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Abstract Piezo1 is an ion channel that gates open when mechanical force is applied to a cell

membrane, thus allowing cells to detect and respond to mechanical stimulation. Molecular

structures of Piezo1 reveal a large ion channel with an unusually curved shape. This study analyzes

how such a curved ion channel interacts energetically with the cell membrane. Through membrane

mechanical calculations, we show that Piezo1 deforms the membrane shape outside the perimeter

of the channel into a curved ‘membrane footprint’. This membrane footprint amplifies the

sensitivity of Piezo1 to changes in membrane tension, rendering it exquisitely responsive. We

assert that the shape of the Piezo channel is an elegant example of molecular form evolved to

optimize a specific function, in this case tension sensitivity. Furthermore, the predicted influence of

the membrane footprint on Piezo gating is consistent with the demonstrated importance of

membrane-cytoskeletal attachments to Piezo gating.

DOI: https://doi.org/10.7554/eLife.41968.001

Introduction
Piezo ion channels transduce mechanical stimuli into electrical activity (Coste et al., 2010). These

channels – Piezo1 and Piezo2 in mammals – underlie many important processes in biology, including

cell volume regulation in erythrocytes, cardiovascular system development, and touch sensation

(Maksimovic et al., 2014; Ranade et al., 2014a; Ranade et al., 2014b; Cahalan et al., 2015). In

electrophysiological experiments Piezo channels seem to be exquisitely sensitive to applied mechan-

ical force: when the membrane of a cell is poked gently with a probe, or when pressure is applied to

stretch a small patch of cell membrane on a gigaseal pipette, Piezo channels open (Coste et al.,

2010; Lewis and Grandl, 2015).

Studies have addressed how Piezo channels ‘sense’ and open in response to mechanical force. In

one approach Piezo channels, purified and reconstituted into droplet bilayers, opened when force

was applied by swelling a droplet (Syeda et al., 2016). This observation implies that Piezo needs

only the cell membrane to couple mechanical forces to pore opening. In another approach, Piezo

channels in patches excised from cell membrane blebs (Cox et al., 2016), or in cell excised patches

with applied positive or negative pressure (Lewis and Grandl, 2015), open in response to pressure

application. These observations also support the notion that Piezo only needs an intact lipid mem-

brane to transduce force into pore opening.

The reconstitution (Syeda et al., 2016) and excised patch (Lewis and Grandl, 2015; Cox et al.,

2016) experiments suggest the ‘force-from-membrane’ hypothesis for mechanosensitive gating,

which, in its simplest form, invokes lateral membrane tension as the origin of the ‘opening force’

(Sukharev et al., 1999; Perozo et al., 2002; Chiang et al., 2004; Teng et al., 2015). But other

experiments suggest additional possibilities for force exertion. When blebs are formed on the
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surface of a cell by removing local cytoskeletal attachments, certain properties of Piezo mechanosen-

sitive gating change (Cox et al., 2016). And more directly, Piezo gating is altered by applying force

to a tether artificially attached to the channel (Wu et al., 2016). Therefore, while membrane-medi-

ated forces alone appear to be sufficient to open Piezo, tethers attached to the membrane or to the

channel itself also seem to play a role in Piezo gating.

A partial molecular structure of a Piezo channel has been determined (Guo and MacKinnon,

2017; Saotome et al., 2018; Zhao et al., 2018). Piezo is a trimer of 3 identical subunits that form

one central pore and three long arms that extend away from the center. A peculiar aspect of the

structure is that the extended arms, which are made of transmembrane helices, do not lie in a plane

as would be expected if Piezo normally resides in a planar membrane like most other ion channels.

This property of the structure implied that Piezo likely curves the cell membrane locally into a spheri-

cal dome (projecting into the cell), which was confirmed by electron micrographs of small unilamellar

lipid vesicles (Guo and MacKinnon, 2017).

