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Abstract

Motivation: Oscillations lie at the core of many biological processes, from the cell cycle, to circadian os-

cillations and developmental processes. Time-keeping mechanisms are essential to enable organisms

to adapt to varying conditions in environmental cycles, from day/night to seasonal. Transcriptional

regulatory networks are one of the mechanisms behind these biological oscillations. However, while

identifying cyclically expressed genes from time series measurements is relatively easy, determining

the structure of the interaction network underpinning the oscillation is a far more challenging problem.

Results: Here, we explicitly leverage the oscillatory nature of the transcriptional signals and present

a method for reconstructing network interactions tailored to this special but important class of gen-

etic circuits. Our method is based on projecting the signal onto a set of oscillatory basis functions

using a Discrete Fourier Transform. We build a Bayesian Hierarchical model within a frequency do-

main linear model in order to enforce sparsity and incorporate prior knowledge about the network

structure. Experiments on real and simulated data show that the method can lead to substantial im-

provements over competing approaches if the oscillatory assumption is met, and remains competi-

tive also in cases it is not.

Availability: DSS, experiment scripts and data are available at http://homepages.inf.ed.ac.uk/gsan

guin/DSS.zip.

Contact: d.trejo-banos@sms.ed.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cyclic behaviour is ubiquitous in biology. The importance of oscilla-

tory systems stems both from the necessity to adapt to the many en-

vironmental cycles (circadian, annual, etc.), as well as to maintain

intrinsically periodic processes such as the cell cycle. Both of these

type of oscillations are essential to many physiological processes,

and malfunctions in the cellular time keeping mechanisms are fre-

quently associated with disease, further motivating the study of

these systems (Bell et al., 2005).

Genetic regulatory networks are at the core of many of these

biological oscillators. These networks can sustain oscillatory

behaviour in protein levels through specific architectures involving

multiple feedback loops of transcriptional regulation. For example,

a transcriptional oscillator is thought to drive the Arabidopsis

thaliana circadian clock through mutual repression of three tran-

scriptional regulators (McClung, 2011; Pokhilko et al., 2012). The

cell cycle is another oscillatory process, which controls cell division

and duplication. In the case of Saccharomyces cerevisiae, experi-

ments and dynamical models suggest that the cell cycle is the result

of a transition between two self-maintaining steady states, driven

by two antagonistic classes of proteins (Chen et al., 2004).

Evidence suggests that a transcriptional network is an important
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part of this mechanism (Li et al., 2004; Orlando et al., 2008;

Spellman, 1998).

These oscillators have been the subject of study for many years,

but uncovering the exact mechanism is a challenge that involve

many complex chemical, genetic and physiological components. It is

therefore important to devise computational statistical methods

which may guide experimental analyses by inferring potential regu-

latory interactions directly from time series gene expression data,

which is usually easier to obtain.

Network inference is a well-established and rich domain of re-

search in systems biology. State of the art methods for regulatory net-

work inference include a wide variety of techniques from statistics

and machine learning. For example, mutual information between

gene expression levels under different experimental conditions is used

by ARACNE (Margolin et al., 2006) and CLR (Faith et al., 2007),

two of the most widely used methods for network reconstruction.

GENIE3 (Huynh-Thu et al., 2010), another method which was a top

performer at the DREAM network inference challenges, and the more

recent extension Jump3 (Huynh-Thu et al., 2015) use random forests

to produce a weighted ranking over the network edges. Other meth-

ods recently used include regularized regression (Haury et al., 2012),

ANOVA (Kuffner et al., 2012) and Hierarchical Gaussian models (Li

et al., 2006). Most of these methods focus on steady state data, which

is by definition not available for oscillatory networks.

Regularization-based and Bayesian methods can also be adapted

to time series data. Dynamic Bayesian Networks have long been a

popular choice in network inference (e.g. Dondelinger et al., 2012;

Oates et al., 2012). Such methods present considerable advantages

in being able to quantify uncertainty and to incorporate prior know-

ledge, but are often severely limited by computational constraints.

Optimization-based methods based on regularized regression (e.g.

Bonneau et al., 2006) present often a scalable alternative at the cost

however of some modelling flexibility.

Here, we use a first order model of the system dynamics to con-

strain the network inference, but we explicitly take advantage of the

oscillatory behaviour of the system by pursuing frequency-based es-

timation. We build a hierarchical Bayesian model over the network

dynamics which can set and infer structural constraints and account

for the inevitable uncertainty that experimental settings convey.

