedicine design. Int J Nanomedicine 12:3137–3151. https://
doi.org/10.2147/IJN.S129300

NguyenMK,Moon J-Y, Lee Y-C (2020)Microalgal ecotoxicity of nano-
particles: an updated review. Ecotoxicol Environ Saf:201. https://
doi.org/10.1016/j.ecoenv.2020.110781

NPD - Nanotechnology Products Database (2020) Introduction. https://
product.statnano.com/. Accessed 7 Aug 2020

Oh N, Park J-H (2014) Endocytosis and exocytosis of nanoparticles in
mammalian cells. Int J Nanomedicine 9:51–63. https://doi.org/10.
2147/IJN.S26592

Otero-Gonzalez L, Garcia-Saucedo C, Field JA, Sierra-Alvarez R (2013)
Toxicity of TiO2, ZrO2, Fe-0, Fe2O3, and Mn2O3 nanoparticles to
the yeast, Saccharomyces cerevisiae. Chemosphere 93:1201–1206.
https://doi.org/10.1016/j.chemosphere.2013.06.075

OukarroumA, ZaidiW, SamadaniM, Dewez D (2017) Toxicity of nickel
oxide nanoparticles on a freshwater green algal strain of Chlorella
vulgaris. Biomed Res Int 2017:1–8. https://doi.org/10.1155/2017/
9528180

Park E-J, Choi J, Park Y-K, Park K (2008) Oxidative stress induced by
cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology
245:90–100. https://doi.org/10.1016/j.tox.2007.12.022

Paunovic J, Vucevic D, Radosavljevic T, Mandic-Rajcevic S, Pantic I
(2020) Iron-based nanoparticles and their potential toxicity: focus on
oxidative stress and apoptosis. Chem Biol Interact:316. https://doi.
org/10.1016/j.cbi.2019.108935

Pereira RD, Geibel J (1999) Direct observation of oxidative stress on the
cell wall of Saccharomyces cerevisiae strains with atomic force
microscopy. Mol Cell Biochem 201:17–24. https://doi.org/10.
1023/A:1007007704657

Pulido-Reyes G, Rodea-Palomares I, Das S, Sakthivel TS, Leganes F,
Rosal R, Seal S, Fernandez-Pinas F (2015) Untangling the biologi-
cal effects of cerium oxide nanoparticles: the role of surface valence
states. Sci Rep 5. https://doi.org/10.1038/srep15613

Pulido-Reyes G, Leganes F, Fernandez-Pinas F, Rosal R (2017) Bio-nano
interface and environment: a critical review. Environ Toxicol Chem
36:3181–3193. https://doi.org/10.1002/etc.3924

Qian Y, Qin C, Chen M, Lin S (2020) Nanotechnology in soil
remediation-applications vs. implications. Ecotoxicol Environ Saf
201. https://doi.org/10.1016/j.ecoenv.2020.110815

Quigg A, Chin W-C, Chen C-S, Zhang S, Jiang Y, Miao A-J, Schwehr
KA, Xu C, Santschi PH (2013) Direct and indirect toxic effects of
engineered nanoparticles on algae: role of natural organic matter.
ACS Sustain Chem Eng 1:686–702. https://doi.org/10.1021/
sc400103x

Rajiv S, Jerobin J, Saranya V, Nainawat M, Sharma A, Makwana P,
Gayathri C, Bharath L, Singh M, Kumar M, Mukherjee A,
Chandrasekaran N (2016) Comparative cytotoxicity and
genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide,
and aluminum oxide nanoparticles on human lymphocytes in vitro.

Hum Exp Toxicol 35:170–183. https://doi.org/10.1177/
0960327115579208

Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mi-
tochondrial and nuclear-DNA is extensive. Proc Natl Acad Sci U S
A 85:6465–6467. https://doi.org/10.1073/pnas.85.17.6465

Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Garcia-
Calvo E, Santiago J, Rosal R (2011) Physicochemical characteriza-
tion and ecotoxicological assessment of CeO2 nanoparticles using
two aquatic microorganisms. Toxicol Sci 119:135–145. https://doi.
org/10.1093/toxsci/kfq311

