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Abstract: Half-warm mix asphalt (HWMA) mixtures can be produced at temperatures ranging from
100 ◦C to 130 ◦C, depending on the production methods used. The lowest mixing temperature can be
achieved by using water-foamed bitumen. The mixture should be characterized by a long service life,
defined by the resistance to permanent deformation and high stiffness modulus at temperatures above
zero. It is therefore important to ensure the adequately high quality of the bitumen binder. Bitumen
50/70 was provided with appropriate quality foaming characteristics (expansion ratio, ER, half-life,
t1/2) by adding a surface-active agent (SAA) at 0.6 wt % before foaming. Then asphalt concrete
(AC) 8 S was designed and produced with the recommended water-foamed binder. Hydrated lime,
an additive substantially affecting asphalt concrete mechanical parameters, was used at 0, 15, 30,
and 45 wt % as a partial replacement for the limestone filler. The influence of the amount of hydrated
lime on the content of voids, indirect tensile stiffness modulus at −10 ◦C, 0 ◦C, +10 ◦C, +20 ◦C,
and +30 ◦C, and the resistance to permanent deformation was investigated. Statistical analysis of
the test results showed the quantity of 30% to be the optimum hydrated lime content. The AC
8 S resistance to permanent deformation was determined at the optimum hydrated lime content.
The comprehensive evaluation revealed a synergistic effect between bitumen 50/70, modified before
foaming with 0.6 wt % SAA and 30 wt % hydrated lime as the limestone filler replacement, and the
half warm mixture AC 8 S, in terms of the standard requirements and durability of the HWMA
concrete in pavement applications.

Keywords: asphalt concrete; foamed bitumen; half-warm mix asphalt (HWMA); hydrated lime;
indirect tensile stiffness modulus

1. Introduction

Half warm mix asphalt (HWMA) comprises the most environmentally friendly technologies
of bituminous mixture production with water-foamed bitumen used as a binder [1–3]. Mixtures
with foamed binders can be produced at temperatures 60 ◦C lower than the conventional mixture
temperatures. Both HWMA and hot mix asphalt (HMA) are subject to the same performance criteria,
with key characteristics being high stiffness modulus at temperatures above zero, and high resistance
to permanent deformation.

A high level of bitumen foaming parameters (expansion ratio ER, half-life t1/2) ensures proper
mixture quality. As no formal requirements for the foaming parameters of water-foamed bitumen exist,
the only applicable guidelines are those designed for cold recycling [4,5]. The properties of recycled
mixtures with water-foamed bitumen have been widely investigated [6–9]. Several researchers have
found that zeolite can be used to foam bitumen and bituminous mixtures instead of water, but this
solution is used primarily with warm mix asphalt (WMA) [10–13].
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The proper quality of the foam is ensured by adding various additives to the bitumen before
foaming. Fischer–Tropsch (F–T) synthetic wax is the most commonly used additive [14–16]. Additives
are also incorporated in bituminous mixtures made with foamed bitumen [14].

Following the modification, the bitumen foaming parameters (ER, t1/2) show markedly higher
values compared with non-modified binders [17,18]. Adding F–T wax improves the standard and
rheological properties of bitumen [19] and bituminous mixtures, especially in terms of deformation
resistance [20,21]. The drawback of F–T wax addition is its crystallization at temperatures below
90 ◦C [22]. As a result, at low temperatures, compaction is difficult, and the mixture fails to attain the
required material parameters [23].

A fundamental issue concerning low temperature bituminous mixtures is securing proper
compaction. As the quality of compaction may depend on the additive used, new types of
chemical additives are being designed, with a view to improving mixture compaction at reduced
temperatures [24,25]. Although effective in increasing mechanical characteristics, some of the additives
reduce moisture resistance [25]. Various chemical additives have been studied in the process of
investigating the effect of compaction on mixture parameters. It was found that both the type of
additive and the method of compaction significantly affected mix properties. However, the test results
obtained varied with the additive type and compaction method used, for example, the results from the
gyratory press were found to be more beneficial than those from the traditional Marshall method [26].
A decline in the mixture parameters was recorded with the lowering of compaction temperature,
except for the case when F–T synthetic wax was used. In another study [19], both compaction
methods provided traditional mixtures with comparable properties in terms of resistance to permanent
deformation, but the stiffness modulus and tensile strength decreased. Extensive comparative tests
with chemical, organic, and zeolite additives [27] showed a significant effect of mixing and compaction
temperatures on the gyratory compaction and mechanical properties, such as sensitivity to water
and stiffness modulus. When the temperature was lowered, mixtures with additives required less
compaction energy, their susceptibility to moisture improved in comparison with the control mixture,
and the test temperature had a significant effect on the stiffness modulus.

As shown above, there is no clear-cut, unambiguous assessment of the influence of the additive
type and compaction method on the properties of bituminous mixtures. Each case of additive
application, as well as the choice of the compaction method, must be considered individually.

It is therefore necessary to continue the study in search of an additive that will ensure proper
bitumen foaming, without adversely affecting the properties of bituminous mixtures at the service
temperature of about 90 ◦C. The surface-active agent (SAA), which reduces bitumen viscosity, [24,28]
seems to be such an additive.

Exploratory research carried out in this respect confirmed a considerable influence of this additive
on the bitumen foaming characteristics [29]. The studies and implementation practice to date show
that SAA significantly improves the binder—aggregate adhesion in HMA, thus providing it with the
required moisture and frost resistance. However, no improvement of bitumen properties has been
observed after SAA incorporation. In some cases, a slight decline was reported [30]. Bituminous
mixtures made with SAA-modified bitumen may exhibit less favorable properties than the mixtures
containing non-modified bitumen [31]. Experience gained in HMA technology suggests that hydrated
lime should be used in the research of foamed bitumen-based mixtures [32], since the lime has a
substantial effect on the mix properties.

The use of hydrated lime as an additive to traditional HMA dates back over a hundred years [33,34].
Initially, the studies of hydrated lime addition focused on its influence on the adhesion between

the mineral mixture and the binder. The positive results of those studies allowed expanding the scope
of interest. It was confirmed that hydrated lime increased the resistance of the mixture to moisture
and frost [35,36] as a result of improved adhesion of the bitumen to aggregate particles [37]. Its use
is particularly important when using acidic aggregate (with SiO2 content >65%). The interaction
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mechanism is that calcium cations bond with silica compounds on the surface of the acidic aggregate,
which results in the formation of strong ionic bonds.