Furthermore, our method can easily integrate non-trivial side infor-

mation, for example in the form of sequence similarity between pro-

moter sequence of genes. Experimental results on real and simulated

data highlight that the method offers an effective and flexible plat-

form for statistical inference in oscillatory systems, and can uncover

non-trivial biological information.

The rest of the paper is organized as follows: the next section de-

scribes the methodology we use, reviewing the linear time-invariant

approximation we use as well as introducing the Bayesian hierarch-

ical framework for network inference. We then present an experi-

mental evaluation on three datasets: a synthetic dataset from the

DREAM network inference challenge, a simulated dataset obtained

from a state of the art model of the A.thaliana circadian clock

(Pokhilko et al., 2010), and a real dataset from the yeast S.cerevisiae

cell cycle (Orlando et al., 2008). We then conclude the paper by dis-

cussing our method in the light of these experimental results and the

existing literature on network inference.

2 Materials and Methods

Our approach is centred on the assumption that the oscillatory

dynamics of the regulatory network can be reasonably approxi-

mated, in Fourier space, by a linear time invariant (LTI) system.

This is of course a simplification, but it is not an unreasonable

one, and has been previously proposed as a formalism to model

oscillatory genetic circuits with considerable success, see Dalchau

2012 for a recent review. From the inferential point of view, adopt-

ing a frequency domain perspective is convenient, as it enables us

to transform the network reconstruction problem in a regres-

sion problem, for which many advanced estimation tools

exist. We choose a Bayesian regression approach, as it provides an

effective methodology to integrate diverse information in the infer-

ential machine. As a proof of principle of how non-trivial informa-

tion can be incorporated, we discuss how sequence similarity

between promoter regions could be used within a hierarchical model

framework.

2.1 LTI model
The starting point for our modelling is the approximation of the sys-

tem’s dynamics as a LTI model:

dxi tð Þ
dt
¼
XN
j6¼i

aijxj tð Þ þ bi � kixi tð Þ þ
X

k

cikuk: (1)

Here, the expression level of gene i, denoted as xi tð Þ, depends on the

expression levels of the other N � 1 genes (potential regulators)

through activating or repressing intensity aij 2 R. Gene expression

levels decay linearly with rates ki. Additionally, gene expression de-

pends on a set of K inputs uk which can be either external signals

(light for example) or any other gene signal that is not modelled ex-

plicitly in the network. Finally, each gene has a basal transcription

rate bi.

Having a set of M samples from an experiment (e.g. mRNA

levels from a microarray experiment), let the vector xi 2 RM denote

the set of M expression level measurements for gene i. We can fur-

ther construct the matrix X 2 RM�N, which contains the sample

points for the set of N genes. Let _X be the derivative of X, so

Equation (1) in matrix form for this set of gene expression levels is

given by:

_X ¼ XAT þ b1þUCT (2)

where A 2 RN�N is the matrix with diagonal elements ki and off-di-

agonal elements aij, the input signals are contained in matrix

U 2 RM�K. To complete the notation, we denote with b vector of

basal expression levels, which multiplies the M�N matrix of ones

1 to add a constant term to the equation.

We proceed to compute the derivative _x by first projecting the

gene expression levels into a set of orthogonal basis functions. The

chosen set of basis functions is the one given by the Discrete Fourier

Transform of the gene expression levels. We emphasize that the

choice of basis function is dictated by the nature of the problem:

while in the limit of a continuously sampled signal this choice would

be irrelevant (any complete basis would yield perfect reconstruc-

tion), for discretely sampled signals the quality of the approximation

to the signal (and its derivative) will depend on the expressiveness of

the chosen finite set of basis functions. Our choice of basis functions

is motivated by the prior knowledge that the signals of interest

should be oscillatory, making the choice to work in the frequency

domain particularly appealing. We denote X xÞð , X for brevity, as

the frequency representation of x, with each column containing the

frequency spectrum of the expression of a gene over the time points.

The frequency domain derivative can be computed analytically by
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_X ¼ 2pxiX, so the frequency domain representation of the system is

given by:

_X ¼ XAT þUCT: (3)

Basal rates b are included in the zero frequency component of X.

The frequency representation of the inputs is given by U.

To account for any discrepancies between the linearized model

and the true system dynamics, we assume normally distributed error

with variance r2
D. The likelihood function for Equation (3) is:

p _XjX;A;U;C; rD

� �
/
YN
i¼1

r�M
D exp � 1

2r2
D

Qi

� �

Qi ¼ _Xi�½X U �
AT

i

CT
i

" # !T

_Xi�½X U �
AT

i

CT
i

2
4

3
5

0
@

1
A
: (4)

In general, multiple replicate time series may be available.

