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Abstract: A high-accuracy algorithm is presented for the localization of mixed incoherent near-field
and far-field narrow-band sources under uniform circular array (UCA). Herein, considering that
it is difficult to classify the mixed sources, we first decouple mixed sources’ angles and ranges by
calculating centro-symmetric sensors’ phase differences. Then, as the phase differences including
only sources’ angles can be transformed as indefinite equations, each source’s azimuth angle and
elevation angle are obtained by performing the least squares method. After that, on the basis of the
estimated angles of the mixed sources, one-dimensional (1-D) multiple signal classification (MUSIC)
method and corresponding spatial spectrum are utilized to identify the mixed sources and estimate
the ranges of the near-field sources. Finally, simulation and comparison results verify the superior
performance of our proposed algorithm.

Keywords: mixed sources; uniform circular array (UCA); least squares method; parameter estimation;
phase difference

1. Introduction

Passive source localization using an array of spatially separated sensors is significant in the field
of sonar, radar, wireless communication, etc. Many super-resolution algorithms have been presented
to solve the localization of pure near-field sources (NFSs) condition or pure far-field sources (FFSs)
condition [1–6]. However, considering some practical applications, such as speaker localization via
microphone array and guidance system, speakers may be in the mixed near-field or far-field of the
array location. Due to the fact that most super-resolution algorithms inherently require the radiation
sources to be pure near-field sources or pure far-field sources, traditional methods may fail in such
mixed circumstances [7–13].

Considering the configuration of the symmetric uniform linear array (ULA) and the mixed source
condition, spatial differencing technique is performed to identify the near-field sources from the
mixed sources and obtain the elevation angles and ranges of the near-field sources along with the
elevation angles of the far-field sources, respectively [12]. However, the aforementioned method has
limitation because the configuration of ULA can only be used in the condition of two-dimensional
(2-D) localization (elevation angle and range). The array structure of the uniform circular array (UCA)
has all-round azimuthal coverage and additional elevation angle information, which is preferable over
the array structure of ULA [2–5]. As for the localization of 3-D condition (azimuth angle, elevation
angle and range), based on the centro-symmetric configuration of UCA, Wu et al. [4] employed
2-D multiple signal classification (MUSIC) method to search the 2-D direction of arrivals (DOAs),
and further utilized 1-D MUSIC method to estimate corresponding ranges, which can handle multiple
near-field sources. Employing the phase of the adjacent sensors’ correlation function, Chen et al. [14]
presented a phase-based algorithm to estimate the 2-D DOAs and ranges of multiple near-field sources,
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which is more computationally simple. However, due to the fact that it is difficult to classify mixed
sources, the aforementioned methods cannot be extended to the localization for mixed near-field and
far-field sources.

Recently, by employing differencing matrix, Xue et al. [13] first employed differencing matrix
to separate the near-field sources from the mixed sources and obtain the 2-D DOAs of the near-field
sources. Then, 1-D MUSIC method and 2-D MUSIC method are utilized to obtain the ranges
of near-field sources and the 2-D DOAs of far-field sources, respectively. However, this method
shows an unsatisfactory performance because it needs an expensive search process and thus suffers
from computational cost. Therefore, the goal of this paper is to explore how to utilize the efficient
methodology such as the phase-based algorithm for the mixed source localization under UCA.

In this paper, according to the centro-symmetric property of a fixed UCA, we presents a
closed-form algorithm which extends the scheme in [3] to estimate the 2-D DOAs of mixed near-field
and far-field narrow-band sources. Firstly, considering that it is difficult to classify mixed sources,
we decouple angle parameters from array direction vector by calculating centro-symmetric sensors’
phase differences. After that, as the phase differences can be expressed as indefinite equations,
we perform the least squares method to estimate the 2-D DOAs of the mixed sources. Meanwhile,
substituting the obtained 2-D DOAs into the steering vector of the near-field source, this paper
employs 1-D MUSIC method to obtain the ranges of near-field sources. Moreover, according to
different convergence of near-field source’s range and far-field source’s range, we utilize the range
spatial spectrum to identify the mixed sources. Compared with the two-stage MUSIC (TSMUSIC)
approach [13], the proposed algorithm is computationally simple and provides the 2-D DOAs of
all sources simultaneously. Simulation results verify that the proposed algorithm can realize mixed
incoherent source localization with satisfactory performance.

