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Abstract

Balancing selection is a classic mechanism for maintaining variability in immune genes involved in host-pathogen
interactions. However, it remains unclear how widespread the mechanism is across immune genes other than the major
histocompatibility complex (MHC). Although occasional reports suggest that balancing selection (heterozygote advan-
tage, negative frequency-dependent selection, and fluctuating selection) may act on other immune genes, the current
understanding of the phenomenon in non-MHC immune genes is far from solid. In this review, we focus on Toll-like
receptors (TLRs), innate immune genes directly involved in pathogen recognition and immune response activation,
as there is a growing body of research testing the assumptions of balancing selection in these genes. After reviewing
infection- and fitness-based evidence, along with evidence based on population allelic frequencies and heterozygosity
levels, we conclude that balancing selection maintains variation in TLRs, though it tends to occur under specific
conditions in certain evolutionary lineages rather than being universal and ubiquitous. Our review also identifies
key gaps in current knowledge and proposes promising areas for future research. Improving our understanding of
host-pathogen interactions and balancing selection in innate immune genes are increasingly important, particu-
larly regarding threats from emerging zoonotic diseases.

Key words: balancing selection, host-pathogen interactions, innate immune genes, polymorphism, Toll-like
receptors, TLR.

little evidence to support current hypotheses explaining
the evolutionary history of particular immune genes
(Vinkler et al. 2022). Antigen-presenting genes of adaptive
immunity, that is, the major histocompatibility complex
(MHC), together with genes encoding proteins responsible
for trimming and loading peptides for MHC presentation
(e.g, ERAP genes) and receptors that bind loaded MHC
molecules (e.g., KIR genes), represent a notable exception,
being well-established targets of balancing selection
(Hughes and Yeager 1998; Key et al. 2014; Radwan et al.
2020). In this review, we present current evidence on the
evolutionary mechanisms (i.e, balancing selection) main-
taining molecular variation in Toll-like receptors (TLRs),
a group of innate immune genes crucial for triggering
inflammation.

Introduction

Pathogens are strong agents of selective pressure
(Schmid-Hempel 2011) and genes coding for molecules
that interact closely with pathogens are often key targets
of natural selection (Nielsen et al. 2005; Fumagalli and
Sironi 2014; Shultz and Sackton 2019). During infection,
pathogens interact directly with host molecular compo-
nents, primarily those aimed at antigen recognition and in-
fection clearance. As such, immune defense is dependent
on a myriad of molecular bonds between host and patho-
gen structures (Kaspers et al. 2022), resulting in either
pathogen tolerance or triggering an immune response
leading to resistance (Raberg et al. 2007). Although rela-
tively subtle on the scale of an entire host phenotype, mo-
lecular variability could have crucial effects on host
resistance to pathogens. However, evolutionary mechan-
isms maintaining variability in immune genes, here defined

. S ; Toll-Like Receptors—Function, Selection,
as any gene in an organism’s genome essentially related to

immune defense (i.e,, being a part of the essential immu-
nome sensu Ortutay et al. 2007), remain unclear. Though
many immune genes show high levels of potentially func-
tional variation (Minias et al. 2018; Velova et al. 2018), and
a general theoretical framework to explain such variation
has been proposed (Woolhouse et al. 2002), we still have
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In contrast to the MHC, innate immune genes were, until
recently, viewed as invariant and evolutionarily conserved,
primarily as sequence variation in most innate immune
genes is predominantly limited by negative (purifying) se-
lection, being driven by functional constraints that select
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for general structural conservation. Nevertheless, recent
insights into the immunogenetics of both domestic/wild
animals and humans have revealed unexpected intraspe-
cific and interspecific variability in several innate immune
gene families, including TLRs (Lazarus et al. 2002; Novak
2014; Webb et al. 2015; Vinkler et al. 2022). TLRs are classed
as pattern recognition receptors (PRRs) that form a direct
molecular interface between the host and pathogen-
derived structures (Vinkler and Albrecht 2009), allowing
the host to detect infection and trigger an immune re-
sponse against the pathogen. Animal taxa have differing
sets of TLRs, ranging from around 30 in amphioxi (Ji
et al. 2018) down to 10-13 genes in birds and mammals
(Roach et al. 2005). Individual TLR molecules have evolved
to sense a diverse range of danger signals through recogni-
tion of structurally distinct ligands, some of which are few
and invariant and others numerous and highly variable. As
an example, TLR3 only binds to structurally invariant viral
RNA, whereas TLR4 detects host self (e.g, fibrinogen, heat-
shock proteins, or endogenous oxidized phospholipids) or
nonself (e.g., lipopolysaccharide, mannan, glycoinositol-
phospholipids, pneumolysin, or viral envelope and fusion
proteins) ligands (Piccinini and Midwood 2010; Kumar
et al. 2011).