On the basis of Piezo’s demonstrated ability to curve lipid membranes locally into a dome, a

mechanism for membrane tension sensitivity – called the membrane dome mechanism – was pro-

posed (Guo and MacKinnon, 2017). Simply stated, the dome shape provides a source of potential

energy for gating – in the form of excess membrane area ’stored’ by curving the membrane – when

the membrane comes under tension. If the Piezo dome becomes flatter when Piezo opens, then the

projected (in-plane) area of the dome will expand, that is, the available in-plane area of the mem-

brane-Piezo system will increase. Under tension g, the flatter shape will be favored by energy g DA,

where DA is here the change in the projected area of the Piezo dome. Therefore, this model rational-

ized Piezo’s peculiar shape as a means to utilize, for gating purposes, the energy stored in a curved

membrane under tension.

However, the membrane dome model of Piezo gating only considered the shape of the mem-

brane within Piezo’s perimeter and not the shape of the surrounding membrane, which is necessarily

coupled to the curvature of the Piezo dome. In the present analysis we study the energetic contribu-

tion to Piezo gating provided by the shape of the surrounding membrane. Through membrane

mechanical calculations, we show that the Piezo dome can strongly curve the surrounding mem-

brane. We find that the energetic coupling between the shape of the Piezo dome and the surround-

ing membrane amplifies Piezo’s tension sensitivity, and may explain the experimentally observed

regulation of Piezo gating by membrane-cytoskeletal attachments.

Results

System of Piezo plus membrane
Figure 1A and B show two orientations of the molecular model of Piezo1 in yellow, which from here

on we refer to as Piezo. Shown in grey, a spherical cap is placed such that it intersects the protein

near the middle of the transmembrane helices. This grey surface therefore corresponds to the mid-

bilayer surface of the membrane. We call the grey spherical cap, with its embedded Piezo channel, a

mid-bilayer representation of the Piezo dome. This dome shape, produced by curved Piezo channels

embedded in lipid bilayer membranes, has been confirmed experimentally (Guo and MacKinnon,

2017). The intersection of the grey surface and the Piezo channel, shown in cyan, informs that the

dome surface area is covered by approximately 20% protein and 80% lipid membrane. Note that, if

the unperturbed configuration of the lipid membrane is planar, the Piezo protein must apply,

through its curved structure, a distorting force on the membrane to locally bend the membrane into

a dome shape. And, of course, the membrane applies an opposing force on the protein. The result

is a stable, non-planar equilibrium configuration of the membrane-Piezo system with zero net force,

in which the sum energy of the channel and the membrane is minimized. In the present analysis we

do not consider the flexing of Piezo. Instead, we focus on the membrane shape associated with a

particular (e.g., closed) Piezo configuration (Figure 1A and B).

Since the surrounding lipid membrane connects smoothly to the Piezo dome, the curved shape of

Piezo is expected to induce membrane curvature beyond the perimeter of the Piezo dome. The fun-

damental reason for this is, the energetic cost to curve a membrane contains a term proportional to

the membrane’s mean curvature squared. As a result, a sharp transition from the curved dome shape

to a planar membrane is associated with a higher energy than a gradual transition. This effect is

Haselwandter and MacKinnon. eLife 2018;7:e41968. DOI: https://doi.org/10.7554/eLife.41968 2 of 29

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.41968


shown in Figure 1C: the grey surface corresponds to the mid-bilayer surface of the dome in

Figure 1A and B and the blue surface to the mid-bilayer surface of the surrounding membrane. We

refer to the region of deformed lipid membrane outside the perimeter of the Piezo dome as Piezo’s

membrane footprint (Phillips et al., 2009). The total energy of the membrane-Piezo system there-

fore has to include Piezo’s membrane footprint in addition to the Piezo dome. As we will show, Pie-

zo’s membrane footprint not only influences the total energy of the membrane-Piezo system, but it

also has a very large influence on Piezo’s ability to sense changes in membrane tension.