2. Signal Model

A UCA with radius R and M identical omnidirectional sensors impinged by P incoherent
narrow-band signals is considered in this paper, its geometry is shown in Figure 1. The mixed
narrow-band sources contains PNFS near-field sources and PFFS far-field sources. Each source has a
different frequency. The sensors are uniformly distributed on the circumference and the first sensor is
located at the x-axis. Moreover, phase reference point is the array center and all sensors are employed
on a plane. The near-field source comes from (φNFS, θNFS, rNFS) and the far-field source comes from
(φFFS, θFFS, ∞), where φ ∈ [0, 2π) is the azimuth angle which is measured counterclockwise from the
x-axis, θ ∈ [0, π/2) is the elevation angle which is measured downward from the z-axis and r is the
range which is measured from the array center.

The received data of the mth sensor in the UCA at the nth sample can be expressed as

xm[n] =
P

∑
p=1

sp[n− τm] + wm[n] (1)

for m = 1, 2, . . . , M and n = 1, 2, . . . , N, where sp[n] denotes the pth narrow-band source sampling
with power σ2

s,p, wm[n] is independent of s[n], which is assumed to be a zero-mean white complex
Gaussian noise with power σ2

n , τm is the propagation delay of the mth sensor when taking array center
as a benchmark, and the propagation delay of far-field source can be expressed as

τFFS,m = R cos(γm − φFFS) sin θFFS/c (2)

where γm = 2π(m− 1)/M and c is the speed of light. Considering that near-field source is in the
Fresnel region of the array aperture, the wavefront have to be characterized by azimuth angle, elevation
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angle and range. Therefore, taking the array center as a benchmark, the propagation delay of near-field
source for the mth sensor can be expressed as

τNFS,m = (rNFS,m(φNFS, θNFS, rNFS)− rNFS)/c (3)

where rNFS,m(φNFS, θNFS, rNFS) is the range between the near-field source and the mth sensor, which
can be given by

rNFS,m(φNFS, θNFS, rNFS) =
√

rNFS
2 + R2 − 2rNFSRζm(φNFS, θNFS) (4)

where ζm(φNFS, θNFS) = cos(γm − φNFS) sin θNFS with γm = 2π(m − 1)/M. Considering a
second-order Taylor series expansion around the point where the value of R/rNFS is approximated to
zero, rNFS,m(φNFS, θNFS, rNFS) can be well simplified as

rNFS,m(φNFS, θNFS, rNFS) ≈ rNFS − Rζm(φNFS, θNFS) +
(

R2/2rNFS

)(
1− ζ2

m(φNFS, θNFS)
)

(5)

Because the difference in the envelope of the narrow-band signal can be negligible on each sensor,
substituting (2), (3) and (5) into (1) obtains the mixed incoherent narrow-band near-field and far-field
signal model

xm[n] =
PNFS
∑

p=1
sp[n] exp

{
j2πR fp

c

[
ζm(φp, θp)− R

2rp

(
1− ζ2

m(φp, θp)
)]}

+
PNFS+PFFS

∑
p=PNFS+1

sp[n] exp
{

j2πR fp
c ζm(φp, θp)

}
+ wm[n]

(6)
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Figure 1. Geometry of a UCA with mixed near-field and far-field sources. 

3. Proposed Algorithm 

It can be noticed that exponent part in (6) includes the azimuth angle, elevation angle and range 
parameters of the mixed sources. As the incoherent sources can be resolved in frequency domain, 
this paper first utilizes frequency spectrum to distinguish mixed incoherent sources and find the 
corresponding phase of each spectrum peak in phase spectrum. Then, extending the scheme in [3], 
we decouple and obtain the 2-D DOAs of every single source by calculating the phase difference of 
the centro-symmetric sensors. Finally, on the basis of the estimated angles of mixed sources, 1-D 
MUSIC method is utilized to classify mixed sources and obtain the ranges of near-field sources. 
  

Figure 1. Geometry of a UCA with mixed near-field and far-field sources.