Timely and specific pathogen recognition, essential for
efficient pathogen clearance, represents a strong selective
force in host—pathogen interactions. As such, TLR genetic
variability is expected to be driven by positive selection,
promoting fixation and maintenance of diverse nonsynon-
ymous substitutions and allelic variants across different
taxa and evolutionary lineages. In general, ineffective
pathogen recognition in hosts increases the costs of im-
mune defense, both in terms of resource allocation and tis-
sue damage (Ashley et al. 2012). Since structural variation
in TLR ligands may evolve to allow a pathogen to escape
the host’s immune defense, possibly even leading to host
mortality (Zdorovenko et al. 2007; Wang et al. 2015), recip-
rocal host—pathogen evolution is predicted as an out-
come. This is consistent with the coevolutionary arms
race dynamics expected under the “Red Queen model”
(Woolhouse et al. 2002). TLRs represent a valuable model
for studying such evolutionary mechanisms as (1) they
show strong positive selection signatures at the interspe-
cific level (Velova et al. 2018) and (2) unlike MHC, they
are single-copy genes, allowing more effective tracking of
adaptive evolution. Furthermore, their general structural
conservation allows positive selection to be linked with
protein structure molecular adaptations (TéSicky et al.
2020), allowing functional identification of the phenotypic
effects of molecular variation (Walsh et al. 2008; Levy et al.
2020; Fiddaman et al. 2022).

Although only around 5% of TLR codons experience
pathogen-mediated positive selection (Grueber et al.
2014; Velova et al. 2018), this polymorphism may play a
paramount role in pathogen recognition as it is mostly lo-
cated in the ligand-binding regions of TLR exodomains,
that is, at molecular surfaces crucial for pathogen recogni-
tion (Downing et al. 2010; Vinkler et al. 2014; Velova et al.

2

2018). TLR adaptations at these sites may affect the
physicochemical properties of the receptor surface, includ-
ing its electrostatic potential (Kralova et al. 2018; TéSicky
et al. 2020). In pathogens, and particularly those with sim-
ple genomes such as bacteria or (especially) viruses, con-
vergent evolution is common, indicating functional
limits in their structural evolution (Wang et al. 2015;
Gutierrez et al. 2019). Given these limits to the number
of structural variants of pathogen-derived ligands, diversi-
fying selection can also be predicted to select for a finite
(but possibly multiple) number of TLR variants. At the
interspecific level, constraints in host and pathogen struc-
ture variation may lead to evolutionary convergence
(Walsh et al. 2008; Swiderska et al. 2018; Téicky et al.
2020), whereas TLR polymorphism at the intraspecific level
may be maintained within populations via balancing selec-
tion. Though nonnegligible levels of functional, and poten-
tially functional, variability at TLRs has recently been
revealed across and within phylogenetically diverse verte-
brate lineages, including humans (Ferwerda et al. 2007),
domestic animals (Leveque et al. 2003; Swiderska et al.
2018), and wild species (Alcaide and Edwards 20171;
Quéméré et al. 2015; Vinkler et al. 2015; Minias et al.
2021), the mechanisms of balancing selection actively
maintaining this variation within populations are still
debated.

Mechanisms of Balancing Selection

Although novel allelic variants are generated by de novo
mutations, negative selection can subsequently remove al-
leles that become nonadvantageous, whereas positive se-
lection can increase the frequency of advantageous
alleles, possibly leading to fixation (according to the select-
ive sweep mechanism; de Groot et al. 2002). Alternatively,
before fixation is reached, balancing selection may inter-
vene to maintain allelic variation at frequencies greater
than expected under neutral evolution.