Rodea-Palomares I, Gonzalo S, Santiago-Morales J, Leganes F, Garcia-
Calvo E, Rosal R, Fernandez-Pinas F (2012) An insight into the
mechanisms of nanoceria toxicity in aquatic photosynthetic organ-
isms. Aquat Toxicol 122:133–143. https://doi.org/10.1016/j.
aquatox.2012.06.005

Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR,
Baalousha M (2010) Physico-chemical behaviour and algal toxicity
of nanoparticulate CeO2 in freshwater. Environ Chem 7:50–60.
https://doi.org/10.1071/EN09123

Roma J, Matos AR, Vinagre C, Duarte B (2020) Engineered metal nano-
particles in the marine environment: a review of the effects on ma-
rine fauna. Mar Environ Res:161. https://doi.org/10.1016/j.
marenveres.2020.105110

Sadiq IM, Pakrashi S, ChandrasekaranN,Mukherjee A (2011) Studies on
toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae
species: Scenedesmus sp and Chlorella sp. J Nanoparticle Res 13:
3287–3299. https://doi.org/10.1007/s11051-011-0243-0

Schiavo S, Oliviero M, Miglietta M, Rametta G, Manzo S (2016)
Genotoxic and cytotoxic effects of ZnO nanoparticles for
Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects
at population growth inhibition levels. Sci Total Environ 550:619–
627. https://doi.org/10.1016/j.scitotenv.2016.01.135

Sendra M, Blasco J, Araujo CVM (2018) Is the cell wall of marine
phytoplankton a protective barrier or a nanoparticle interaction site?
Toxicological responses of Chlorella autotrophica and Dunaliella
salina to Ag and CeO2 nanoparticles. Ecol Indic 95:1053–1067.
https://doi.org/10.1016/j.ecolind.2017.08.050

Servin A, ElmerW,Mukherjee A, la Torre-Roche R,HamdiH,White JC,
Bindraban P, Dimkpa C (2015) A review of the use of engineered
nanomaterials to suppress plant disease and enhance crop yield. J
NANOPARTICLE Res 17. https://doi.org/10.1007/s11051-015-
2907-7

Sharan A, Nara S (2020) Exposure of synthesized Co3O4 nanoparticles to
Chlorella minutissima: an ecotoxic evaluation in freshwater
microalgae. Aquat Toxicol 224. https://doi.org/10.1016/j.aquatox.
2020.105498

Siddiqui MA, Ahamed M, Ahmad J, Khan MAM, Musarrat J, Al-
Khedhairy AA, Alrokayan SA (2012) Nickel oxide nanoparticles
induce cytotoxicity, oxidative stress and apoptosis in cultured hu-
man cells that is abrogated by the dietary antioxidant curcumin.
FOOD Chem Toxicol 50:641–647. https://doi.org/10.1016/j.fct.
2012.01.017

Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J,
Ahamed M (2013) Copper oxide nanoparticles induced mitochon-
dria mediated apoptosis in human hepatocarcinoma cells. PLoS One
8:8. https://doi.org/10.1371/journal.pone.0069534

Sousa CA, Soares HMVM, Soares EV (2018a) Nickel oxide (NiO) nano-
particles disturb physiology and induce cell death in the yeast
Saccharomyces cerevisiae. Appl Microbiol Biotechnol 102:2827–
2838. https://doi.org/10.1007/s00253-018-8802-2

Sousa CA, Soares HMVM, Soares EV (2018b) Toxic effects of nickel
ox ide (N iO) nanopa r t i c l e s on t he f r e shwa t e r a l ga

