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The data presented in this article are related to the research article
entitled “On the plasticity mechanisms of lath martensitic steel”
(Jo et al., 2017) [1]. The strain hardening behavior during tensile
deformation of a lath martensitic press hardening steel was
described using a dislocation density-based constitutive model.
The Kubin–Estrin model was used to describe strain hardening of
the material from the evolution of coupled dislocation densities of
mobile and immobile forest dislocation. The data presented pro-
vide insight into the complex deformation behavior of lath mar-
tensitic steel.
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 Raw and analyzed

xperimental
factors
A cold-rolled 0.35 wt% C press hardening steel (PHS) was used. The tensile
samples were austenitized and then quenched to room temperature in order to
make fully martensitic microstructure.
xperimental
features
The Kubin–Estrin model was used to describe the strain hardening behavior
during tensile deformation of PHS from the evolution of the coupled densities of
mobile dislocations, ρm, and immobile forest dislocations, ρf.
ata source
location
Graduate Institute of Ferrous Technology, Pohang University of Science and
Technology, Pohang, Korea
ata accessibility
 The data are available with this article.
D

Value of the data

� The data can be used to explain strain hardening behavior of lath martensitic steel.
� The data provide a foundation for more accurate modeling of strain hardening behavior of lath

martensitic steel.
� The data may be compared with the tensile behavior of other lath martensitic steels.
1. Data

The strain hardening behavior during tensile deformation of a lath martensitic press hardening
steel (PHS) was described using a dislocation density-based constitutive model. The Kubin–Estrin
model was used to describe strain hardening of the material from the evolution of coupled dislocation
densities of mobile and immobile forest dislocation. Two models with different parameter values are
presented, and the results include stress–strain curves and the evolution of mobile and forest dis-
location density with strain, calculated by the models. The parameter values used for modeling are
presented in a table.
2. Experimental design, materials and methods

A cold-rolled 0.35 wt% C PHS was used [1]. The tensile samples were austenitized and then
quenched to room temperature in order to make fully martensitic microstructure. The specimens
were tested in tension in an electromechanical universal testing machine using a strain rate of
10−3 s−1. The experimental true stress-strain curve of the as-quenched PHS is shown in Fig. 1.

The conventional yield strength (YS), i.e. 0.2% offset stress, of lath martensitic steel is generally
high as compared to other steels. However, micro-yielding can occur at stresses lower than the 0.2%
offset stress. Due to the absence of a clear yield point in the flow curve of lath martensitic steel, the
0.2% offset YS is considered as the YS of the material in the present work. The equation proposed by
Galindo-Nava and Rivera-Diaz-del-Castillo was used to calculate the YS of the PHS [2]:

σMartensite ¼ σ0 þ 300ffiffiffiffiffiffiffiffiffiffiffiffi
dblock

p þ 0:25MGb
ffiffiffi
ρ

p ð1Þ



Table 1
Parameter values used for numerical simulations.

Parameters Original Kubin–Estrin model Model 1 Model 2

C1/b2 1015/3 1015/3 1015/3
C2 0.606 1.42 0.7
C3/b 108/3.3 9 × 108 9 × 108

C4 3.33 7 3.5

Fig. 1. (a) Comparison of the experimental true stress-strain curve of the PHS and the calculated true stress–strain curve from
model 1 and model 2. (b) The calculated strain dependence of forest dislocation density from model 1 and model 2.
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Here, σ0 is contributions from Peierls stress and solid solution strengthening,M is the Taylor factor,
G is the shear modulus, b is the magnitude of the Burgers vector and ρ is the total dislocation density.
The equation for σ0 derived by Rodriguez and Gutierrez [3] yielded 201 MPa considering the chemical
composition of the investigated PHS. The present work did not consider solid solution hardening by
carbon. Using the block size of 500 nm, the second term in Eq. (1) was estimated to be 424 MPa. The
average initial forest dislocation density in the PHS was estimated to be 2.21×1015 m−2 by subtracting
the sum of contributions from the first term, i.e. 201 MPa, and the packet size strengthening term, i.e.
424 MPa, from the experimental YS, 1354 MPa. The estimated dislocation density is in a reasonable
agreement with the measured dislocation density of a Fe-0.4 wt%C martensitic steel, i.e.
1.42×1015 m−2, reported by Morito et al. [4].

The Kubin–Estrin model was used to describe strain hardening behavior of the PHS from the
evolution of coupled densities of mobile dislocations, ρm, and immobile forest dislocations, ρf [5,6].

dρm
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b2
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� �
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b
ffiffiffiffiffi
ρf

p
⌉

dρf

dϵ ¼ M C2ρm þ C3
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− C4ρf
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In these equations, C1 specifies the magnitude of the dislocation generation term, with forest
obstacles acting as pinning points for fixed dislocation sources. C2 takes into account the mobile
dislocation density decrease by interactions between mobile dislocations. C3 describes the immobi-
lization of mobile dislocations assuming a spatially organized forest structure. C4 is associated with
dynamic recovery by rearrangement and annihilation of forest dislocations by climb or cross slip. C2
and C4 account for thermally activated mechanisms such as cross-slip and climb [5].

The parameters C1, C2, C3 and C4 used in the present work are listed in Table 1. The parameters in
original Kubin–Estrin model were chosen based on typical FCC metals and alloys [6]. In the present
work, a much higher values of C3 were used to describe the high initial work hardening of PHS as
compared to the value in the original Kubin-Estrin model. The numerical values of the parameters
were G¼81.6 GPa, b¼0.248 nm and M¼3.067.
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Two models were analyzed. In the first model, i.e. model 1, high values of C2 and C4 were used
since BCC metals and alloys generally have higher cross-slip activity as compared to FCC metals and
alloys. As shown in Fig. 1(a), the experimental flow stress is much higher than the calculated flow
stress by model 1. In the second model, i.e. model 2, lower values of C2 and C4 were used in order to
match the experimental and calculated flow stresses. Neither model could however describe the high
initial work hardening rate shown in the experimental flow curve.
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