3. Proposed Algorithm

It can be noticed that exponent part in (6) includes the azimuth angle, elevation angle and range
parameters of the mixed sources. As the incoherent sources can be resolved in frequency domain,
this paper first utilizes frequency spectrum to distinguish mixed incoherent sources and find the
corresponding phase of each spectrum peak in phase spectrum. Then, extending the scheme in [3],
we decouple and obtain the 2-D DOAs of every single source by calculating the phase difference of the
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centro-symmetric sensors. Finally, on the basis of the estimated angles of mixed sources, 1-D MUSIC
method is utilized to classify mixed sources and obtain the ranges of near-field sources.

3.1. 2-D DOAs Estimation

When the number of sensors under UCA is even, it can be seen that γm+M/2 = γm + π and
ζm+M/2(φ, θ) = −ζm(φ, θ). Consider the correlation function of the mth centro-symmetric sensors for
a single near-field source expressed as

RNFS,m = E
[
xNFS,mx∗NFS,m+M/2

]
= σ2

s,NFSaNFS,ma∗NFS,m+M/2 + σ2
n,NFS

= σ2
s,NFS exp{(j4πR f /c) cos(γm − φNFS) sin θNFS}+ σ2

n,NFS

(7)

and the correlation function for a single far-field source expressed as

RFFS,m = E
[
xFFS,mx∗FFS,m+M/2

]
= σ2

s,FFSaFFS,ma∗FFS,m+M/2 + σ2
n,FFS

= σ2
s,FFS exp{(j4πR f /c) cos(γm − φFFS) sin θFFS}+ σ2

n,FFS

(8)

for m = 1, 2, . . . , M/2 and (•)* denotes the complex conjugation, where xNFS,m ∈ C1×N and
xFFS,m ∈ C1×N respectively represents the sampling data of the single near-field source and the single
far-field source in the mth sensor, σ2

s,NFS and σ2
s,FFS respectively represents the power of the single

near-field source and the single far-field source, aNFS,m and aFFS,m respectively represent the direction
parameters of the near-field source and the far-field source at the mth sensor, which can be expressed as

aNFS,m = exp
{
(j2πR f /c)

[
ζm(φNFS, θNFS)− (R/2rNFS)

(
1− ζ2

m(φNFS, θNFS)
)]}

(9)

aFFS,m = exp{(j2πR f /c)ζm(φFFS, θFFS)} (10)

Assuming the received data is noiseless, it can be noticed that the phase of RNFS,m and RFFS,m can
be unified as

um = (4πR f /c) cos(γm − φ) sin θ (11)

Accordingly, as the phase of correlation function represents the phase difference of
centro-symmetric sensors and the incoherent sources can be resolved in frequency domain, this paper
utilizes frequency spectrum to distinguish mixed sources and calculate the corresponding phase of
each spectrum peak.

The mth sensor’s frequency spectrum by employing Fourier Transformation algorithm can be
expressed as

Xm[k] =
N

∑
n=1

xm[n] exp(−j2π(n− 1)(k− 1)/N) (12)

for k = 1, 2, . . . , N, and the frequency resolution is ∆ f = fs/N. The frequency estimation of the pth
source can be obtained as

f̂p = fskp/N (13)

where fs is sampling frequency, kp is the position of the pth peak in the frequency spectrum. As shown
in Figure 2a, the aforementioned method can estimate accurately when the source frequency is at
the quantization frequency point. However, as shown in Figure 2b, there will be ±∆ f /2 frequency
estimation error if the source’s frequency lies between the two quantized points.
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Figure 2. The relative position of the pth source frequency at the quantized frequency point:
(a) Coincidence; (b) Mismatch.

Therefore, the adjacent spectral lines of the peak are employed to improve the frequency estimation
in this paper, which can be expressed as

f̂p =
fs

N

(
kp + g

∣∣X[kp + g]
∣∣∣∣X[kp]

∣∣+∣∣X[kp + g]
∣∣
)

(14)

where g = −1 when
∣∣X[kp + 1]

∣∣≤∣∣X[kp − 1]
∣∣, g = 1 when

∣∣X[kp + 1]
∣∣≥∣∣X[kp − 1]

∣∣. In this case,
the error of frequency estimation is ±∆ f /4, which is more accurate than employing only spectrum
peaks to estimate frequency.