1392 Appl Microbiol Biotechnol (2021) 105:1379–1394

https://doi.org/10.1016/j.aquatox.2018.02.004
https://doi.org/10.1016/j.aquatox.2018.02.004
https://doi.org/10.1126/science.1114397
https://doi.org/10.1126/science.1114397
https://doi.org/10.2147/IJN.S124403
https://doi.org/10.2147/IJN.S129300
https://doi.org/10.2147/IJN.S129300
https://doi.org/10.1016/j.ecoenv.2020.110781
https://doi.org/10.1016/j.ecoenv.2020.110781
https://product.statnano.com/
https://product.statnano.com/
https://doi.org/10.2147/IJN.S26592
https://doi.org/10.2147/IJN.S26592
https://doi.org/10.1016/j.chemosphere.2013.06.075
https://doi.org/10.1155/2017/9528180
https://doi.org/10.1155/2017/9528180
https://doi.org/10.1016/j.tox.2007.12.022
https://doi.org/10.1016/j.cbi.2019.108935
https://doi.org/10.1016/j.cbi.2019.108935
https://doi.org/10.1023/A:1007007704657
https://doi.org/10.1023/A:1007007704657
https://doi.org/10.1038/srep15613
https://doi.org/10.1002/etc.3924
https://doi.org/10.1016/j.ecoenv.2020.110815
https://doi.org/10.1021/sc400103x
https://doi.org/10.1021/sc400103x
https://doi.org/10.1177/0960327115579208
https://doi.org/10.1177/0960327115579208
https://doi.org/10.1073/pnas.85.17.6465
https://doi.org/10.1093/toxsci/kfq311
https://doi.org/10.1093/toxsci/kfq311
https://doi.org/10.1016/j.aquatox.2012.06.005
https://doi.org/10.1016/j.aquatox.2012.06.005
https://doi.org/10.1071/EN09123
https://doi.org/10.1016/j.marenveres.2020.105110
https://doi.org/10.1016/j.marenveres.2020.105110
https://doi.org/10.1007/s11051-011-0243-0
https://doi.org/10.1016/j.scitotenv.2016.01.135
https://doi.org/10.1016/j.ecolind.2017.08.050
https://doi.org/10.1007/s11051-015-2907-7
https://doi.org/10.1007/s11051-015-2907-7
https://doi.org/10.1016/j.aquatox.2020.105498
https://doi.org/10.1016/j.aquatox.2020.105498
https://doi.org/10.1016/j.fct.2012.01.017
https://doi.org/10.1016/j.fct.2012.01.017
https://doi.org/10.1371/journal.pone.0069534
https://doi.org/10.1007/s00253-018-8802-2


Pseudokirchneriella subcapitata. Aquat Toxicol 204:80–90. https://
doi.org/10.1016/j.aquatox.2018.08.022

Sousa CA, Soares HMVM, Soares EV (2018c) Nickel Oxide (NiO) nano-
particles induce loss of cell viability in yeast mediated by oxidative
stress. Chem Res Toxicol 31:658–665. https://doi.org/10.1021/acs.
chemrestox.8b00022

Sousa CA, Soares HMVM, Soares EV (2019a) Metal(loid) oxide (Al2O3,
Mn3O4, SiO2 and SnO2) nanoparticles cause cytotoxicity in yeast
via intracellular generation of reactive oxygen species. Appl
Microbiol Biotechnol 103:6257–6269. https://doi.org/10.1007/
s00253-019-09903-y

Sousa CA, Soares HMVM, Soares EV (2019b) Chronic exposure of the
freshwater alga Pseudokirchneriella subcapitata to five oxide nano-
particles: hazard assessment and cytotoxicity mechanisms. Aquat
Toxicol 214:105265. https://doi.org/10.1016/j.aquatox.2019.
105265

Sousa CA, Soares HMVM, Soares EV (2019c) Nickel oxide nanoparti-
cles trigger caspase- and mitochondria-dependent apoptosis in the
yeast Saccharomyces cerevisiae. Chem Res Toxicol 32:245–254.
https://doi.org/10.1021/acs.chemrestox.8b00265

SpurgeonDJ, Lahive E, Schultz CL (2020) Nanomaterial transformations
in the environment: effects of changing exposure forms on bioaccu-
mulation and toxicity. SMALL 16:2000618. https://doi.org/10.
1002/smll.202000618

Subramaniam VD, Murugesan R, Pathak S (2020) Assessment of the
cytotoxicity of cerium, tin, aluminum, and zinc oxide nanoparticles
on human cells. J NANOPARTICLE Res 22. https://doi.org/10.
1007/s11051-020-05102-3

Suman TY, Rajasree SRR, Kirubagaran R (2015) Evaluation of zinc
oxide nanoparticles toxicity on marine algae chlorella vulgaris
through flow cytometric, cytotoxicity and oxidative stress analysis.
Ecotoxicol Environ Saf 113:23–30. https://doi.org/10.1016/j.
ecoenv.2014.11.015