It has been established that the mechanism of chemical interaction of hydrated lime on bitumen
involves, first neutralizing bitumen polar molecules, and then their partial adsorption by hydrated
lime molecules [38,39]. The remaining polar molecules of the bitumen, neutralized by the hydrated
lime, do not diffuse to the bitumen–aggregate interface, but remain in the binder layer. The adhesion
of the bituminous film to aggregates improves as the binder at the phase interface is neutral or
alkaline [40–42].

Hydrated lime has been demonstrated to contribute to slowing down the rate of bitumen ageing,
and hence the ageing of bituminous mixtures and pavements. This effect contributes to ensuring the
durability of pavements throughout their service life [38,43].

The testing methodology includes two approaches. The first one is a laboratory-based approach
in which bitumen is combined with hydrated lime or quicklime. The blend is then cured for a
certain time, and then the lime is separated from the bitumen by extraction. The properties of the
bitumen are determined at the end of this process [44–48]. The second method consists of testing
bitumen recovered from pavement structural layers that were made of a bituminous mixture containing
hydrated lime [49–51].

Tests of the binder recovered from bituminous mixtures used in the construction of structural
layers are of particular importance in identifying the influence of hydrated lime on bitumen properties.
It was found that the recovered binder exhibited higher viscosity than the binder that did not contain
any surfactants [44]. A large number of studies have confirmed the positive role of hydrated lime in
reducing the rate of changes in the properties of bitumen exposed to high temperatures during mixture
production [52–57].

Hydrated lime is known to substantially increase the stiffness of the mastic defined by an increased
softening point [58,59]. This parameter plays a very important role in ensuring the resistance of
bituminous mixtures to permanent deformation. Increased mastic stiffness leads to increased rutting
resistance. At the same time, excessive stiffness of the mastic may decrease the resistance of the
bituminous mixture to fatigue and thermal cracking [60]. For these reasons, the amount of hydrated
lime used needs to be limited and determined empirically. As such, hydrated lime can be used to
control the stiffness of the mastic.

Hydrated lime has a positive effect on the mechanical characteristics of bituminous mixtures [61,62].
The dynamic modulus of bituminous mixtures, studied in the temperature range from −10 ◦C to
+54.4 ◦C and at a frequency from 0.1 Hz to 25 Hz, increased by 8% to 65%, depending on the amount of
hydrated lime dosed.

The influence of hydrated lime on the mechanical properties of bituminous mixtures has been
studied extensively. Comprehensive research programs confirmed that the rut resistance of the mixture
increases with increasing lime concentration, in the range from 2 wt % to 5 wt %, or with its quantity
up to 30%, as a replacement of mineral filler in the mixture [46,63,64].

Resistance to permanent deformation has been studied for the dosing method, which was found
to strongly impact the intensity of the effects on the mixture properties [35].

Attempts to use hydrated lime have also been made in the production of WMA mixtures.
The overall results of those studies revealed that hydrated lime contributes to ensuring resistance to
moisture and frost [65,66]. However, there is limited experience in this area. The same effect has been
confirmed by the exploratory studies of hydrated lime in HWMA concrete. Further research in this
respect is needed [67].

To sum up, the problem of searching for a bitumen additive that allows lowering the mixing
temperature of the bituminous mixture is still valid, especially when it is produced with water-foamed
bitumen at about 100 ◦C. Surface-agent additives are used to improve foaming parameters of the
binder, and to secure the high quality of the bituminous mixture. The durability of the mixture is
ensured by the use of hydrated lime.
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The beneficial effect of hydrated lime on a wide range of the properties of traditional HMA
mixtures has already been confirmed. There is reason to believe that the same effects, that is, high
values of the stiffness modulus and improved resistance to permanent deformation, will be confirmed
for HWMA mixtures with water-foamed bitumen.

2. Methodology

2.1. Material

The laboratory test material was HWMA concrete AC 8 S produced with 5.6% foamed bitumen
50/70, following the relevant requirements [68]. For reference purposes, the amount of binder was
increased to 5.9%, 6.2%, and 6.5%. In this way, the increased demand for the binder, due to the use of
hydrated lime in the asphalt concrete, was taken into account [28].

The bitumen used it the tests was a 50/70 paving grade bitumen, commonly used in the countries
of central and eastern Europe in mixtures designed for pavements, under traffic characterized by
2.5 × 106 < ESAL100 kN < 7.3 × 106 (ESAL: equivalent single axle load) [69]. In Poland, it is the highest
penetration bitumen that is permitted for use in bituminous mixtures designed for pavement wearing
course [68]. The use of softer bitumen is not allowed due to the risk of permanent deformation.

Before foaming, the bitumen was modified with a 0.6% fatty acid amide-based surface active
agent (SAA), by weight of the binder, to obtain high values of foaming characteristics. The properties
of the SAA were as follows:

- appearance: brown viscous liquid,
- density at 20 ◦C: 0.98 Mg/m3,
- pour point: <0 ◦C,
- viscosity at 20 ◦C: 3000 mP,
- viscosity at 50 ◦C: 400 mP,
- amine index: 159–185 mg HCl/g,
- acid index: <10 mg KOH/g,
- freezing point: <0 ◦C,
- flash point (open flame): >218 ◦C.

The bitumen was water foamed. The foam expansion ratio (ER) [4,5] and half-life (t1/2) [4,5] were
determined in the second stage of the study with 9 replicates [70,71].

Physical properties of the foam were tested in a Wirtgen WLB-10S foaming plant, by applying
different foaming water amounts (FWC: foaming water content): 1.5 wt %, 2.0 wt %, 2.5 wt %, 3.0 wt %,
and 3.5 wt %, as per [4]. The bitumen foaming test was conducted under the following conditions:

− bitumen temperature: 155 ◦C,
−water temperature: 20 ◦C,
−water flow: 100 g/s,
− foaming time: 5 s,
− air pressure: 500 kPa,
−water pressure: 600 kPa.

Results of the selected properties of the non-modified bitumen 50/70, and that modified with 0.6%
SAA, are compiled in Table 1.

Foaming characteristics of the bitumen modified with 0.6% SAA are shown in Figure 1.
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Table 1. Properties of bitumen 50/70, and with 0.6% surface-active agent (SAA) content [29].