The phase difference of the mth centro-symmetric sensors for the pth source can be estimated
from frequency spectrum and corresponding phase spectrum, which is free of range parameters and
can be given by

um,p = arg
(
Xm[kp]

)
− arg

(
Xm+M/2[kp]

)
= (4πR f̂p/c) cos(γm − φp) sin θp

(15)

where Xm[kp] represents the value of the pth peak in the mth sensor’s frequency spectrum, arg(Xm[kp])

represents the phase of Xm[kp] in the exponent part, and f̂p represents the frequency estimation of the
pth source.

In order to avoid the phase ambiguity in um,p, the requirement R ≤ c/4 f is assumed to guarantee
um,p ∈ [−π, π). The phase ambiguity problem has already been well addressed in [14,15]. It can
be noticed that cos(γm − φp) can be decomposed by employing angle transformation formula of
trigonometric function, Therefore, by extending the scheme in [3] to decouple the phase difference
um,p, we reformulate (15) as a form of two matrix multiplications

U = AB (16)

where

U =


u1,1 u1,1 · · · u1,P
u2,1 u2,2 · · · u2,P

...
...

. . .
...

uM/2,1 uM/2,2 · · · uM/2,P

 (17)

A =

[
cos(γ1)

sin(γ1)

cos(γ2)

sin(γ2)

· · ·
· · ·

cos(γM/2)

sin(γM/2)

]T

(18)
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B =
4πR

c

[
f1 cos(φ1) sin(θ1) f2 cos(φ2) sin(θ2) · · · fP cos(φP) sin(θP)

f1 sin(φ1) sin(θ1) f2 sin(φ2) sin(θ2) · · · fP sin(φP) sin(θP)

]
(19)

for m = 1, 2, . . . , M/2 and p = 1, 2, . . . , P, and (•)T denotes the transpose operator. It can be noticed
that only the matrix B includes the unknown azimuth angles and elevation angles. By employing the
least squares method, the optimal solution of B can be obtained as

B̂ =

[
b̂1,1 b̂1,2 · · · b̂1,P

b̂2,1 b̂2,2 · · · b̂2,P

]
= (ATA)

−1
ATU (20)

where (•)−1 denotes the inverse operator. Therefore, on the basic of the pth vector of B, the pth source’s
azimuth angle and elevation angle can be respectively obtained from (19)

φ̂p = arg(b̂1,p + jb̂2,p) (21)

θ̂p = arcsin
{(

c/4πR fp
)√

b̂2
1,p + b̂2

2,p

}
(22)

3.2. Range Estimation

It can be noticed in (9) and (10) that the array direction vector of the far-field source can be
regarded as that of the near-field source in the case of infinity. Substituting the estimated azimuth
angle and the elevation angle into the original array direction vector of the near-field source yields the
direction vector of the pth source

h
(
φ̂p, θ̂p, rp

)
=
[
hp,1, hp,2, . . . , hp,M

]T (23)

with
hp,m = exp

{
(j2πR f /c)

[
ζm(φ̂p, θ̂p)−

(
R/2rp

)(
1− ζ2

m(φ̂p, θ̂p)
)]}

(24)

According to the orthogonality of the signal subspace and the noise subspace, the function used
for identifying mixed sources and estimating the range of the near-field source is constructed by
employing 1-D multiple signal classification (MUSIC) method. Based on the estimated 2-D DOAs of
each source, the range spatial spectrum of the pth source can be expressed as

Prp ,MUSIC
(
φ̂p, θ̂p, rp

)
=
(
h∗
(
φ̂p, θ̂p, rp

)
VV∗h

(
φ̂p, θ̂p, rp

))−1
(25)

where V ∈ CM×(M−P) represents the noise subspace and contains M − P eigenvectors which
are corresponding to the related M − P small eigenvalues. The eigenvalues are obtained by
employing eigendecomposition on the correlation function of received data. For finite sampling
data, the correlation function can be estimated as (1/N)XX∗, where X ∈ CM×N represents the received
data under UCA.

Ultimately, we classify far-field sources and near-field sources by searching the peak of range
spatial spectrum. Just as frequency spectrum represents the energy distribution of the signal at each
frequency, the range spatial spectrum is the energy distribution of the signal in space. The curves
with obvious peak are corresponding to near-field sources, and the ranges of near-field sources can be
estimated from the location of spectrum peaks. On the contrary, the curves of far-field source spatial
spectrums are divergent.