Shape and energy of the membrane footprint
Of all the possible shapes Piezo’s membrane footprint may adopt, we assume that the dominant

shape corresponds to that associated with the lowest energy. To calculate this lowest energy mem-

brane footprint, we begin with a well-known expression for the lipid membrane deformation energy

(Helfrich, 1973)

GM ¼
1

2
Kb

Z

c1 þ c2ð Þ2dAþg DA ; (1)

where Kb is the membrane bending modulus (membrane bending stiffness), g is the membrane ten-

sion, c1 and c2 are the principal curvatures of the mid-bilayer surface (which are functions of position

on the membrane), and DA is the decrease in in-plane area associated with deforming the membrane

out of its unperturbed (planar) configuration. The integration is carried out over the surface of the

membrane footprint (see Appendix 1). In the integrand of the membrane bending energy in Equa-

tion 1 we did not include a contribution / c1c2 due to the Gaussian curvature of the membrane,

Figure 1. Piezo curves the membrane. (A) Side and (B) top-down (projecting into the cell) views of the Piezo

dome. The approximate position of the curved mid-bilayer surface of the Piezo dome is indicated in grey, with the

cyan regions corresponding to the intersection of the mid-bilayer surface and the Piezo protein. (C) The curved

shape of the mid-bilayer surface of the Piezo dome (indicated in grey) deforms the mid-bilayer surface of the

surrounding lipid membrane (indicated in blue) and results in a membrane footprint of Piezo that extends beyond

the size of the dome (see Figure 2A for further details). [The atomic structure of the Piezo protein in (A) and (B)

corresponds to mPiezo1 with Protein Data Bank (http://www.rcsb.org) ID 6B3R.].

DOI: https://doi.org/10.7554/eLife.41968.002
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which is independent of the shape of the membrane footprint, and a contribution due to the mem-

brane spontaneous curvature (Helfrich, 1973). The latter contribution to the membrane bending

energy may need to be considered if the bilayer contains lipids that induce intrinsic curvature.

Next, we minimize GM by solving a differential equation corresponding to the first variation of

Equation 1 set equal to zero – the Euler-Lagrange equation – subject to specific boundary condi-

tions (Fox, 1987). This solution yields the shape of the lipid membrane when its energy is minimal.

Using this shape, we calculate GM by evaluating Equation 1. We used two separate, previously

developed methods – one analytical (Weikl et al., 1998; Turner and Sens, 2004; Wiggins and Phil-

lips, 2005; Li et al., 2017) and one numerical (Peterson, 1985; Seifert et al., 1991; Deserno, 2004;

Bahrami et al., 2016) – to carry out these calculations. The analytical solutions involve a ’small gradi-

ent’ approximation of Equation 1 and are therefore only accurate for cases in which the membrane

curvature is small. Nevertheless, the analytical solutions provide an important check (see

Materials and methods) on the numerical solutions, which are not limited to membranes with small

curvatures. Because Piezo can be highly curved, the solutions shown in the main text figures were

calculated numerically.

The shape of Piezo’s membrane footprint – and therefore its associated energy – depends on

three key physical properties of the membrane-Piezo system: the basic shape of the Piezo dome,

the membrane bending modulus Kb, and the membrane tension g. The general shape of Piezo in a

closed conformation is well defined and approximated here as a dome, or spherical cap, of

area 390 nm2 and radius of curvature R ¼ Rc with Rc ¼ 10:2 nm (Guo and MacKinnon, 2017). We

assume that the area of the Piezo dome stays approximately constant independent of the conforma-

tional state of Piezo. The value of Kb for membranes with lipid compositions common to cell mem-

branes is well documented, around 20 kBT (Rawicz et al., 2000), and values of g relevant to living

cells and required to activate Piezo have been described (Lewis and Grandl, 2015; Cox et al.,

2016). Therefore, calculation of Piezo’s membrane footprint and its associated energy is a well-

defined mechanics problem involving no free parameters.

Figure 2. Membrane footprint of the Piezo dome. The shape of the Piezo membrane footprint depends on (A) the

radius of curvature of the Piezo dome R, (B) the membrane bending modulus (membrane bending stiffness) Kb,

and (C) the membrane tension g. All curves show the cross section of the mid-bilayer surface and its intersection

with the Piezo protein. Unless indicated otherwise, we calculated the Piezo membrane footprint using the value

R ¼ 10:2 nm observed for Piezo in a closed conformation (Guo and MacKinnon, 2017) with Kb ¼ 20 kBT and

g ¼ 0:1 kBT=nm
2. For Figure 1C we used the same parameter values as in the left panel of Figure 2A. The range

of Kb considered in (B) corresponds to the approximate range of Kb measured for phosphatidylcholine bilayers

with different acyl-chain lengths and degrees of unsaturation (Rawicz et al., 2000). Scale bars, 4 nm.