Property Unit Testing Method
Bitumen

50/700 50/70 + 0.6% SAA

Penetration at 25 ◦C 0.1 mm PN-EN 1426 65.9 70.4
Softening point TR&B

◦C PN-EN 1427 50.4 48.8
Fraass breaking point ◦C PN-EN 12593 −15.1 −14.2

Temperature plasticity range ◦C - 65.5 63.0
Penetration Index - EN 12591 −0.6 1.4

Expansion ratio (ER) - - 11 19
Half-life t1/2 s - 10 21

Foaming water content (FWC) % - 2.5 2.5
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Figure 1. Foaming characteristics of bitumen 50/70 modified with 0.6% SAA [29].

The mineral mix of AC 8 S was designed using the aggregates commonly available in the
Świętokrzyskie region: limestone filler, granulated limestone aggregate 0/2 mm, and granulated gabbro
aggregate 2/5 mm and 4/8 mm.

The lime stone filler met all the requirements of EN 13043. The basic properties of the aggregate
used in the asphalt concrete are compiled in Tables 2 and 3.

Table 2. Properties of limestone aggregates 0/2.

Property Test u.m. Symbol

Dimension d/D EN 933-1 - 0/2
Particle size distribution EN 933-1 - GF85
Density EN 1097-6 Mg/m3 2.73

Table 3. Properties of gabbro aggregates 2/5 and 4/8.

Property Test u.m. Symbol

Dimension d/D EN 933-1 - 2/5 4/8
Particle size distribution EN 933-1 - GA85 GA85
Density EN 1097-6 Mg/m3 2.98 2.98
Shape index EN 933-4 % SI20 SI15
Flakiness index EN 933-3 % FI20 FI15
Percentage of crushed and broken surfaces EN 933-5 % C90/3 C100/0
Frost resistance EN 1367-1 % F1 F1
Abrasion resistance EN1097-1 % - MDE15
Resistance to fragmentation EN 1097-2 % - LA15
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The hydrated lime used in the tests met the requirements of EN-459-1 CL 90-s.

2.2. Mix Design and Sample Preparation

Bitumen 50/70 modified with 0.6% SAA is characterized by very high values of foaming
parameters [25]. Thus, its use in the production of bituminous mixtures should ensure a very
good coating of aggregate by the binder.

The basic frame-compositions of the mineral mixture and bituminous mixture are summarized in
Table 4 and the particle size design of AC 8 S is plotted in Figure 2 [68,72].

Table 4. Composition of AC 8 mineral mixture [72].

Materials Mineral Mixture
(% m/m)

Bituminous Mixture
(% m/m)

Filler (limestone aggregate) 7.0 6.6
Crushed fine continuously graded aggregate 0/2 mm (limestone) 37.0 34.8

Coarse aggregate 2/5 mm (gabbro) 16.0 15.1
Coarse aggregate 4/8 mm (gabbro) 40.0 37.7

50/70 penetration paving-grade bitumen - 5.6
Total 100.0 100.0
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Figure 2. Grading curve of AC 8 mineral mixture with limiting points as in WT-2 2014 requirements [68].

A variable bitumen amount was used in this study to determine its effect, in terms of hydrated
lime dosing, on asphalt concrete properties. The grading of the aggregate mix was corrected while
increasing the amount of foamed bitumen to 5.6% and 6.5%, according to the experimental design.

In order to ensure the required value of asphalt concrete parameters, hydrated lime was dosed at
15%, 30%, and 45% by weight as a replacement for an equivalent amount of lime filler.

The AC 8 S mixture was made in a heated mechanical mixer, to which foamed bitumen produced
in the WLB-10S device was added. The production temperature of AC 8 S with additives did not
exceed 100 ◦C.

The experimental design parameters of the AC 8 S were determined based on the assumed 4 × 4
factorial design, following the adopted research program (Figure 3).
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2.3. Testing

This study aimed to determine the effect of hydrated lime on the properties of HWMA concrete
with foamed bitumen, through the evaluation of the following parameters, and following the test
procedures set out in the technical requirements of WT-2 2014 [68] and EN 13108-1,

• air void content (Va, %) as per EN 12697-8,
• indirect tensile stiffness modulus at −10 ◦C, 0 ◦C, +10 ◦C, +20 ◦C, +30 ◦C (Sm, MPa), as per

EN 12697-26,
• resistance to permanent deformation (WTSAIR, PRDAIR), as per EN 12697-22.

Parameters Va, and Sm were determined by compacting the specimens with a Marshall hammer,
and using the number of blows as specified for each procedure used. The specimens (slabs) for testing
the resistance to permanent deformation, parameters WTSAIR and PRDAIR, were prepared with a
dedicated compactor, as per EN 12697-22. The asphalt concrete (AC) specimens used met the assumed
requirements, in terms of physical and geometrical characteristics.

2.3.1. Air Void Content (Va)

The properties of asphalt concrete largely depend on air void content. An excessively high content
of air voids adversely affects AC resistance to moisture and frost, and its performance under heavy
loads. On the other hand, the insufficient content of air voids worsens the resistance of the bituminous
mixture to permanent deformation, despite having a positive effect on moisture and frost resistance.

The percentage of air voids was calculated in accordance with EN 12697-8: 2005 on the basis of
the following relationship

Va =
ρm − ρb

ρm
100% (1)

where: Va is the air void content in the bituminous mixture (volume %); ρm is the theoretical maximum
density of mixture (kg/m3); ρb is the bulk density of compacted mixture (kg/m3).

2.3.2. Indirect Tensile Stiffness Modulus (Sm)

The stiffness modulus of asphalt concrete Sm is a very important parameter, used for predicting AC
behavior under different climatic conditions. In the range of winter negative temperatures, an increase
in its value may indicate that the asphalt concrete is too rigid, which leads to the development of cracks
and, consequently, to the destruction of the asphalt pavement. However, in the range of increasing
summer temperatures, the parameter should reach the highest values, then the pavement will be
resistant to permanent deformation. Stiffness modulus tests were performed at −10 ◦C, 0 ◦C, 10 ◦C,
20 ◦C, and 30 ◦C, corresponding to the average temperature of the winter period, spring transition
period, the beginning of spring, the beginning of summer, and the average summer temperature.
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The stiffness modulus was determined with the standard load pulse applied to the specimen
surface, following the procedure outlined in EN 12697-26 (Figure 4).Materials 2020, 13, x FOR PEER REVIEW 8 of 26 
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Figure 4. An example of a force applied to the specimen and the loading scheme [71]: (a) loading pulse
form (1: maximum loading, 2: periodical force pulse, 3: force increase time), (b) set-up for indirect
tensile stiffness modulus test; laboratory at Kielce University of Technology, (source: M. M. Iwański).