Denoting with K the number of replicate time series, the overall like-

lihood, under an assumption of normal i.i.d error between series,

can be generalized as:

P _Xk

� �
j Xkf gA;U;C; rD

� �
¼
YK
k¼1

P _XkjXk;A;U;C;rD

� �
(5)

which is a product of Gaussian densities.

Notice that the form of Equation (5) is identical to a regression

problem where the output variables (Fourier coefficients of the de-

rivatives of the signals) are regressed onto the Fourier coefficients of

the signals. The inference problem of estimating the interaction and

input response matrices AT CT
� 	T

in Equation (4) can therefore

be attacked using the vast repertoire of regression methods.

Regularized regression methods have been tested in a network infer-

ence context (see Bergersen et al., 2011; Bonneau et al., 2006;

Charbonnier et al., 2010; Haury et al., 2012). Here, we opt for a

hierarchical Bayesian approach that will allow us to leverage prior

knowledge and integrate other sources of information.

2.2 Hierarchical Bayesian modelling
To interpret dynamical systems in a network perspective, we assume

that the interaction matrix in our LTI representation (1) has a sparse

structure representing discrete interactions between regulators and

target genes. We introduce the structural adjacency matrix

H 2 RN�N, which sits at the top of the hierarchy. This matrix con-

tains elements hij ¼ 1 if gene j regulates gene i for i 6¼ j. In this

Bayesian approach, a sparsity inducing prior over elements of H is

necessary to aid identifiability and interpret-ability. The prior form

chosen for elements hij is a Bernoulli distribution, with parameter w

which has a Beta distribution prior due to conjugacy.

We chose a spike and slab prior to relate the connection matrix

H and interaction matrix A. This distribution consists of a mixture

of a degenerate distribution and a long tailed distribution. The

form chosen is derived from the one presented in Ishwaran et al.

(2005), where the aij elements are drawn from a scale-mixture

model where a zero-mean normal distribution has variance gov-

erned by hyper-parameter sij. In this form, the hyper-variance hijs2
ij

has a continuous bi-modal distribution. With this prior, the poster-

ior distribution of the less relevant parameters is shrunk towards

zero and the non-zero elements are selected by the distributions

tail. The advantage of the continuous distribution implied by the

scale-mixture model of Ishwaran et al. (2005) lies primarily in the

fact that we avoid the need to parametrize these bi-modal distribu-

tions manually.

Thus, the hierarchical model is defined by equations:

P _Xk

� �
j Xkf gA;C;U; rD

� �
¼

YK
k¼1

P _XkjA;C;U;Xk; rD

� �

P aijjhij; sij

� �
� N 0; hijs2

ij


 �
P hijjw
� �

� 1�wð Þdv0 þwd1

p wð Þ � Beta a1; a2ð Þ

p s�2
� �

� Gamma b1;b2ð Þ

p r�2
D

� �
� Gamma c1; c2ð Þ:

(6)

The parameter rD accounts for uncertainty related to noise and

model mismatch, for example arising from the linear approximation

to the system dynamics. The parameter v0 is introduced for numer-

ical stability and is fixed to the value of 0.005. The hyperparameters

a1;2; b1;2 and c1;2 can be fixed to reflect prior beliefs, or set to vague

values to reflect prior ignorance; in the rest of the paper they are set

to the default values of (1, 1), (5, 50) and (0.001, 0.001)

respectively.

2.3 Sequence information integration
A major advantage of hierarchical modelling is the possibility of

integrating different data sources. By branching from the top of the

hierarchy, we can define models for different network related char-

acteristics and keep all the information coupled by the top of the

hierarchy. For example, protein interaction and binding data from

ChIP-chip or ChIP-seq experiments can be used in a straightforward

manner to modulate the prior probabilities over matrix H, for ex-

ample by adjusting the parameter w for individual edges.