Balancing selection acts through several nonexclusive
mechanisms. First, heterozygote advantage (overdomi-
nance) assumes that heterozygous genotypes have greater
fitness than homozygous genotypes, which may select for
maintenance of multiple alleles within populations (fig. 1).
As in the case of the MHC, two different alleles at the same
TLR locus should allow hosts to sense a broader spectrum
of ligands, thereby triggering an immune response against
a greater range of foreign pathogens (Hedrick 2012). Thus,
according to theoretical predictions, higher heterozygosity
across multiple TLR loci (or within a single TLR locus)
should be associated with higher fitness resulting from
more efficient protection against multiple pathogens.

Second, negative frequency-dependent selection as-
sumes that low-frequency allelic variants confer greater fit-
ness than more common alleles (rare allele advantage
hypothesis; fig. 1). This is based on the premise of dynamic
host—pathogen coevolution, where pathogens rapidly
evolve to overcome (avoid) the most common immune
defenses of their hosts (Takahata and Nei 1990). Thus,
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Fic. 1. Mechanisms of balancing selection that can maintain Toll-like receptor diversity within populations. Heterozygote advantage assumes that
heterozygous genotypes have higher fitness than homozygous genotypes, as they recognize a broader spectrum of antigens (pathogens). Negative
frequency-dependent selection assumes that low-frequency genotypes (alleles) have higher fitness, as they are not avoided by high frequency patho-
gens (rare allele advantage). Fluctuating selection assumes frequency-independent parasite-driven fluctuations in genotype or allele frequencies
between subpopulations or years. Under all these mechanisms, diverse alleles may have similar fitness effects across space and time.

increasing allelic frequency should be accompanied by de-
creasing fitness, which is expected to maintain different al-
leles at moderate frequencies within populations and
prevent a selective sweep.

Finally, fluctuating selection assumes that the landscape
of pathogen-mediated selection on hosts and their im-
mune genes should vary in space and time (Charbonnel
and Pemberton 2005). These spatio-temporal fluctuations
may be independent of allele frequency and, in contrast to

the negative frequency-dependent selection hypothesis,
exclusively reflect variation in environmental factors af-
fecting the composition of local pathogen communities
(Spurgin and Richardson 2010). Since different allelic var-
iants may confer varying fitness in different habitats or lo-
cations (subpopulations), and intensity of directional
positive selection on these alleles can change over time,
multiple alleles are expected to be maintained within a
metapopulation (across subpopulations; fig. 1).
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So far, the most convincing empirical evidence for bal-
ancing selection comes from research on antigen-
presenting genes of adaptive immunity, that is, the MHC
(reviewed in Radwan et al. 2020). However, the MHC is spe-
cific in its genomic structure (multi-locus organization
with frequent pseudogenisation; Sepil et al. 2012) and im-
munological function (functional dependency on T cell re-
ceptors; Migalska et al. 2019). Thus, it remains unclear how
widespread balancing selection is in immune genes. It has
been estimated that over half of genetic variability for re-
sistance to infection is attributable to non-MHC genes
(Acevedo-Whitehouse and Cunningham 2006), suggesting
that other well-supported examples of genes evolving un-
der balancing selection could yet be identified. Although
balancing selection is recognized as the main force shaping
TLR gene evolution in humans (Ferrer-Admetlla et al.
2008), and TLRs in many animal species show surprisingly
high allelic variation (Alcaide and Edwards 2011; Swiderska
et al. 2018), it remains to be established whether the pro-
cesses of balancing selection act at these key innate im-
mune genes in nonhuman vertebrates and how general
they are across different evolutionary lineages. Here, we re-
view current empirical evidence for mechanisms of balan-
cing selection acting on TLRs in natural populations of
nonhuman vertebrates. Although precise determination
of the processes mediating balancing selection on immune
genes is difficult as they are nonexclusive and can operate
in parallel (Spurgin and Richardson 2010), we attempt to
identify those mechanisms that are likely to be of primary
importance for the maintenance of TLR diversity.

TLR Heterozygote Advantage

Of all the mechanisms associated with balancing
selection on TLRs, heterozygote advantage has received
the most extensive scientific attention, possibly due to
the methodological feasibility of testing for this mechan-
ism. Traditionally, heterozygote advantage has been tested
by examining covariation between TLR heterozygosity sta-
tus and infection rate, fitness components (reproduction
and survival), or fitness-related traits (e.g,, condition or or-
nament expression). In general, heterozygous individuals
are expected to show lower overall rates of infection by
multiple pathogens, and thus display better condition, bet-
ter expression of condition-dependent traits (e.g, orna-
ments) and, eventually, higher fitness.