The test temperature of the mixture after the conditioning period was determined, with an
accuracy of ±0.5 ◦C. To ensure the correct performance of the test, before the test, the appropriate value
of Poisson’s ratio (dependent on the temperature and loading time) was entered into the calculation
program. During the test, the load factor was read, and if it was 0.6, the test was correct.

The values of the stiffness modulus and Poisson’s ratio were determined from the following
formulas:

Sm =
F·(v + 0.27)

z·h
(2)

v = 3.59·
z

∆V
− 0.27 (3)

where:
Sm is the indirect tensile stiffness modulus [MPa],
F is the maximum force applied to the specimen [N],
ν is the temperature-dependent Poisson’s ratio,
z is the horizontal displacement amplitude for the specimen under loading [mm],
h is the specimen thickness [mm],
∆V is the maximum vertical displacement of the specimen (corresponding to maximum horizontal

displacement) (mm).
Analysis of Equation (3) indicates that the increase in transverse strain and the specimen thickness

contribute to the lowering of internal stresses in the pavement, and thus to the Sm reduction.
When the load factor was not 0.6, the stiffness modulus of the mixture was calculated using the

following formula:
Sm’ = Sm·[1 − 0.322·(log (Sm) − 1.82)·(0.60 − k)] (4)

where:
Sm’ is the stiffness modulus with the load factor accounted for [MPa],
k is the value of the load factor.



Materials 2020, 13, 4731 9 of 25

2.3.3. Resistance to Permanent Deformation

Resistance to permanent deformation of the asphalt concrete was assessed to EN 12697-22. The test
was carried out in air, in a small wheel tracking device, using rectangular prisms 400 mm × 300 mm and
40 mm thick, as outlined in WT-2 2014 [68]. The specimen mass varied with the density value obtained
in the Marshall tests performed earlier. The testing procedure consisted of placing the specimen in
a steel mold, and mounting it on a movable tray. After a 6-h conditioning period, starting from the
moment the device reached the temperature of 60 ± 1 ◦C, the specimens were subjected to a load of
700 ± 10 N, using a wheel 200 mm in diameter with a tire 50 ± 1 mm in width, which tracked on the
specimen along a length of 230 mm ± 10 mm. Rut depth was measured continuously on the specimen.
The test wheel travelled 26.5 cycles per 60 s. The test was continued to reach 10,000 cycles. Results
were used to determine the slope of the WTSAIR rutting plot and the proportional rut depth (PRDAIR).
The proportional rut depth and the maximum rut depth gain were calculated from:

PRDAIR =
RDAIR

h
·100% (5)

WTSAIR =
(d10000 − d5000)

5
[mm/10000cycles] (6)

where:
RDAIR is the rut depth (mm),
d10000 is the rut depth after 10,000 cycles (mm),
d5000 is the rut depth after 5000 cycles (mm),
h is the specimen height (mm).
For further analyses, the arithmetic mean of nine tests was taken as the final result of AC resistance

to permanent deformation.

2.3.4. Statistical Analysis of Test Results

The obtained test results were subjected to statistical analysis of variance (ANOVA), the purpose
of which was to determine the significance of the impact of the given factor (hydrated lime, HL, foamed
bitumen, FB) on the properties of the bituminous mixture [73,74].

The amounts of foamed bitumen and hydrated lime were assumed to be significant factors
affecting the analyzed AC property when the p-value characterizing them was less than the assumed
significance level α = 0.05.

The change in the value of the tested parameter (A) in asphalt concrete AC 8 S, relative to the
contents of foamed bitumen 50/70 with 0.6% SAA and hydrated lime, was comprehensively described
with a statistical model using the second-degree polynomial [73]:

y = b0 +
n∑

i=1

bi · xi +
n∑

i= j=1

bi= j · xi · x j +
n∑

i=1

bii · x2
i (7)

which in the performed analysis takes the form:

A = b0 + b1·x1 + b2·x2 + b3·x1·x2 + b4·x1
2 + b5·x2

2 (8)

where x1 = foamed bitumen (FB) (%), x2 = hydrated lime (HL) (%), b0-b5 are regression coefficients.
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3. Results and Discussion

3.1. The Effects of Foamed Bitumen and Hydrated Lime on Air Void Content in Asphalt Concrete

Proper performance of the asphalt concrete in the pavement, and its durability, are secured
when the air void content in the HWMA concrete is close to or more advantageous than that of the
HMA concrete.

The air void content in AC 8 S was determined in accordance with the methodology set forth in
EN 12697-6:2008. Asphalt concrete AC 8 S should have 2.0% to 4.0% air voids [68,69,72]. Each test
series consisted of nine trials, the number of which was determined in accordance with [70,71].
The homogeneity of the results was confirmed by the coefficient of variation ranging from 3.36%
to 7.77%. The ANOVA test showed that the content of foamed bitumen and hydrated lime was a
significant factor that affected the quantity of air voids in AC 8 S, because the p-value was lower than
the significance level α = 0.05. It was also found that there were interactions between the amount of
foamed bitumen and hydrated lime, which influenced the air void content in the mixture (p-value less
than α = 0.05).

A graphical representation of the data is shown in Figure 5.
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Figure 5. Air void content in AC 8 S as a function of the content of hydrated lime (0%, 15%, 30%, 45%)
and foamed bitumen modified with 0.6% SAA (5.6%, 5.9%, 6.2%, 6.5%).

Analysis of the test results in Figure 5 leads to the conclusion that the content of both the foamed
bitumen and the hydrated lime substantially affect the percentage content of air voids in AC 8 S. As the
amount of foam bitumen increases to 6.5%, the air void content decreases, regardless of the hydrated
lime quantity added. The use of hydrated lime at 15%, in place of a portion of limestone dust, alters
this parameter considerably. The amount of air is reduced, which is certainly the effect of improving
the adhesion between the bitumen and mineral mixture. The 30% and 45% m/m content of hydrated
lime in place of limestone dust increases the air void content, regardless of the amount of foamed
bitumen used in the asphalt concrete. This may be related to an insufficient amount of the binder,
being the result of the use of hydrated lime, which has a larger specific surface area than limestone
dust. As a result of the “deficiency” of the required amount of the binder, the mixture becomes difficult
to compact to the proper level, and the air void content increases [32]. Regardless of the hydrated
lime content, the smallest amount of air voids is found in AC 8 S containing 6.5% foamed bitumen.
A high binder content, however, may cause it to fail to maintain adequate resistance to permanent
deformation [30,31].