Hierarchical models also allow us to exploit more subtle sources

of structural information derived from an analysis of sequence infor-

mation. Transcription factors bind to the promoter region of their

targets by recognizing specific motifs, short DNA words; thus co-

regulated genes (genes that are regulated by a common transcription

factor) should share common motifs in their promoted regions. We

use this information to draw the basic model for our sequence inte-

gration approach. As the transcription binding sites share a common

motif, we assume that the similarity between two promoter regions

varies proportionally to the number of shared regulators. In this

way, an observed pairwise similarity matrix S ¼ ½sij� between gene

promoters, derived from a multiple alignment method like Sievers

et al. (2011) or an alignment-free method (Bonham et al., 2014),

can be related to the structural adjacency matrix at the top of the

hierarchical model. Assuming for simplicity a Gaussian observation

model, we can then incorporate sequence similarity by positing the

following relationship between promoter similarity scores and the

structural adjacency matrix

pðsijjH;b; rseqÞ / r�1=2
seq exp � 1

2r2
seq

sij �
XN
l¼1

hilhjlbl

 !2
0
@

1
A (7)

Here, the parameter blf g1�l�N is the similarity ‘induced’ by the

l-th transcription factor (a proportionality constant), and the prod-

uct hilhjl equals 1 if and only if genes i and j are both regulated by l.

This model is a form of additive clustering (Mirkin, 1987). By condi-

tioning on H, we can derive the distribution pðblj _Þ, which is a

Gaussian with non-negative constraints, (see Supplementary

Information Eq. 4). This distribution can be used for sampling pos-

terior values of b; in our applications, however, we preferred to fix

the value of b to its non-negative maximum likelihood solution, ef-

fectively approximating this conditional posterior with a d function.
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The similarity score variance rseq is given a weakly informative in-

verse Gamma prior. By completing the square we can derive a

Gaussian distribution for the betal parameters, for its derivation and

estimation see Supplementary Information Section 1. The overall

structure of the model is depicted graphically in Figure 1.

2.4 Inference
Inference of parameters A;C;H; rD;w; sgf is done through a simple

Gibbs sampling scheme. Given conjugacy among distributions, sam-

pling of these parameters is straightforward for all distributions ex-

cept p blð Þ. This distribution is not conjugate, so a Metropolis within

Gibbs would be necessary for exact inference. In order to improve

performance and given the fact that retrieving the distribution over

bl is not an objective; we use the non-negative least square estimate

for the vector b. Convergence was tested by applying Geweke diag-

nostic over the last 1000 samples of matrix H. Mathematical deriv-

ations of the required conditional posteriors and the general

sampling algorithm are described in the Supplementary Material.

3 Results

In this section, we assess the performance of our method on two

realistic simulated datasets and a real dataset, comparing its per-

formance to two other state of the art methods. We call our method

DSS, for DFT-based Spike and Slab model. The first simulated

dataset was generated from a well-known model for the A.thaliana

circadian clock network (Pokhilko et al., 2010). This model is a

non-linear Ordinary Differential Equation (ODE)-based model

which exhibits regular oscillations (for suitable parametrisations),

thus matching one of our main modelling assumptions. However, it

is a non-linear model, hence introducing an element of model mis-

match. As a second synthetic benchmark dataset we used one of the

datasets provided by the DREAM 4 challenge (Marbach et al.,

2010). This is again a non-linear model, which exhibits damped os-

cillatory dynamics in some of the nodes; thus, this dataset presents

considerably more elements of model mismatch. The last experiment

tested the method on a real dataset of gene expression levels ob-

tained in a micro-array experiment for the Saccharomyces cerevisiae

cell cycle transcriptional network (Orlando et al., 2008).

Results were assessed in terms of area under the Precision-Recall

(AUPR) curve; PR curves plot the fraction of correctly called in-

stances versus the ratio of true positives over true positives plus false

negatives. An ideal classifier would give a AUPR of 1, while a

random baseline would return the ratio of positives negatives.

Inference of the models parameters was conducted by Gibbs

Sampling from the model presented in (Fig. 1). In total, 5000 sam-

ples were obtained. The last 1000 samples were selected and aver-

aged to compute the conditional probability of a link p hij ¼ 1j�
� �

given the model and the expression data, see Supplementary infor-

mation Sections 1.1.1 and 1.1.2 for details into the inputs and out-

puts of the program.

3.1 Competing methods
As a first comparison, in order to establish the validity of our claim

that frequency domain analysis is beneficial for oscillatory net-

works, we sought to compare our results with a complete analogue

in time domain. To do this, we implemented a spline-based alterna-

tive to the Discrete Fourier Transform (DFT), using cubic splines in-

terpolation as means of computing the time domain derivative,

while the rest of the hierarchical model was left unchanged. As com-

peting methods to assess the performance of DFT based Spike and

Slab (DSS) we selected GENIE3 (Huynh-Thu et al., 2010), which is

based on random forests, and the ODE-regression-based Inferelator

(Bonneau et al., 2006; Greenfield et al., 2013).