Infection Rates

To date, most correlative research on TLR heterozygote
advantage has focused on infection rates; however, the
mechanism has received scant and/or indirect support.
For example, Gavan et al. (2015) showed that different
TLR4 alleles in the water vole Arvicola amphibius were as-
sociated with lower infection rates by different parasites
(Megabothris fleas, Ixodes tick larvae, and Gamasidae
mites). Though not tested directly, the authors interpreted
this pattern as heterozygote advantage at TLR4, a hypoth-
esis further supported by the excess of heterozygote
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individuals observed before a population bottleneck
(Gavan et al. 2015). A similar mechanism has been invoked
in the roe deer Capreolus capreolus, in which different
TLR2 alleles provided resistance against different patho-
gens and the allele resistant against Toxoplasma infection
conferred susceptibility to Chlamydia, and vice versa
(Quéméré et al. 2021). The same study reported that indi-
viduals with a medium-frequency (31%) TLRS allele in a
heterozygous (but not homozygous) state were less likely
to be seropositive for Chlamydia than individuals lacking
this allele (Quéméré et al. 2021). However, as TLRS is not
expected to be directly involved in Chlamydia detection
(Verweij et al. 2016), the nature of this association remains
unclear. Despite evidence suggesting the benefits of hetero-
zygosity (in line with the expected molecular mechanism of
heterozygote advantage), numerous studies have provided
support for the effects of specific TLR alleles (i.e, lower infec-
tion rates in individuals with specific resistance alleles, inde-
pendent of heterozygosity status), some even suggesting a
heterozygote disadvantage effect, with lower infection
rates in homozygous individuals (table 1). Further, most
studies have failed to find any significant association be-
tween TLR heterozygosity and infection rate, at least in
some of the loci tested (table 1). It should be acknowl-
edged, however, that most studies examined infections
by a single pathogen, or tested for separate effects of mul-
tiple pathogens. Since heterozygote advantage at TLRs
(and other antigen-recognition immune genes) is
thought to confer an overall benefit when an organism
is exposed to a diverse range of pathogens, single-
pathogen experimental framework may be insufficient
to test for this mechanism effectively.

Fitness Components and Fitness-Related Traits

As with infection rate, the heterozygote advantage mech-
anism receives little support when examined in relation to
fitness components and fitness-related traits. For example,
testing for correlations between TLR heterozygosity and
reproductive success in the dunnock Prunella modularis
conditionally supported heterozygote advantage, but
only at a single TLR3 locus (Lara et al. 2020). It has been
suggested that TLR3 heterozygous individuals may cope
better against RNA viruses, such as avian influenza; how-
ever, heterozygote advantage has only been detected in
males and this could possibly be explained by intricate sex-
ual conflict (Santos et al. 2015). Indications of TLR4 hetero-
zygote advantage have also been found in a heavily
bottlenecked population of another passerine bird, the
Stewart Island robin Petroica australis rakiura. Here, a sin-
gle heterozygous TLR4 genotype conferred a large survival
advantage, reducing mortality risk before maturity by
more than half (Grueber et al. 2013). Strong selection ad-
vantage for this genotype was further confirmed by a
2-fold frequency excess in the population compared with
the Hardy—Weinberg expectation (Grueber et al. 2013).
Interestingly, elevated levels of TLR heterozygosity result-
ing from reciprocal translocation of robins between inbred
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Table 1. List of Studies Testing for Heterozygote Advantage at TLRs in Nonhuman Vertebrates.