A comprehensive analysis of the air void content variation, with respect to the amount of hydrated
lime and foamed bitumen 50/70 modified with 0.6% SAA, was presented using a statistical model [74].

Table 5 compiles the values describing the parameters of the regression model for the relationships
between the air void content in AC 8 S and the content of SAA modified foamed bitumen and
hydrated lime.
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Table 5. Parameters of the model describing the relationships between Va of AC 8 S and the contents of
foamed bitumen with 0.6% SAA and hydrated lime.

Effect Regression Coeff. SE p-Value −95%
Cnf. Lmt

+95%
Cnf. Lmt

Variable: Va (%), R2 = 0.880; R2 adj. = 0.875

Intercept 68.159 6.791 <0.001 54.720 81.596
(1) Foamed bitumen (%)(L) −18.425 2.247 <0.001 −22.872 −1.978
Foamed bitumen (%)(Q) 1.266 0.185 <0.001 0.898 1.6334
(2) Hydrated lime (%)(L) −0.276 0.018 <0.001 −0.13 −0.241
Hydrated lime (%)(Q) 0.001 0.001 <0.001 <0.001 <0.001
1 L ∗ 2 L 0.038 0.003 <0.001 0.032 0.044

where Q = quadratic, L = linear.

Analysis of the results (Table 5) indicates that both the quantity of foamed bitumen 50/70 and
hydrated lime, as well as the interaction between these factors, have a substantial impact on the air
void content in the asphalt concrete. A synergistic effect of the hydrated lime and foamed bitumen
containing 0.6% SAA occurs in the asphalt concrete. The model of the analyzed relationships was
adopted correctly because the adjusted coefficient of determination (R2) was 88%.

The impact of hydrated lime and foamed asphalt on the content of air voids (Va) in AC 8 S for the
developed model is shown in Figure 6.
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Figure 6. Air void content (Va) of AC 8 S as a function of the quantity of foamed bitumen and hydrated
lime; the model describing these relationships Va = 68.158 − 18.425FB + 1.266FB2

− 0.276HL + 0.001HL2

+ 0.038FB·HL [74].

The test results obtained show that, throughout the entire scope of the experiment, increasing
the content of foamed bitumen and hydrated lime reduced the content of air voids in the asphalt
concrete. At the same time, the hydrated lime had a significant effect on the assessed parameter; in the
range from 5.6% to 5.9% of the foamed bitumen, it increased the air void content over the maximum
recommended value of 4.0%. The increase in the foamed bitumen content in the range from 5.9% to
6.2%, at the hydrated lime content of 15% to 30%, allowed the parameter to achieve the recommended
values [68]. A further increase in the foamed bitumen content up to 6.5% reduced the quantity of air
voids below the required 4.0% [68].
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3.2. Effect of Foamed Bitumen and Hydrated Lime on Asphalt Concrete Stiffness Modulus

A universal testing machine UTM-25 was employed to determine the stiffness modulus Sm of
the asphalt concrete AC 8 S. Both the specimens and the accessories of the test device were placed in
a thermostatic chamber prior to testing, as required by EN 12697-26. Each series of test specimens
consisted of nine samples, the number of which was determined according to [70,71]. The results
were characterized by high repeatability, as the coefficient of variation was between 2.17% and 8.80%
throughout the entire experiment.

The results of stiffness modulus Sm testing at various test temperatures (−10 ◦C, 0 ◦C, 10 ◦C, 20 ◦C,
and 30 ◦C) are shown in Figure 7.
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The test results show that the content of hydrated lime has a significant effect on the stiffness
modulus Sm of asphalt concrete AC 8 S at temperatures from −10 ◦C to 30 ◦C. The extent of this
effect depends on the content of foamed bitumen. Test temperature also influences the value of this
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parameter. In the temperature range −10 ◦C to 0 ◦C, the influence of hydrated lime and foam bitumen
is the same. Increasing the amount of both components causes the stiffness modulus to increase.
Nevertheless, the effect of hydrated lime is more significant than that of the binder.

When increased from 10 ◦C to 20 ◦C, the test temperature alters the nature of the interaction
between hydrated lime and foamed bitumen. The effect of the binder becomes more important,
although hydrated lime also plays a significant role.

A further increase in the test temperature up to 30 ◦C enhances the effect of hydrated lime on the
modulus, while the amount of bitumen remains less significant. The observed relationship is very
important, because it means that by substantially increasing the stiffness modulus, the hydrated lime
provides asphalt concrete with greater resistance to permanent deformation.

The most beneficial effect of hydrated lime on the stiffness modulus of HWMA concrete AC 8 S,
in the test temperature range from −10 ◦C to +30 ◦C, can be observed for the HL content from 15% to
30%, and foamed bitumen content from 5.9% to 6.2%. Proper performance of asphalt concrete AC
8 S in the structural layer of the pavement will be ensured, both in winter (no cracks) and in summer
(resistance to permanent deformation).

A second-degree polynomial model was adopted to comprehensively describe the relationship
between the stiffness modulus (Sm) of HWMA concrete AC 8 S (foamed bitumen 50/70 modified with
0.6% SAA; hydrated lime) and the test temperature. The model was assessed with the analysis of
variance (ANOVA) [73,74].

Analysis of the parameters indicates that the amount of foamed bitumen and hydrated lime is a
significant factor that affects the stiffness modulus (Sm) of the asphalt concrete AC 8 S, because the
levels of p-value related to them are lower than the assumed significance level α = 0.05. The intensity
of this effect relies on the test temperature, and is most pronounced at temperatures −10 ◦C, 20 ◦C,
and 30 ◦C. Please note the significant role of the interactions between foamed bitumen and hydrated
lime. The interactions affect the value of the parameter (the p-value is less than α = 0.05), thereby
confirming the synergy between these two factors. This effect supports the assumption about the
desirability of using both the foamed bitumen and the hydrated lime in asphalt concrete.

The value of the adjusted coefficient of determination (R2) ranges from 81% to 94%, depending on
the stiffness modulus and the test temperature applied. The R2 values indicate the correctness of the
adopted models for describing the relationships between the stiffness modulus (Sm) of the asphalt
concrete AC 8 S, and the amount of foamed bitumen and hydrated lime.