In a network of N genes, GENIE3 solves N regression problems

by predicting, using random forests, the expression level of each

gene as a function of the other N-1 genes (putative regulators). Then

the relative importance of each gene expression is evaluated and the

putative gene interactions are ranked. GENIE3 was designed for

steady state data, but time-series adaptation can be readily derived

and was provided to us by one of the authors.

The Inferelator estimates the parameters of an ODE system using

regression with L1-regularization over a finite element approxima-

tion of the derivative. The method has been extended (Greenfield

et al., 2013), with new functionalities to incorporate prior informa-

tion over the network links, and to use alternative optimization

methods for model selection, including the elastic-net (regularization

over L1 and L2 norms) and Bayesian regression with best subset

selection.

Finally, as a simple baselines, we implemented a L1 regularized

version of the regression problem in Equation (5), using the LASSO

implementation (Tibshirani, 1994).

3.2 Arabidopsis thaliana circadian clock
As a first example, we used data generated from a well known oscil-

latory network model, the A.thaliana circadian clock. The data con-

sist of simulated mRNA measurements from the model found in

Pokhilko et al. (2010). This non-linear model has seven transcrip-

tion factors and two post-transcriptional elements ZTL and

LHYmod. In order to replicate experimental conditions, we assume

that only mRNA data are available, so protein concentrations for

the transcriptional and post-transcriptional elements are assumed

unobserved. The transcription factors used for network inference

are ‘LHY’, ‘TOC1’, ‘PRR5’, hypothetical gene ‘Y’, ‘GI’, ‘PRR9’ and

‘PRR7’, the post-transcriptional elements are not considered. A

graphical representation of the model can be observed in

(Supplementary Information Fig. 1). This model was simulated for

three cycles obtaining 28 samples. The procedure was performed

with a light/dark photo period of 12/12, 6/18, 8/16, 18/6 and 20/4 h

which are represented in our model by binary input signals U. This

design of our study is created to mimic a realistic experimental set-

ting as in Edwards et al. (2010); the biological rationale for such de-

sign is that stimulating the system with these different inputs may

tease out the contribution of the main drivers of the clock at

Fig. 1. Hierarchical Bayesian model, on top of the hierarchy lies the adjacency

matrix H and sparsity parameter w. In chequered circles the frequency-

domain gene expression model and its parameters. In stripes the sequence

similarity and its parameters
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different times of day. We also simulated knock-out mutants

DTOC1, DPRR7PRR9, DLHY and DGI by the same procedure as

presented in Pokhilko et al. (2010) with photoperiods of 12/12 h.

These experiments amount to 14 time series; as these data are dir-

ectly the outputs of an ODE model (without any additional noise)

we define this idealized dataset as the noiseless dataset. To assess

statistically the performance and robustness of our method, we gen-

erated additional noisy datasets by adding Gaussian white noise

with a Signal-to-noise (SNR) of 50 (low noise regime, as could be

found in e.g. luciferase reporter time series) and 10 (high noise re-

gime, similar to a noisy microarray time series). For each noise level,

we generated 100 independent datasets. An example of the simu-

lated expression levels is plotted in the upper left panel of Figure 2.

Using the model specification as ground truth, we proceeded to

draw the PR-curves for the different methods and computed the

area under the PR-curve for all the resulting networks. These areas

are plotted for the noiseless (simulated data without added noise)

and noisy data in the upper right panel of Figure 2. The DSS method

achieved an AUPR of 0.57 for noiseless data, 0.56 6 0.01 for

50SNR and 0.57 6 0.1 for 10SNR, and performed significantly bet-

ter than LASSO, GENIE3 and Inferelator at all noise levels. The

DSS method also consistently outperforms the spline-based method

in the presence of noise, more strongly for low noise levels but still

significantly at higher noise levels (paired t-test P < 1e� 4). It is

intriguing that the method’s average performance is stable on noisy

datasets; we speculate that this may be due to the fact that adding

noise alleviated the effects of model mismatch (resulting from the

LTI approximation). Intuitively, in the absence of noise the attempts

to fit non-linear data with a linear model could become more

problematic.