Trait Category Lineage Species Pathogen/Trait Heterozygote Heterozygote Single-Allele No Reference
Advantage Disadvantage Effect Effect
Infection rate Birds Coereba flaveola Haemoproteus 2B 1A, 7 1
Mammals Apodemus sylvaticus ~ Toxoplasma gondii 11, 12 2
Arvicola amphibius Megabothris flea 4 3
Arvicola amphibius Ixodes larvae, 4 4 3
Gamasidae mites
Arvicola amphibius Bartonella, Ixodes 4 3
nymphs
Arvicola amphibius Coinfection 4 3
Capra ibex Brucella melitensis 1 1 2,4 4
Capreolus capreolus Toxoplasma 2 2 4,5 5
Capreolus capreolus Chlamydia 5 2 4 5
Capreolus capreolus Coinfection 2* 4,5 5
Myodes glareolus Borrelia afzelii 2 2 6,7
Reproduction Birds Acrocephalus Lifetime 3 3 8
sechellensis reproductive
success
Prunella modularis Reproductive 3 1,24 9
success 515
Survival Birds Acrocephalus Lifetime survival 3 8
sechellensis
Atlapetes pallidiceps ~ Annual survival ML 10
Melospiza melodia Annual survival ML 1
Petroica australis Annual survival 4 ML 12
Tympanuchus cupido  Annual survival 1B 4,5,15 13
attwateri
Other Birds Chroicocephalus Physiological 1B, 3, ML 4,5 14
ridibundus condition
Sterna hirundo Colony size choice 1,34 15
Tympanuchus cupido  Immune function 1B 4,5,15 13
attwateri
Mammals Capreolus capreolus Natal dispersal 3,4 2,5 16

Note.—Numbers indicate identity of TLR loci associated with different effects (heterozygote advantage, heterozygote disadvantage, single-allele effect). ML, multi-locus

associations.

#Associations inferred, but not explicitly tested for.
1, Antonides et al. (2019); 2, Morger et al. (2014); 3, Gavan et al. (2015); 4, Quéméré et al. (2020); 5, Quéméré et al. (2021); 6, Tschirren et al. (2013); 7, Cornetti et al. (2018);
8, Davies et al. (2021); 9, Lara et al. (2020); 10, Hartmann et al. (2014); 11, Nelson-Flower et al. (2018); 12, Grueber et al. (2013); 13, Bateson et al. (2016); 14, Podlaszczuk et al.
(2021); 15, Drzewinska-Chanko et al. (2021); 16, Vanpé et al. (2016).

populations may have contributed to observed effects of
increased individual survival and recruitment following ac-
tive conservation measures (Grueber et al. 2017). In the
black-headed gull Chroicocephalus ridibundus, multi-locus
TLR heterozygosity (and within-individual sequence diver-
sity) correlated with different physiological condition indi-
ces; however, all these associations prevailed at the
nucleotide rather than amino acid level, suggesting mo-
lecular mechanisms indirectly linked to antigen recogni-
tion (e.g, modifications of translation level) (Podlaszczuk
et al. 2021).

To date, heterozygosity-fitness correlations at TLRs have
almost exclusively been tested in birds. In mammals, we
are aware of just one study that tested for correlations
with natal dispersal, a trait that may have important fitness
consequences (Nevoux et al. 2013). This study found that
roe deer dispersal propensity and distance increased with
heterozygosity at TLR3 (all individuals) and TLR4 (heavy in-
dividuals only), which could be associated with fitness ad-
vantage (Vanpé et al. 2016). Aside from this, information
on correlations between TLR heterozygosity and fitness

components (reproduction and survival) are lacking for
mammals.

Other Mechanisms of Balancing Selection at
TLRs

Owing to fundamental methodological difficulties, includ-
ing the need for a long-term spatio-temporal sampling de-
sign, any direct empirical evidence for mechanisms of
balancing selection acting on TLRs other than heterozy-
gote advantage (i.e, negative frequency-dependent and
fluctuating selection) is highly limited. Below, we provide
a summary of the available evidence.

Infection Rates

Association of TLR variation with infection rate may not
necessarily provide support for the heterozygote advan-
tage hypothesis; instead, it may reflect other mechanisms
of balancing selection, such as spatial or temporal variation
in allelic frequency. A striking example has been provided
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through a genome-wide association study of Berthelot’s
pipit Anthus berthelotii, which revealed relationships be-
tween two single nucleotide polymorphisms (SNPs) in
TLR4 with malaria Plasmodium infection (Armstrong
et al. 2019). Surprisingly, one of the SNPs was negatively as-
sociated with malaria infection risk in the Canary Islands,
but positively associated in the Madeira archipelago. No
evidence for heterozygote advantage was found in either
population, clearly indicating a local adaptation to fluctu-
ating pathogen-driven selection in the pipits, maintaining
TLR4 variation across populations (Armstrong et al. 2019).
Similarly, a negative correlation was found between
Amblyomma tick prevalence and TLR5 nucleotide
and amino acid diversity across fragmented populations
of a tropical bird, the wedge-billed woodcreeper
Glyphorynchus spirurus (Perrin et al. 2021). Since ticks
are key vectors of animal infectious diseases (Jongejan
and Uilenberg 2004), it has been suggested that TLR vari-
ation may have been maintained by balancing selection
(possibly through different mechanisms). On the other
hand, the TLR5 variation paralleled neutral genetic vari-
ation in woodcreepers, suggesting a dominant role of drift
(Perrin et al. 2021). This is similar to the distribution of
TLRS polymorphism in humans and other primates, where,
despite selection for variation at the interspecific level,
nonfunctional pseudogene alleles may be maintained in
a polymorphic state by drift when negative selection is
weak (Wlasiuk et al. 2009).