The flow chart of the proposed algorithm based on phase difference for mixed source localization
is shown in Figure 3.
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4. Simulation Results

In this section, some simulations are domonstrated to evaluate the effectiveness of our proposed
algorithm. We utilize an eight-sensor UCA with radius R = 0.6 m. Two equal power narrowband
signals (one far-field source and one near-field source) are located at (47.1◦, 37.2◦) and (65.8◦, 53.2◦,
6 m) impinging on this array. The mixed source frequency and snapshot number are set at 100 MHz,
101 MHz and 3000, respectively. The additive noise is spatial white complex Gaussian random signal.

When signal-to-noise ratio (SNR) is set at 20 dB, the frequency spectrum of the first sensor by
employing the Fast Fourier Transformation (FFT) algorithm is shown in Figure 4a, where black curve
represents the frequency spectrum of the received data. It can be noticed that the incoherent sources can
be resolved in frequency domain and the spectrum peaks are corresponding to the sources’ frequencies.

The phase spectrum of a set of centro-symmetric sensors are shown in Figure 4b, where the blue
curve and the red curve represent the phase spectrum of the first sensor and the fifth sensor respectively.
The black solid dots are the corresponding phases of the first spectrum peak in the frequency spectrum,
and the black ∗ shape dots are the corresponding phases of the second spectrum peak in the frequency
spectrum, which can be used to compute centro-symmetric sensors’ phase difference.
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when SNR is set at 20 dB. The state-of-the-art first employed differencing matrix to separate near-
field sources from mixed sources and obtain the 2-D DOAs of near-field sources. Then, 1-D MUSIC 
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4.1. Performance of Range Estimation

In this simulation, we verify the range estimation and recognition performance of our proposed
algorithm when SNR is set at 20 dB. The range spatial spectrum of far-field source and near-field
source are shown in Figure 5, where the solid curve in red color represents the range spatial spectrum
of near-field source, and the dashed curve in blue color represents that of far-field source. It is noticed
that there is a peak in the range spatial spectrum, which is corresponding to the range of the near-field
source. Furthermore, the mixed sources can be identified from the range spaital spectrum successfully.
The curve of the near-field source in red color is convergent, which has an obvious peak. On the
contrary, the curve of the far-field source in blue color is divergent. It can be seen from the enlarged
diagram in Figure 5b that the blue curve is close to 0 dB and there is no tiny little peak in the range
spatial spectrum.
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4.2. Performance of Location

In this section, in order to further demonstrate the superiority of the proposed method for mixed
source localization, we compare the TSMUSIC method in [13] to make the performance comparison
when SNR is set at 20 dB. The state-of-the-art first employed differencing matrix to separate near-field
sources from mixed sources and obtain the 2-D DOAs of near-field sources. Then, 1-D MUSIC
method and 2-D MUSIC method are utilized to obtain the ranges of near-field sources and the 2-D
DOAs of far-field sources, respectively. The position simulation and comparisons are shown in
Table 1 and Figure 6. As the spacing of the array sensors used to calculate the phase difference
increases, the accuracy of parameter estimation by employing phase-based method becomes higher
and higher [14]. Accordingly, due to the fact that the spacing of centro-symmetric sensors used in this
paper is the longest under UCA, it can be seen that the proposed algorithm for the angle estimation
has higher accuracy than the TSMUSIC algorithm with step size = 0.01◦. In addition, due to the fact
that 1-D MUSIC method is based on the 2-D DOAs to estimate the near-field source’s range, and the
estimated 2-D DOAs by utilizing the phase-based method are more accurate, the performance of the
proposed method is better than TSMUSIC method with step size = 0.01 m for the near-field source’s
range estimation.

Table 1. Mixed source parameter estimation comparison (SNR = 20 dB).

Parameter Estimation
Actual Parameter Proposed Method TSMUSIC Method 1

NFS 2 FFS 3 NFS FFS NFS FFS

Azimuth angle (degree) 65.8 47.1 65.82 47.10 66.05 46.81
Elevation angle (degree) 53.2 37.2 53.18 37.20 53.89 37.39

Range (m) 6 ∞ 6.00 ∞ 5.91 ∞
1 represents the method in [13]; 2 represents the near-field source; 3 represents the far-field source.