To test the effect of including side information, we simulated a

between-gene similarity matrix by drawing bl from a uniform distri-

bution U(0.1,0.6) and using Equation 7. In this case, we notice an

important improvement by observing an increment in the AUPR to

0.68 in the noiseless case, 0.63 6 0.07 at 50SNR and 0.59 6 0.12 at

10SNR (both statistically significant at P < 1e� 4 when compared

with results without side information). The difference between the

spline solution with side information and the DSS solution with side

information was not statistically significant in our experiments at

different noise levels. The principal objective of using this simple

simulated similarity matrix was to confirm that structural informa-

tion can be retrieved and used as aid for inference. By clustering the

co-regulated elements we added additional structural constraints

into the inference scheme.

Finally, we included a graphical representation of the true net-

work (Fig. 2 bottom left) and a network resulting from averaging

over all inferred networks at 10SNR and setting a threshold of 0.5

over the inferred matrix H (Fig. 2 bottom right). We notice that the

0.5 threshold, while reasonable, is still arbitrary and is used here

only for the purposes of graphical visualisation. The full output

from the method is a probability over the existence of edges, and

can be better visualized as a heatmap, see Supplementary

Information Sections 1.2 and 2. Directed edges are represented by a

gradient line (from regulators in blue to targets in red on the color

version of the figure), black edges mean bidirectional regulation. As

can be appreciated important features such as the bidirectional regu-

lation between ‘LHY’-‘PRR7’ and ‘LHY’-‘PRR9’ are recovered.

Errors are related to the roles of ‘PRR7’ and ‘PRR9’ regulating ‘GI’

instead of ‘TOC1’. This may be due to the method confounding the

effects of ‘TOC1’ over these former elements as being closer to the

expression patterns of GI. This difficulty discriminating between the

roles of the ‘PRR’ genes is also expressed by inferring the spurious

bidirectional edge between ‘PRR7’-‘PRR9’.

3.3 DREAM Challenge
As a second example, we considered a dataset from the fourth edi-

tion of the DREAM competition (Marbach et al., 2010).This dataset

is obtained from simulating a 10-node network, of which three

nodes are input nodes; 15 regulatory links are present. Three simula-

tions were present, one with an ODE-based system, another one

with a Stochastic Differential Equation (SDE) system and a third

one with SDE-based system and added experimental noise. Five time

series are provided for each system, a time series contains 21 sam-

ples. The network is subjected to a single node perturbation, which

mathematically corresponds to a change in the basal expression par-

ameter, so the mean expression level of the node changes for half of

the time points. The expression profiles for the set of 10 genes in one

time series is presented in Figure 3, top left. This dataset does not

comply with the main assumption of the model (it shows irregular

damped oscillations); we therefore expect performance not to be op-

timal, but it is still useful to evaluate comparatively the model under

such a model mismatch scenario.

Figure 3 shows a comparison of the area under the P-curve for

the three simulated systems. Of these, DSS achieves better perform-

ance in the ODE-based simulation, by having an AUPR of 0.31,

higher than the nearest best method (GENIE3). Inferelator could not

be executed on this dataset due to numerical issues (some expression

levels are exactly zero in this example). The performance improved

for the SDE-based simulation, by achieving an AUPR of 0.35, above

inferelator’s 0.27. Slightly worse results were achieved for the SDE

model with experimental noise, achieving an AUPR of 0.3. By simu-

lating a sequence similarity matrix performance was improved for
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Fig. 2. Top left is the simulated gene expression profiles for the wild-type

dataset with SNR 100. Top right is the AUPR values for the two different noise

levels. Bottom left is the true network topology, gradient lines represent regu-

lation, solid lines bidirectional regulation. Bottom right is the inferred network

topology obtained by setting a threshold of 0.5 over the inferred matrix H

(average over the 100 repetitions at 10SNR)

Fig. 3. Top left is the expression profiles for the SDE model with experimental

noise, node ‘G9’ in red presents a perturbation over half the time points. Top

right is the AUPR values for the three simulation models. Bottom left is the

true network topology, gradient lines represent regulation, solid lines repre-

sent bidirectional regulation. Bottom right is the inferred network obtained by

setting a threshold of 0.5 over the inferred matrix H
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both ODE and SDE solutions. In the case of SDE the solution im-

proved dramatically to 0.42.

As in the previous experiment, the network and its inferred coun-

terpart are presented in Figure 3 bottom left and bottom right, re-

spectively. The inferred network is obtained by setting the threshold

to 0.5 over the inferred adjacency matrix for the SDE data with

added similarity matrix. As can be observed in the true network,

nodes ‘G1’ and ‘G10’ are constant inputs. Node ‘G9’ is subjected to

perturbation for half the time points, thus its effect is propagated

through the network by node ‘G5’.