Population Genetics and Population Demographic
History
Although multiple studies have identified putative function-
al polymorphism in TLRs in wild animal populations (Alcaide
and Edwards 2017; Tschirren et al. 2011; Vinkler et al. 2015)
and domestic species (Darfour-Oduro et al. 2016; Swiderska
et al. 2018), there is virtually no information available on
temporal variation in TLR allelic frequencies, which would
clearly support the negative frequency-dependent selection
mechanism. Despite this, several studies have documented
notable variation in TLR allelic composition across subpopu-
lations, consistent with fluctuating selection. For example,
patterns of TLR2 polymorphism in the bank vole Myodes
glareolus suggest spatial variation in selective pressures
(Tschirren et al. 2012), probably due to TLR2 allelic variation
being linked to resistance to Borrelia afzelii, a tick-borne
pathogen widespread in wild rodents (Tschirren et al.
2013). Similarly, a large-scale study on the gentoo penguin
Pygoscelis papua detected population-specific adaptations
at TLRS to divergent polar environments and local pathogen
assemblages (Levy et al. 2020), also invoking selection that
fluctuates in space. This population diversification pattern,
with gene flow contributing to polymorphism maintenance,
is also known for several human TLRs, particularly TLR4
and the TLR10-1-6 cluster (Ferwerda et al. 2007; Barreiro
et al. 2009).

Balancing selection acting within populations could
lead to an overrepresentation of several common alleles

6

compared with neutral equilibrium, a phenomenon that
can be tested for with a suite of related statistics, such as
Tajima’s D or Fu and Li's D (Fijarczyk and Babik 2015).
Significantly positive values of these statistics have been re-
ported for several vertebrate taxa at different TLR loci, sug-
gesting the action of balancing selection (Kloch et al. 2018;
Ham-Duenias et al. 2020; Xu et al. 2020). On the other
hand, many other TLR studies have reported no deviation
from neutrality for Tajimas’ D (e.g, Hartmann et al. 2014;
Levy et al. 2020; Podlaszczuk et al. 2021). It should be ac-
knowledged, however, that these neutrality tests are ex-
tremely sensitive to nonequilibrium demography and
population structure (Fijarczyk and Babik 2015). This back-
ground noise can be filtered out, to certain extent, by com-
paring allele frequencies in genes predicted to evolve
under balancing selection with neutral markers.
Application of such an approach in a bottlenecked popu-
lation of the Seychelles warbler Acrocephalus sechellensis
showed a heterozygote excess in TLR15, which retained
more variation than would be predicted based on observa-
tions of neutral markers, supporting the role of balancing
selection (Gilroy, van Oosterhout, et al. 2017). Further,
demographic simulations in this species revealed that vari-
ation observed at three TLR genes (TLR1LB, TLR3, and
TLR15) could not be explained by neutral evolution exclu-
sively, and was more likely generated through past balan-
cing selection (Gilroy, Phillips, et al. 2017). Unfortunately,
this evidence for balancing selection cannot effectively dis-
tinguish between rare allele advantage and heterozygote
advantage mechanisms since heterozygote excess (when
compared with neutral Hardy—Weinberg expectations)
can be driven by either or both processes (Spurgin and
Richardson 2010). Finally, there is limited evidence for bal-
ancing selection in TLRs originating from genomic scans of
nonsynonymous polymorphisms within populations. In
brief, balancing selection is expected to maintain excess di-
versity not only at the targets of selection but also at
neighboring neutral loci, detectable through comparisons
with a genome-wide distribution of nonsynonymous di-
versity (Fijarczyk and Babik 2015). This pattern was re-
vealed at three TLR genes (TLR1, TLR2, and TLR6) in the
bank vole, though interpretation of the results was compli-
cated by paralogous gene conversion at two of the loci
(Lundberg et al. 2020). Interestingly, of the 135 PRR signal-
ing pathway genes in bank voles, the TLR family (together
with C-type lectin receptors) appeared to be a key target of
balancing selection (Lundberg et al. 2020).