The parameters of the regression model for the relationship between the Sm and the amount of
hydrated lime and foamed bitumen are summarized in Table 6.
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Table 6. Stiffness modulus (Sm) of the HWMA concrete, as a function of test temperature and the
amount of foamed bitumen and hydrated lime.

Effect Regression Coeff. SE p-Value −95% Cnf.
Lmt

+95% Cnf.
Lmt

Variable: Sm-10 (MPa), R2 = 0.8187; R2 adj = 0.8122, Pure Error MS = 1,809,712

Intercept 31,976.28 45,578.49 0.4842 −58,208.5 122,161.1
(1) Foamed bitumen (%)(L) −4250.82 15,082.22 0.7785 −34,093.6 25,591.9
Foamed bitumen (%)(Q) 535.14 1245.61 0.6682 −1929.5 2999.8
(2) Hydrated Lime (%)(L) −560.66 122.82 <0.001 −803.7 −317.6
Hydrated Lime (%)(Q) 2.21 0.50 <0.001 1.2 3.2
1 L × 2 L 100.37 19.93 <0.001 60.9 139.8

Variable: Sm0 (MPa); R2 = 0.8567; R2 adj = 0.8512; Pure Error = 1743,61

Intercept −14,876.7 44,742.85 0.7401 −103,408 73,654.63
(1) Foamed bitumen (%)(L) 6178.5 14,805.70 0.6771 −23,117 35,474.09
Foamed bitumen (%)(Q) −203.2 1222.77 0.8683 −2623 2216.31
(2) Hydrated Lime (%)(L) −178.1 120.57 0.1422 −417 60.52
Hydrated Lime (%)(Q) −0.8 0.49 0.1111 −2 0.18
1 L × 2 L 61.4 19.56 <0.001 23 100.06

Variable: Sm10 (MPa); R2 = 0.8714, R2 adj = 0.8667, Pure Error MS = 45,0536.1

42,843.7 22,741.54 0.0618 −2,154.3 87,841.71
(1) Foamed bitumen (%)(L) −11,206.5 7525.32 0.1389 −26,096.6 3683.69
Foamed bitumen (%)(Q) 846.5 621.50 0.1756 −383.3 2076.24
(2) Hydrated Lime (%)(L) −194.2 61.28 <0.001 −315.4 −72.92
Hydrated Lime (%)(Q) 1.2 0.25 <0.001 0.8 1.74
1 L × 2 L 43.8 9.94 <0.001 24.1 63.43

Variable: Sm20 (MPa); R2 = 0.9434; R2 adj = 0.946; Pure Error MS = 79,096.06

Intercept 44,108.5 9528.677 <0.001 25,254.4 62,962.65
(1) Foamed bitumen (%)(L) −13,433.1 3153.101 <0.001 −19,672.1 −7194.16
Foamed bitumen (%)(Q) 1068.0 260.408 <0.001 552.7 1583.2
(2) Hydrated Lime (%)(L) 117.0 25.678 <0.001 66.2 167.82
Hydrated Lime (%)(Q) −0.1 0.104 0.3932 −0.3 0.12
1 L × 2 L −6.4 4.167 0.1282 −14.6 1.86

Variable: Sm30 (MPa); R2 = 0.9285, R2 adj = 0.9259, Pure Error MS = 15,126.99

Intercept 4073.402 4167.076 0.3303 −4171.87 12,318.67
(1) Foamed bitumen (%)(L) −872.150 1378.912 0.5282 −3600.56 1856.26
Foamed bitumen (%)(Q) 61.340 113.881 0.5911 −163.99 286.67
(2) Hydrated Lime (%)(L) 6.551 11.229 0.5606 −15.67 28.77
Hydrated Lime (%)(Q) −0.376 0.046 <0.001 −0.47 −0.29
1 L × 2 L 5.991 1.822 <0.001 2.39 9.60

Analysis of the parameters compiled in Table 5 confirms the significance of hydrated lime in
affecting the stiffness modulus (Sm) of AC 8 S, because the levels of p-value are lower than the assumed
significance level α = 0.05. It is important to note, the interaction between the foamed bitumen and
hydrated lime for the stiffness modulus, Sm-10 and Sm10 (the p-value is less than α = 0.05).

The value of the adjusted coefficient of determination (R2) reaches nearly 81%, 85%, 87%, 94%,
and 93%, respectively, at temperatures −10 ◦C, 0 ◦C, 10 ◦C, 20 ◦C, and 30 ◦C, which indicates a high
reliability of the adopted models for describing the stiffness modulus (Sm) against the amount of
foamed bitumen and hydrated lime (Figure 8).
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560.6 HL + 2.2 HL2 + 100.4 FB HL, (b) Sm0 = - 14,876.7 +6178.5 FB − 203.2 FB2
− 178.1 HL − 0.8 HL2 +

61.4 FB HL, (c) Sm10 = 42,843.7 − 11,206.5 FB + 846.5 FB2
− 194.2 HL + 1.2 HL2 + 43.8 FB HL, (d) Sm20 =

44,108.5 − 13,433.1 FB + 1068.0 FB2 + 117.0 HL − 0.1 HL2
− 6.4 FB HL, (e) Sm30 = 4073.4 − 872.1 FB +

61.3 FB2 + 6.5 HL − 0.4 HL2 + 6.0 FB HL.

A comprehensive analysis of the results based on the data in Figure 8 indicates that at −10 ◦C,
the value of the stiffness modulus (Sm-10) shows no significant increase, with the amount of foamed
bitumen increasing from 5.9% to 6.2%, and the amount of hydrated lime increasing from 15% to 30%.
There is an interaction between the hydrated lime and foamed bitumen for providing AC 8 S with the
resistance to low temperatures. The use of foamed bitumen in this quantity will have an advantageous
effect on AC performance at low temperatures, making it less susceptible to low-temperature cracking
than HMA.

In the entire domain of the experiment, an increase in the content of foamed bitumen and hydrated
lime steadily increased the value of the stiffness modulus (Sm0), with the highest increase rate occurring
diagonally across the foamed bitumen/hydrated lime relationship. The hydrated lime interacts with
foamed bitumen, and provides AC 8 S with the resistance to low temperatures. The most advantageous
effect was observed for the hydrated lime used at 30%, as a replacement for the mineral filler.
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A detailed analysis of Sm results within the test temperature range 10 ◦C to 30 ◦C shows that the
amount of the hydrated lime, increasing from 15% to 45%, has a significant effect on the modulus
value. At lower foamed bitumen content, the binder tends to interact with the hydrated lime, and this
interaction increases the stiffness modulus of the AC 8 S mixture.