In the inferred network, we can observe some interesting charac-

teristics. First, nodes ‘G1’ and ‘G9’ are identified as input nodes,

node ‘G10’ is incorrectly identified as an output only node. Node

‘G2’ maintains its out-degree of 4 even though it is regulators are

not correctly identified. Nodes ‘G9’ and ‘G5’ are shown with

increased in and out-degree, this may also be due to the confounding

effects of the their ‘parent–son’ relationship, specially considering

that the perturbed ‘G9’ node has the biggest amplitude of the gene

expression profiles, as appreciated by the red curve in the top left

plot in Figure 3.

3.4 Saccharomyces cerevisiae cell cycle
For the last experiment, we used a real time series dataset collected

during the S.cerevisiae cell cycle. Our evaluation is based on the

genes identified by Haase et al. (2014) and Orlando et al. (2008)

and some of their interactions on the dynamical model found in

Chen et al. (2004). The main transcriptional elements selected were

‘SWI5’, ‘YHP1’, ‘SWI4’, ‘FKH1’, ‘SIC1’, ‘ACE2’, ‘YOX1’, ‘STB1’,

‘NRM1’, ‘WHI5’, ‘FKH2’, ‘MCM1’, ‘SWI6’, ‘HCM1’, ‘NDD1’ and

‘MBP1’. Their putative regulations were extracted from literature

(see Supplementary Information) for the putative network used as

ground truth.

The source for the gene expression data is Orlando et al. (2008),

it contains two wild-type replicates and two mutant replicates

(Dclb1; 2;3;4; 5; 6) each one containing 14 samples for each gene

during �2 cell cycles. Additionally, we downloaded promoter se-

quence information from Zhu et al. (1999) for all the network elem-

ents. We then proceeded to use the multiple alignment software

Clustal Omega (Sievers et al., 2011) to obtain an alignment-based

similarity matrix S between sequences. As an alternative way of

encoding sequence information, an alignment-free similarity matrix

S2 was built using the method described in Sims et al. (2009).

We tested three subsets of data, one containing only the wild-

type expression profiles, other containing only the mutants expres-

sion levels, the last dataset was the normalized concatenation of

both. As an example of the observed gene expression levels, Figure 4

top panel shows the gene expression levels for the wild-type

conditions.

The AUPR from applying the various methods to this data are

presented in Figure 4 bottom left panel. In this case DSS identifies

the putative network well above the random baseline of 2.1 and

above the competing methods. In the case of wild types the AUPR of

DSS was of 0.24. In the mutant datasets, the performance of DSS

improves by including sequence similarity achieving an AUPR of

0.2607 and 0.2608 for S and S2, respectively. The best overall per-

formance was achieved by using the combined dataset with sequence

similarity matrix S2, resulting in an AUPR of 0.267.

The network in (Fig. 4) bottom right is obtained by setting the

threshold of 0.9 to the inferred network from the combined wild

type and mutant dataset with added similarity matrix. In this case,

FKH1 has a central role in the inferred network, being fully

connected to the other elements. Even though this fully connected

position is biologically implausible, it does reinforce the important

role of FKH1 in the cell cycle, e.g. its role in regulating the M-phase

response (Kumar et al., 2000). Another noticeable inferred link con-

cerns the post-transcriptional regulation of SWI6 by WHI5p

(Turner, 2012); this regulation was also considered as part of the

ground truth network, as in the case of the yeast cell cycle transcrip-

tional and post-transcriptional regulations are intertwined (Haase

et al., 2014). Also worth noticing the regulation of SWI6 by YOX1

(member of the SBF complex) even though evidence suggests causal-

ity may be in the opposite direction (Venters, 2011). SWI4 and

SWI6 form part of transcription factor complexes SBF and MBF, as

such, their regulations may be confounded. This can be appreciated

in the regulation of NRM1 by SWI4 in the inferred network, when

in fact NRM1 appears to be regulated by SWI6 (DeJesus et al.,

2013). The transcriptional activator NDD1 is essential during the S-

phase (Loy et al., 1999), NDD1p along MCM1p bind to FKH2p

(Haase et al., 2014), this effect may be observable in the inferred

network by directed edges from NDD1 to YOX1 and from YOX1

to FKH2.

By observing the AUPR plot we see that mutant data appears to

be more informative in this case than wild type, being only margin-

ally inferior to the combined dataset with similarity matrix. Part of

the experimental design in selecting mutations in Orlando et al.