DOI: https://doi.org/10.7554/eLife.41968.003
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The left panel of Figure 2A shows a cross section through the surface displayed in Figure 1C, cal-

culated as described above, corresponding to R ¼ 10:2 nm, Kb ¼ 20 kBT, and g ¼ 0:1 kBT=nm
2

(1 kBT=nm
2 ¼ 4:114 mN=m at T ¼ 298 K). For context on this value of the membrane

tension, commonly studied membranes undergo lysis at around 3:5 kBT=nm
2 (Rawicz et al., 2000).

Thus, 0:1 kBT=nm
2 is a modest value of the membrane tension, likely experienced by cell membranes

under non-pathological stress. The left panel of Figure 2A illustrates that, if one includes the mem-

brane footprint, then Piezo has an extensive reach and, as we will show, this reach has significant

functional consequences. But first we inspect how the three physical properties R, Kb, and g of the

membrane-Piezo system affect the size and shape of Piezo’s membrane footprint. If R were to be

increased (i.e., if Piezo were to become flatter) then the deformation footprint would become less

pronounced and smaller in height (right panel of Figure 2A). The magnitudes of Kb and g change

the reach of the membrane footprint: larger Kb and smaller g values produce a more gradual

approach to the plane of the membrane (Figure 2B and C). This relationship is expressed by the

characteristic decay length of membrane shape deformations,

l¼
ffiffiffiffiffiffiffiffiffiffiffi

Kb=g
p

; (2)

which appears in the analytical solution to the Euler-Lagrange equation associated with Equation 1

(Appendix 1, Equations A6 and A7). Substituting Kb ¼ 20 kBT and g¼ 0:1 kBT=nm
2 yields l¼ 14 nm,

which means that under these conditions Piezo’s membrane footprint is much larger than the Piezo

protein itself.

The membrane footprint energy, GM , is graphed in Figure 3 as a function of Piezo’s radius of cur-

vature. GM is greater than or equal to zero because this energy represents the work required to

deform the membrane from a plane into the shape of Piezo’s membrane footprint. Figure 3A shows

the energetic consequence if Piezo could undergo a conformational transition that changes its radius

of curvature: a highly curved Piezo (small R) is associated with a large GM . We also see that GM is a

sensitive function of membrane tension. If Piezo becomes flatter when it opens, as was proposed in

the membrane dome mechanism (Guo and MacKinnon, 2017), then the deformation footprint will

contribute to the energetics of gating, as shown (Figure 3B). We denote here the radii of curvature

of the Piezo dome in the closed and open conformational states of Piezo by Rc and Ro, with Rc <Ro.

Under finite membrane tension (g > 0) Piezo flattening (i.e., a transition from R ¼ Rc to R ¼ Ro) will

reduce GM and thus stabilize the flatter, open conformation relative to the closed conformation. In

the absence of membrane tension (g ¼ 0) the membrane footprint is of no energetic consequence.

Figure 3. Energy of the Piezo membrane footprint. (A) Energy cost of the Piezo membrane footprint GM as a function of the radius of curvature of the

Piezo dome R. We calculated GM by minimizing Equation 1 with the membrane bending rigidity Kb ¼ 20 kBT and the indicated values of the

membrane tension g. (B) Schematic of the proposed mechanism for the mechanical activation of Piezo through membrane tension, for which we

assume that the radius of curvature of the Piezo dome in the closed conformational state, Rc, takes a smaller value than in the open conformational

state, Ro.

DOI: https://doi.org/10.7554/eLife.41968.004
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Thus, Piezo’s membrane footprint would impose a tension-dependent bias, favoring the open con-

formation of Piezo only when tension is applied, and more so when tension is greater.