As shown in Figure 6, the + shape represents the real location of the near-field source, the red dot
represents the location of the near-field source by employing the proposed method, and the blue dot
represent the location of the near-field source by employing TSMUSIC method. It is can be noticed
that the proposed algorithm and the TSMUSIC method can achieve the localization of the near-field
source. Moreover, the positioning result of the proposed algorithm is more precise than that of the
TSMUSIC method.
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In order to further demonstrate the superior estimation performance of the proposed method
for mixed source localization, we compare the root mean square errors (RMSEs) of the proposed
algorithm to those of the TSMUSIC method in [13], and the results are obtained from 500 independent
Monte Carlo simulations. The logarithm of the RMSEs of the azimuth angle, elevation angle and
the near-field source’s range are given in Figure 7, where the solid curves in blue color represent
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the RMSEs of the near-field source by employing the proposed method, the dashed curves in blue
color represent the RMSEs of the far-field source by employing the proposed method, the solid curves
in red color represent the RMSEs of the near-field source by employing TSMUSIC method, and the
dashed curves in red color represent the RMSEs of the far-field source by employing TSMUSIC method,
respectively. It can be noticed that the proposed algorithm for the angle estimation has higher accuracy
than TSMUSIC algorithm with step size = 0.01◦.
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Both the proposed method and the TSMUSIC method employ the 1-D MUSIC to obtain the ranges
of the near-field sources. However, the 1-D MUSIC method is based on the 2-D DOAs to estimate the
near-field source’s range, and the estimated 2-D DOAs by utilizing the proposed method are more
accurate, it can be noticed that the performance of proposed method is better than TSMUSIC method
with step size = 0.01 m for the near-field source’s range estimation.

As for the computational cost, compared with the TSMUSIC algorithm with step size = 0.01◦ for
angle estimation and step size = 0.01 m for range estimation, due to the fact that TSMUSIC algorithm
requires an expensive search process, the elapsed CPU time for a single run of our proposed method
and TSMUSIC algorithm are measured as 0.26 s and 50.95 s, respectively. It is noteworthy that the
proposed method has lower computational complexity.

4.3. Performance of Location under Frequency Estimation Error

In this section, considering that the frequency calculated by FFT algorithm may not correspond to
the frequency of the source. The RMSEs obtained from 500 independent Monte Carlo simulations are
employed to show the effect of frequency estimation error.

When the SNR is set at 20 dB, we assume that the error between the estimated frequency and
the actual frequency is a priori information, the RMSEs of the azimuth angle, elevation angle and
the near-field source’s range are given in Figure 8, where the solid curves in blue color represent
the RMSEs of the near-field source and the dashed curves in blue color represent the RMSEs of the
far-field source respectively. It can be noticed that the RMSEs of 3-D position parameters are showing
an increasing trend with the increase of frequency absolute error. Moreover, compared with the RMSEs
of near-field source’s angles, the RMSEs of far-field source’s angles are relatively small. The RMSEs of
angles are approximately within 1◦ when the frequency absolute error is within 2 kHz, and the RMSEs
of range are approximately within 0.2 m when the frequency absolute error is within 2 kHz.
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5. Conclusions

This paper has presented a phase-based method for estimating the azimuth angles and elevation
angles of the mixed incoherent sources under UCA. We first decouple angle parameters from array
direction vector by calculating centro-symmetric sensors’ phase differences. After that, as the phase
differences only include sources’ angle parameters and can be transformed as indefinite equations,
each source’s angles are obtained by performing the least squares method. Meanwhile, substituting
the obtained 2-D DOAs into the original steering vector of near-field source, this paper employs 1-D
MUSIC method to distinguish the mixed sources and obtain the ranges of near-field sources.

The advantages of our proposed algorithm are that it can obtain the 2-D DOAs of each source
simultaneously and identify mixed sources by employing range spatial spectrum. Considering that the
localization performance of the proposed method is related to the accuracy of the frequency estimation,
we employ the adjacent spectral lines of the spectrum peak to improve frequency estimation. Compared
with TSMUSIC method by employing the estimated root mean square errors, the proposed method has
higher estimation accuracy with lower computational cost. In addition, the proposed algorithm can
also be applied in the case of the multiple near-field sources or multiple far-field sources localization.
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