(2008) was aiming at attenuating the effects of the post-transcrip-

tional elements of the cell cycle; the stronger performance of our

method on the mutant datasets may be explained by this experimen-

tal design.

Generally, the DSS solution will find the most relevant edges in

the network to explain the observed dynamics, while the DSS with

similarity method will find the most relevant solution that includes a

grouping of the proposed edges according to the similarity matrix.

So both results can be analysed separately and may offer additional

insight over the whole network behaviour. With this purpose the six

inferred networks and the putative ground truth are included in

Supplementary information Figure S3 for analysis.

4 Discussion

Inference of gene regulatory networks from expression data is one

of the best studied problems in systems biology. Despite this consid-

erable collective effort, the general problem remains ill-posed and,

Fig. 4. Top wild-type yeast expression profiles for the selected genes, bottom

left AUPR for the three different data combinations, wild type, mutants

and both. Bottom right network obtained by setting a threshold of 0.9 over

matrix H
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in the absence of extensive datasets and strong domain expertise, a

solution to this problem remains elusive. In this light, it is of interest

to consider more delimited problems which may be amenable to spe-

cialised but more effective solutions. Oscillatory systems present a

prime example of such a problem: while they obviously constitute a

specialized subset of regulatory networks, in our opinion they are

sufficiently widespread to warrant tailor-made solutions. DSS cou-

ples a simplified mechanistic approach (LTI) with frequency domain

information to provide such a method. LTI methods in the time do-

main for A. thaliana with experimental data have been studied in

Dalchau (2011). Our results on the circadian clock simulation sug-

gest that this frequency domain approach can indeed be fruitful

when the model assumptions are reasonably met. As results over the

DREAM and S.cerevisiae datasets suggest that the method can per-

form competitively with state of the art methods also when the

model assumptions are not precisely met (damped oscillatory behav-

iour); however, in these cases the method’s competitive advantage is

smaller or inexistent.

The use of derivative and ODE information in a network infer-

ence framework has some precedents. A method that is in spirit

similar to our approach is Inferelator (Bonneau et al., 2006). It casts

the network inference problem as a a parameter inference problem

over a first order differential equation system, then estimates the sys-

tem parameters via regularized regression over a finite differences

solution to the system. Recently Bayesian approaches that make use

of the derivative information have also been proposed. In Oates

et al. (2012), a probabilistic model for integrating a linearized ver-

sion of network dynamics in a regression framework is presented.

Dondelinger et al. (2013) attacked the problem of parameter infer-

ence of an ODE system jointly with a Bayesian regression over the

gene expression levels. The basis of this model is a Gaussian process

with product of experts likelihood, not dissimilar from our model in

Equation (5). However, the authors in Dondelinger et al. (2013) did

not attempt a joint parameter estimation and variable selection

problem, stopping short of formulating the problem in terms of net-

work inference. Basis functions in time domain (splines) have al-

ready been applied to network inference problems in systems

biology to model unknown non-linear transition functions

(Morrissey et al., 2011); to our knowledge, splines were not directly

used to turn the network inference problem into a regression prob-

lem in the projected space in the spirit of our contribution. The dis-

tinctive part of our work is the proposal of a frequency domain

approach for oscillatory systems, and in particular the embedding of

our method within a hierarchical framework where integration of

additional information is natural. We expect that non-linearities

encoded as basis functions as in Morrissey et al. (2011) would be a

valuable extension of our work and likely result in an improvement

in performance.

While we believe that the DSS method provides promising re-

sults, there are several inherent limitations in our approach.

Importantly, the LTI approximation implies that self-regulation is

confounded with decay, so such types of interactions cannot be iden-

tified. Empirical results also seem to suggest that post-transcrip-

tional interactions may be confounded with transcriptional

interactions; this is to be expected, as post-transcriptional inter-

actions are not modelled in our framework. For such reasons, direct

application to models that include complex post-transcriptional

interactions, such as Pokhilko et al. (2012), is not advised.

Furthermore, as all Bayesian network inference methods, DSS also

suffers from multi-modal posterior distributions. The use of auxil-

iary information, such as sequence similarity, can be beneficial to

ameliorate this problem. Many different types of auxiliary

information can be considered, and indeed alternative models for

incorporating sequence similarity could also be used. A major

strength of a Bayesian hierarchical model is that different models for

auxiliary information could be easily incorporated within the DSS

framework.
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