Sun TY, Bornhoft NA, Hungerbuhler K, Nowack B (2016) Dynamic
probabilistic modeling of environmental emissions of engineered
nanomaterials. Environ Sci Technol 50:4701–4711. https://doi.org/
10.1021/acs.est.5b05828

Suppi S, Kasemets K, Ivask A, Kuennis-Beres K, Sihtmaee M, Kurvet I,
Aruoja V, Kahru A (2015) A novel method for comparison of bio-
cidal properties of nanomaterials to bacteria, yeasts and algae. J
Hazard Mater 286:75–84. https://doi.org/10.1016/j.jhazmat.2014.
12.027

Taylor NS, Merrifield R, Williams TD, Chipman JK, Lead JR, Viant MR
(2016)Molecular toxicity of cerium oxide nanoparticles to the fresh-
water alga Chlamydomonas reinhardtii is associated with supra-
environmental exposure concentrations. Nanotoxicology 10:32–
41. https://doi.org/10.3109/17435390.2014.1002868

Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman HU,
Ashraf I, Sanaullah M (2020) Nanotechnology in agriculture: cur-
rent status, challenges and future opportunities. Sci Total Environ
721:137778. https://doi.org/10.1016/j.scitotenv.2020.137778

Vale G,Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF
(2016) Manufactured nanoparticles in the aquatic environment-
biochemical responses on freshwater organisms: a critical overview.
Aquat Toxicol 170:162–174. https://doi.org/10.1016/j.aquatox.
2015.11.019

Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr,
Rejeski D, Hull MS (2015) Nanotechnology in the real world:
redeveloping the nanomaterial consumer products inventory.
BEILSTEIN J Nanotechnol 6:1769–1780. https://doi.org/10.3762/
bjnano.6.181

Vasco MS, Alves LC, Corregidor V, Correia D, Godinho CP, Sa-Correia
I, Bettiol A, Watt F, Pinheiro T (2017) 3D map distribution of

metallic nanoparticles in whole cells using MeV ion microscopy. J
Microsc 267:227–236. https://doi.org/10.1111/jmi.12561

Vimercati L, CavoneD, Caputi A, DeMaria L, TriaM, Prato E, Ferri GM
(2020) Nanoparticles: an experimental study of zinc nanoparticles
toxicity on marine crustaceans. General overview on the health im-
plications in humans. Front Public Health 8. https://doi.org/10.3389/
fpubh.2020.00192

vonMoos N, Slaveykova VI (2014) Oxidative stress induced by inorgan-
ic nanoparticles in bacteria and aquatic microalgae-state of the art
and knowledge gaps. Nanotoxicology 8:605–630. https://doi.org/
10.3109/17435390.2013.809810

von Moos N, Bowen P, Slaveykova VI (2014) Bioavailability of inor-
ganic nanoparticles to planktonic bacteria and aquatic microalgae in
freshwater. Environ Sci 1:214–232. https://doi.org/10.1039/
c3en00054k

von Moos N, Maillard L, Slaveykova VI (2015) Dynamics of sub-lethal
effects of nano-CuO on the microalga Chlamydomonas reinhardtii
during short-term exposure. Aquat Toxicol 161:267–275. https://
doi.org/10.1016/j.aquatox.2015.02.010

von Moos N, Koman VB, Santschi C, Martin OJF, Maurizi L,
Jayaprakash A, Bowen P, Slaveykova VI (2016) Pro-oxidant effects
of nano-TiO2 on Chlamydomonas reinhardtii during short-term ex-
posure. RSC Adv 6:115271–115283. https://doi.org/10.1039/
c6ra16639c

Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W (2016) Where
does the toxicity of metal oxide nanoparticles come from: the nano-
particles, the ions, or a combination of both? J Hazard Mater 308:
328–334. https://doi.org/10.1016/j.jhazmat.2016.01.066

Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S,
Landsiedel R (2009) Acute and chronic effects of nano- and non-
nano-scale TiO2 and ZnO particles on mobility and reproduction of
the freshwater invertebrate Daphnia magna. Chemosphere 76:
1356–1365. https://doi.org/10.1016/j.chemosphere.2009.06.025

Wu F, Seib M, Mauel S, Klinzing S, Hicks AL (2020) A citizen science
approach estimating titanium dioxide released from personal care
products. PLoS One:15. https://doi.org/10.1371/journal.pone.
0235988

Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C,
Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of
ambient and manufactured nanoparticles to induce cellular toxicity
according to an oxidative stress paradigm. NANO Lett 6:1794–
1807. https://doi.org/10.1021/nl061025k

Xia T, KovochichM, LiongM,Maedler L, Gilbert B, Shi H, Yeh JI, Zink
JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc
oxide and cerium oxide nanoparticles based on dissolution and ox-
idative stress properties. ACS Nano 2:2121–2134. https://doi.org/
10.1021/nn800511k

Xia B, Chen B, Sun X, Qu K, Ma F, Du M (2015) Interaction of TiO2

nanoparticles with the marine microalga Nitzschia closterium:
growth inhibition, oxidative stress and internalization. Sci Total
Environ 508:525–533. https://doi.org/10.1016/j.scitotenv.2014.11.
066

Xu L, Xu M, Wang R, Yin Y, Lynch I, Liu S (2020) The crucial role of
environmental coronas in determining the biological effects of
engineered nanomaterials. SMALL 16. https://doi.org/10.1002/
smll.202003691

Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP,
Skorobogatiy M, Khademhosseini A, Yun SH (2016)
Nanotechnology in textiles. ACS Nano 10:3042–3068. https://doi.
org/10.1021/acsnano.5b08176

Yin E, Zhao Z, Chi Z, Zhang Z, Jiang R, Gao L, Cao J, Li X (2020) Effect
of Chlamydomonas reinhardtii on the fate of CuO nanoparticles in

1393Appl Microbiol Biotechnol (2021) 105:1379–1394

https://doi.org/10.1016/j.aquatox.2018.08.022
https://doi.org/10.1016/j.aquatox.2018.08.022
https://doi.org/10.1021/acs.chemrestox.8b00022
https://doi.org/10.1021/acs.chemrestox.8b00022
https://doi.org/10.1007/s00253-019-09903-y
https://doi.org/10.1007/s00253-019-09903-y
https://doi.org/10.1016/j.aquatox.2019.105265
https://doi.org/10.1016/j.aquatox.2019.105265
https://doi.org/10.1021/acs.chemrestox.8b00265
https://doi.org/10.1002/smll.202000618
https://doi.org/10.1002/smll.202000618
https://doi.org/10.1007/s11051-020-05102-3
https://doi.org/10.1007/s11051-020-05102-3
https://doi.org/10.1016/j.ecoenv.2014.11.015
https://doi.org/10.1016/j.ecoenv.2014.11.015
https://doi.org/10.1021/acs.est.5b05828
https://doi.org/10.1021/acs.est.5b05828
https://doi.org/10.1016/j.jhazmat.2014.12.027
https://doi.org/10.1016/j.jhazmat.2014.12.027
https://doi.org/10.3109/17435390.2014.1002868
https://doi.org/10.1016/j.scitotenv.2020.137778
https://doi.org/10.1016/j.aquatox.2015.11.019
https://doi.org/10.1016/j.aquatox.2015.11.019
https://doi.org/10.3762/bjnano.6.181
https://doi.org/10.3762/bjnano.6.181
https://doi.org/10.1111/jmi.12561
https://doi.org/10.3389/fpubh.2020.00192
https://doi.org/10.3389/fpubh.2020.00192
https://doi.org/10.3109/17435390.2013.809810
https://doi.org/10.3109/17435390.2013.809810
https://doi.org/10.1039/c3en00054k
https://doi.org/10.1039/c3en00054k
https://doi.org/10.1016/j.aquatox.2015.02.010
https://doi.org/10.1016/j.aquatox.2015.02.010
https://doi.org/10.1039/c6ra16639c
https://doi.org/10.1039/c6ra16639c
https://doi.org/10.1016/j.jhazmat.2016.01.066
https://doi.org/10.1016/j.chemosphere.2009.06.025
https://doi.org/10.1371/journal.pone.0235988
https://doi.org/10.1371/journal.pone.0235988
https://doi.org/10.1021/nl061025k
https://doi.org/10.1021/nn800511k
https://doi.org/10.1021/nn800511k
https://doi.org/10.1016/j.scitotenv.2014.11.066
https://doi.org/10.1016/j.scitotenv.2014.11.066
https://doi.org/10.1002/smll.202003691
https://doi.org/10.1002/smll.202003691
https://doi.org/10.1021/acsnano.5b08176
https://doi.org/10.1021/acsnano.5b08176


aquatic environment. Chemosphere 247:125935. https://doi.org/10.
1016/j.chemosphere.2020.125935