To assess the effect of hydrated lime and foamed bitumen 50/70 with the addition of 0.6% SAA on
the properties of the AC 8 S bituminous mixture, the correlation between the air void content (Va) and
stiffness modulus (Sm) was analyzed (Figure 9).
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The statistically significant correlation between the air void content (Va) of AC 8 S and the stiffness
modulus (Sm) has a linear character (p-value less than α = 0.05).

3.3. Optimization of the Foamed Bitumen and Hydrated Lime Content in Terms of Service Durability of
HWMA Concrete AC 8 S

An important element of the assessment of the impact of hydrated lime and foamed bitumen
50/70 modified with 0.6% SAA is the analysis of the relationships between the assessed properties of
asphalt concrete AC 8 S. The analysis is summarized as correlations in Table 7 [74].

Table 7. Correlations between AC 8 S parameters.

Variable Sm-10 (MPa) Sm+30 (MPa) Sm+20 (MPa) Sm+10 (MPa) Sm0 (MPa) Va (%)

Sm-10 (MPa) 1.000 0.719 0.617 0.731 0.806 −0.086
p = --- p ≤ 0.001 p ≤ 0.001 p ≤ 0.001 p ≤ 0.001 p = 0.30

Sm+30 (MPa) 0.719 1.000 0.912 0.847 0.756 0.191
p ≤ 0.001 p = --- p ≤ 0.001 p ≤ 0.001 p ≤ 0.001 p = 0.02

Sm+20 (MPa) 0.617 0.9122 1.000 0.869 0.645 0.377
p ≤ 0.001 p ≤ 0.001 p = --- p ≤ 0.001 p ≤ 0.001 p ≤ 0.001

Sm+10 (MPa) 0,731 0.847 0.869 1.000 0,696 0.347
p ≤ 0.001 p ≤ 0.001 p ≤ 0.001 p = --- p ≤ 0.001 p ≤ 0.001

Sm0 (MPa) 0.805 0.756 0.645 0.696 1.000 −0.187
p ≤ 0.001 p ≤ 0.001 p ≤ 0.001 p ≤ 0.001 P = --- p = 0.02

Va (%) −0.086 0.191 0.377 0.347 −0.187 1.000
p = 0.303 p = 0.022 p ≤ 0.001 p ≤ 0.001 p = 0.025 p = —

Correlations and correlation coefficients are significant when p < 0.05.

The main correlation parameter was the content of air voids Va, which had a significant impact on
other properties of asphalt concrete AC 8 S. It can be concluded that the correlations between virtually
all analyzed properties, except the stiffness modulus (Sm-10) at −10 ◦C, are statistically significant,
although not at the highest level. This effect may be related to the specific conditions (temperature
−10 ◦C) of the test. The correlation values correspond to the analysis results obtained from the
experiment, which shows that either most of the results are non-linear or statistically significant
interactions occurred.

When assessing the impact of additives in both bitumen (50/70) and asphalt concrete mixtures
(AC 8 S), it is very important to optimize them using the obtained mathematical regression models and
statistical analysis program [73,74].

For ensuring the most favorable properties of AC 8 S, the recommended amount of hydrated lime
and foamed bitumen was determined through the analysis of the results from a simultaneous response
optimization of the following parameters (variables):

- air void content (Va) according to WT-2 2014 [68],
- stiffness modulus at −10 ◦C, 0 ◦C, +10 ◦C, +20 ◦C, and +30 ◦C, according to EN 12697-26, and

depending on the content of the foamed bitumen and hydrated lime in HWMA concrete AC 8 S.

The models for the optimized variables are summarized in Table 8.



Materials 2020, 13, 4731 19 of 25

Table 8. Parameters of the models characterizing the variables subjected to optimization.

Dependent
Variable

SS Test for the Full Model with Respect to SS for Residual

Multicrit.
R

Multicrit.
R2

Adjusted.
R2

SS
Model

MS
Model

SS
Residual

MS
Residual F p

Va (%) 0.908 0.826 0.821 1.043 × 102 26 22 0 165.1 <0.001
Sm-10 (MPa) 0.888 0.789 0.783 1.224 × 109 305,969,940 326,976,774 2,352,351 130.0 <0.001
Sm0 (MPa) 0.920 0.846 0.842 1.435 × 109 358,641,446 259,957,219 1,870,196 191.7 <0.001

Sm +10 (MPa) 0.927 0.860 0.856 6.603 × 108 165,078,470 107,443,778 772,977 213.5 <0.001
Sm+20 (MPa) 0.971 0.942 0.941 2.325 × 108 58,116,523 14,086,527 101,342 573.4 <0.001
Sm+30 (MPa) 0.960 0.923 0.920 2.811 × 107 7,028,122 2,340,397 16,837 417.4 <0.001

The relationships described above and the evaluation of the values listed in Table 7 show that all
analyzed models adequately describe the most important properties of AC 8 S, and can be used to
optimize its composition. The adjusted determination coefficient (R2) assumes values from 0.789 to
0.942, which indicates a high reliability of the optimization parameters.

The performance of AC 8 S was measured using the following metrics: the most desirable
parameter values were assigned the performance indicator equal to 1, and the least desired values were
assigned 0. The used optimization procedure was described in detail in [75]. The following criteria
were applied for the individual parameters of asphalt concrete:

Air void content Va (max: 0, min: 1),
Stiffness modulus, Sm-10, according to WT-2 (max: 0, min: 1),
Stiffness modulus, Sm0, according to WT-2 (max: 0, min: 1),
Stiffness modulus, Sm+10, according to WT-2 (max: 1, min: 0),
Stiffness modulus, Sm+20, according to WT-2 (max: 1, min: 0),
Stiffness modulus, Sm+30, according to WT-2 (max: 1, min: 0),

The results of the optimization of hydrated lime and foamed bitumen in AC 8 S are shown in
Figure 10.

The profiles of approximated values and the desirability of the adopted variables (asphalt concrete
parameters) were analyzed, and the recommended content of foamed bitumen was determined at
5.8% and that of hydrated lime at 33.8%. Considering the process of dosing the components of the
asphalt concrete and their tolerances, the following recommended amounts were adopted: 5.9% of
foamed bitumen 50/70 containing 0.6% SAA and 30% of hydrated lime as a partial replacement for the
mineral filler.