Conclusions

Consistent with the “One Health” concept, an understand-
ing of the mechanisms responsible for polymorphism
maintenance in innate immune genes of wild animals is es-
sential for predicting risks associated with animal to hu-
man disease transmission and preventing future disease
outbreaks (Lebov et al. 2017). Though still fragmentary,
multiple lines of evidence from a wide range of species sug-
gest that balancing selection is likely to be a common


https://doi.org/10.1093/molbev/msac102

Selection Balancing at Innate Immune Genes - https://doi.org/10.1093/molbev/msac102

MBE

mechanism for polymorphism maintenance in TLRs. At
the same time, contrasting evidence for different taxa
and TLR genes (either supporting balancing selection or
not) indicates that the phenomenon is far from being
universal and omnipresent, but occurs under specific
conditions in certain evolutionary lineages. Although dis-
tinguishing between different types of balancing selection
in wild species is difficult, the best empirical evidence
relates to fluctuating selection maintaining TLR variation
across populations. In contrast, evidence for heterozygote
advantage is still relatively soft, and there is no evidence for
negative frequency-dependent selection. Here, we identify
several limitations currently restricting our understanding
of balancing selection acting in vertebrate TLRs:

+ Lack of evidence for functional variation in TLR alleles
—though selection operates through phenotypic vari-
ation, any links between natural TLR genetic variation,
differences in molecular function, and variance in im-
mune responsiveness are missing for wild species.
Notably, these associations may be predicted as posi-
tive (strengthening pathogen recognition) or negative
(potentially leading to immunological tolerance).

+ Shortage of association studies between TLR variation
and infection rates—as immunological variation
should manifest as altered disease resistance in the
natural environment, there is a need for data identify-
ing links between TLR variation and diverse patho-
gens (coinfections). It should be stressed, however,
that TLR variation may also be selected for by interac-
tions with nonpathogenic symbionts.

+ Insufficient association studies between TLR variation
and fitness components—whereas linking poly-
morphism maintained in TLRs with fitness varying
across different contexts (via quantification of allele-
and genotype-fitness landscapes) can serve as the
most straightforward evidence for balancing selec-
tion, relatively limited effort has been made to test
for this association across species.

+ Low phylogenetic coverage—until now, research on
intraspecific variation in TLRs has focused primarily
on birds and mammals, whereas other vertebrate
lineages with more diversified TLRs (e.g, fish) are un-
derrepresented. Improved knowledge of pathogen
community diversity across evolutionarily divergent
host species could guide the search for promising
models on balancing selection in TLRs.

+ Lack of wider spatial datasets and time series—broad-
er information on the spatio-temporal dynamics of
TLR allele frequency changes potentially linked with
changes in pathogen composition would provide a
basis for robust inferences on the roles of negative
frequency-dependent selection and fluctuating selec-
tion in shaping TLR diversity.

Although filling the gaps outlined above will be both
technically and financially demanding, focusing on TLRs
as a model genetic system for investigating balancing

selection offers several advantages. First, being directly in-
volved in interactions with structurally diversified patho-
gen structures, TLRs are among those proteins where
polymorphism maintenance is predictable. Second, their
general conservation enhances effective screening of
within- and between-population polymorphism, allowing
efficient development of molecular tools (primers,
probes), robust protein modeling, and prediction of
variation in protein molecular phenotypes. Third, their
well-understood immunological function makes TLRs
easy to investigate functionally, including the adoption
of cutting edge experimental approaches such as allelic
variant manipulation. Fourth, given specific interactions
of individual TLRs with pathogen-derived structures, pre-
cise predictions can be made about their associations
with infection agents. Taking into consideration the exist-
ing body of evidence for and against balancing selection in
TLRs, new research should be targeted at gaining a better
understanding of the ecological and evolutionary contexts
that promote (or inhibit) its role in shaping innate im-
mune gene variation. Further, we recommend that future
studies should focus primarily on overcoming the limita-
tions listed above to provide comprehensive evidence for
the broad action of balancing selection in immune genes
other than the MHC, which still remains a key target of
evolutionary immunological research.
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