Yu Q, Liu Z, Xu H, Zhang B, Zhang M, Li M (2015) TiO2 nanoparticles
promote the production of unsaturated fatty acids (UFAs) fighting
against oxidative stress in Pichia pastoris. RSC Adv 5:41033–
41040. https://doi.org/10.1039/c5ra02366a

Yu S, Liu J, Yin Y, Shen M (2018) Interactions between engineered
nanoparticles and dissolved organic matter: a review onmechanisms
and environmental effects. J Environ Sci 63:198–217. https://doi.
org/10.1016/j.jes.2017.06.021

Zemke-White WL, Clements KD, Harris PJ (2000) Acid lysis of
macroalgae by marine herbivorous fishes: effects of acid pH on cell
wall porosity. J Exp Mar Bio Ecol 245:57–68. https://doi.org/10.
1016/S0022-0981(99)00151-3

Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S,
Wang X, Liao Y-P,WangM, Li L, Rallo R, Damoiseaux R, Telesca
D, Maedler L, Cohen Y, Zink JI, Nel AE (2012) Use of metal oxide
nanoparticle band gap to develop a predictive paradigm for

oxidative stress and acute pulmonary inflammation. ACS Nano 6:
4349–4368. https://doi.org/10.1021/nn3010087

Zhang W, Bao S, Fang T (2016) The neglected nano-specific toxicity of
ZnO nanoparticles in the yeast Saccharomyces cerevisiae. Sci Rep
6. https://doi.org/10.1038/srep24839

Zhao J, LinM,Wang Z, Cao X, Xing B (2020) Engineered nanomaterials
in the environment: are they safe? Crit Rev Environ Sci Technol.
https://doi.org/10.1080/10643389.2020.1764279

Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB,
Jankauskas SS, Babenko VA, Zorov SD, Balakireva AV,
Juhaszova M, Sollott SJ, Zorov DB (2018) Mitochondrial mem-
brane potential. Anal Biochem 552:50–59. https://doi.org/10.1016/
j.ab.2017.07.009

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1394 Appl Microbiol Biotechnol (2021) 105:1379–1394

https://doi.org/10.1016/j.chemosphere.2020.125935
https://doi.org/10.1016/j.chemosphere.2020.125935
https://doi.org/10.1039/c5ra02366a
https://doi.org/10.1016/j.jes.2017.06.021
https://doi.org/10.1016/j.jes.2017.06.021
https://doi.org/10.1016/S0022-0981(99)00151-3
https://doi.org/10.1016/S0022-0981(99)00151-3
https://doi.org/10.1021/nn3010087
https://doi.org/10.1038/srep24839
https://doi.org/10.1080/10643389.2020.1764279
https://doi.org/10.1016/j.ab.2017.07.009
https://doi.org/10.1016/j.ab.2017.07.009

	Harmful effects of metal(loid) oxide nanoparticles
	Abstract
	Abstract
	Abstract
	Introduction
	Biological models used in nanotoxicology
	Brief overview of the models used in nanotoxicity assessment
	The yeast S.�cerevisiae as an important tool in nanotoxicology

	Global mechanisms underlying to MOx NPs toxicity
	NPs solubilisation: release of toxic ions
	NPs passage through wall pores versus release of metal ions on NPs-cell surface interface
	Direct effect on the cell surface
	Cellular uptake of NPs
	Oxidative stress
	Shading effect (on photosynthetic microorganisms): homoagglomeration of NPs
	Physical restraint: heteroagglomeration

	Yeast responses to MOx NPs stress
	Inhibition of cell proliferation
	Cell wall damage
	Modification of metabolic activity
	Intracellular ROS generation
	Reduction of non-enzymatic and enzymatic antioxidant defences
	Loss of cell membrane integrity
	Alteration of function and morphology of mitochondria and endoplasmic reticulum
	Modification of vacuole architecture and induction of autophagy
	Mitochondrial and genomic DNA damage
	Apoptotic cell death

	Concluding remarks
	References