Assessment of the resistance of AC 8 S to permanent deformation was performed for the
recommended content of foamed bitumen (5.9%) and hydrated lime at 0%, 15%, 30%, and 45%, as per
WT-2 2014 [68]. According to the requirements of WT-2 2014, AC 8 S should have WTSAIR < 0.15 and
PRDAIR < 9 [68].

A graphical interpretation of the parameters representing the resistance of AC 8 S mixture to
permanent deformation is shown in Figure 11.
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Analysis of the results indicates that hydrated lime significantly influences the resistance to
permanent deformation of HWMA mixture AC 8 S produced with foamed bitumen 50/70 modified
with 0.6 wt% of SAA. Having 30% hydrated lime in its composition, AC 8 S meets the normative
requirements, and is resistant to permanent deformation. Increasing the amount of hydrated lime to
40% leads to a slight increase in the value of the WTSAIR parameter. A more significant effect of hydrated
lime is observed in the PRDAIR parameter. A 40% HL content affects the stiffness modulus at −10 ◦C
more significantly than 30% HL content, which, as mentioned earlier, can promote low temperature
cracking. For all these reasons, the 30% hydrated lime content, used as a partial replacement for the
mineral filler, and the 5.9% foamed bitumen content (bitumen 50/70 treated with 0.6% SAA) were
adopted as recommended in AC 8 S asphalt concrete.

The recommended composition in terms of the contents of foamed bitumen and hydrated lime
ensures obtaining highly durable asphalt concrete AC 8 S, as shown by the significant resistance to
moisture, frost, and permanent deformation.

4. Conclusions

Comprehensive analysis of the test data was the basis for the following conclusions concerning
the HWMA mixture AC 8 S, produced with the addition of hydrated lime (HL):

• The content of air voids in AC 8 S shows an advantageous reduction with the addition of 15%
hydrated lime (as a replacement of mineral filler) and at the content of SAA treated foamed
bitumen of 5.6%. However, a higher HL percentage tends to increase the air void content in the
mixture yet again. This may be because at higher concentrations, hydrated lime hinders asphalt
concrete compaction. On the other hand, increasing the amount of binder has a positive effect on
air void reduction in AC S 8, though the trend is the same as at 5.6%.

• The stiffness modulus tests conducted at −10 ◦C and 0 ◦C revealed an advantageous effect of
hydrated lime, when used at 30% to 45%, and foamed bitumen 50/70 (modified with 0.6% SAA),
when used at 5.9% to 6.5%. It was found that the interaction between the contents of the hydrated
lime and foamed bitumen had a substantial influence on the stiffness modulus, as did the hydrated
lime, used at 30% to 45%, at temperatures of 10 ◦C, 20 ◦C, and 30 ◦C.

• Optimization of HWMA concrete AC 8 S, in terms of its most relevant parameters allowed
determining the optimum content of hydrated lime and foamed bitumen as 5.9% and 30%,
respectively (dose tolerance considered).

• The asphalt concrete containing 5.9% bitumen 50/70 with 0.6% SAA, and hydrated lime content of
30% is characterized by high resistance to permanent deformation (WTSAIR and PRDAIR), thereby
ensuring the service durability of the pavement.

• The results of the tests revealed a significant effect of the SAA-modified (0.6%) foamed bitumen
50/70 and hydrated lime contents on the characteristics of HWMA mixture AC 8 S. The synergistic
effect of the two materials is variable, and depends on the parameter analyzed.

The results of the stiffness modulus tests in the temperature range from −10 ◦C to 10 ◦C provide
sufficient evidence to conclude that at temperatures below zero a AC 8 S-based pavement should
perform well. No defects should appear. The high values of mechanical characteristics represented by
the stiffness moduli at temperatures between +20 ◦C and +30 ◦C should ensure the resistance of the
road surface to the effects of vehicle traffic. The values of WTSAIR and PRDAIR indicate a high resistance
of AC 8 S to permanent deformation. This is particularly visible when hydrated lime content is 30%,
for which the WTSAIR reaches half the limit of this parameter. It follows from the above that HWMA
concrete AC 8 S, produced with water-foamed bitumen and hydrated lime, can be recommended for
road use (in situ) for a long-life deformation resistant asphalt concrete surface.
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11. Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M. Study of the Simultaneous Utilization of Mechanical
Water Foaming and Zeolites and Their Effects on the Properties of Warm Mix Asphalt Concrete. Materials
2020, 13, 357. [CrossRef] [PubMed]

12. Woszuk, A.; Zofka, A.; Bandura, L.; Franus, W. Effect of zeolite properties on asphalt foaming. Constr. Build.
Mater. 2017, 139, 247–255. [CrossRef]
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20. Mrugała, J.; Iwański, M.M. Resistance to Permanent Deformation of Asphalt Concrete with F-T Wax Modified
Foamed Bitumen. Procedia Eng. 2015, 108, 459–466. [CrossRef]

21. Lu, X.; Redelius, P. Effect of bitumen wax on asphalt performance. Constr. Build. Mater. 2006, 21, 1961–1970.
[CrossRef]
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23. Iwański, M.; Chomicz-Kowalska, A. Evaluation of the pavement performance. Bull. Pol. Acad. Sci. Tech. Sci.
2015, 63, 97–105. [CrossRef]

24. Król, J.; Kowalski, K.; Radziszewski, P.; Sarnowski, M. Rheological behaviour of n-alkane modified bitumen
in aspect of Warm Mix Asphalt technology. Constr. Build. Mater. 2015, 93, 703–710. [CrossRef]

25. Ai, C.; Li, J.Q.; Qiu, Y. Testing and assessing the performance of a new warm mix asphalt with SMC. J. Traffic
Transp. Eng. 2015, 2, 399–405. [CrossRef]

26. Vega-Zamanillo, Á.; Calzada-Perez, M.; Sanchez-Alonso, E.; Gonzalo-Orden, H. Density, Adhesion and
Stiffness of Warm Mix Asphalts. Procedia Soc. Behav. Sci. 2014, 160, 323–331. [CrossRef]

27. Sanchez-Alonso, E.; Vega-Zamanillo, Á.; Castro-Fresno, D.; DelRio-Prat, M. Evaluation of compactability and
mechanical properties of bituminous mixes with warm additives. Constr. Build. Mater. 2011, 25, 2304–2311.
[CrossRef]
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