Piezo’s membrane footprint in the absence of applied tension, which is associated with GM ¼ 0,

deserves a comment because the membrane is still highly curved here (see Figure 2C as g becomes

smaller). If GM represents the work required to deform the membrane from a plane into the shape of

Piezo’s membrane footprint, and Piezo’s membrane footprint is curved, how can GM be zero? The

explanation is that, in the limit g ! 0, the membrane curves in a special way around the Piezo dome

such that the principal curvatures c1 and c2 in Equation 1 sum to zero. This special surface, called a

catenoid, would never truly be achieved in this physical system because thermal fluctuations will not

permit zero tension and, potentially, because of deviations of the Piezo dome from a perfect spheri-

cal cap. Nevertheless, in the absence of applied tension the deformation footprint should approach

the approximate shape of a catenoid. As we demonstrate below, this behavior yields fascinating

consequences for Piezo’s mechanosensitivity.

Influence of the membrane footprint on gating
The above analysis suggests that GM , the energy required to form Piezo’s membrane footprint,

should influence the gating properties of Piezo. To investigate the nature of this influence, we add

to the Piezo dome energy the energetic contribution due to Piezo’s membrane footprint. The dome

energy, GD, has three additive contributions (Guo and MacKinnon, 2017): the protein energy GP
D, in

which we include all contributions to the energy of the membrane-Piezo system that do not depend

on the membrane tension or the membrane shape, the energy required to bend the membrane in

between Piezo’s arms (still part of the dome) against membrane bending stiffness, Gb
D, and the work

required to form the dome against membrane tension, Gg
D. The total energy of the membrane-Piezo

system is therefore given by

G¼GP
DþGb

DþG
g
DþGM : (3)

G is the work required to form both the Piezo dome (i.e., the curved Piezo protein and the curved

membrane between the arms) and Piezo’s membrane footprint, starting from a hypothetically planar

standard state. The value of GP
D is unknown, Gb

D was estimated previously to be 2:4 p Kb (approximat-

ing all of the dome area to be occupied by lipids), and G
g
D ¼ g DA with, similarly as above, DA being

the decrease in the in-plane area of the Piezo dome compared to the planar state (Guo and MacKin-

non, 2017). In addition to internal protein interactions, GP
D may include a contribution to the mem-

brane bending energy due to the Gaussian curvature of the membrane (Helfrich, 1973). The Gauss-

Bonnet theorem mandates that, for a fixed membrane topology, this contribution to GP
D only

depends on the boundaries of the membrane, and hence takes a constant value for a given Piezo

conformational state and membrane composition (Weikl et al., 1998; Wiggins and Phillips, 2005).

Now, if the dome increases its radius of curvature when Piezo opens, then the total energy differ-

ence between the open and closed conformations, DG, is obtained by applying Equation 3 to each

conformation and taking the difference. The upper panel of Figure 4A shows this difference for the

tension-dependent components of DG, DGg
D and DGM , for a closed to open transition if Rc ¼ 10:2 nm

and Ro ! ¥ (i.e., Piezo being flat in the open conformation), as a function of g. DGg
D and DGM are

plotted separately for comparison. It is immediately clear that DGM is expected to contribute sub-

stantially to Piezo’s tension-dependent gating. Two other possible geometries, corresponding to a

smaller degree of flattening (Figure 4B), or to flattening from a less curved closed state (Figure 4C),

are also shown. We consider the former geometry to explore the decrease in Piezo curvature

required for mechanosensitivity, and the latter geometry because the curvature of the Piezo dome

may be reduced in cellular membrane environments. In all three cases, for tension values likely rele-

vant to Piezo gating, the contribution to the Piezo gating energy due to Piezo’s membrane footprint

is approximately equal to or greater than the tension-dependent contribution due to the Piezo

dome itself.

The tension sensitivity of Piezo gating depends on how steeply DG changes with respect to a

change in g, dDG=dg. We graph the predicted tension sensitivity of Piezo gating in the lower panels

of Figure 4A–C, again with the contributions due to the Piezo dome and Piezo’s membrane foot-

print separated for comparison. The negative sign indicates that increasing g favors the open confor-

mation. For the dome, sensitivity is constant, equal to a constant change in DA. For the membrane
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footprint, the magnitude of the sensitivity is not constant and very large for small g. In fact, using the

analytical approach for calculating Piezo’s membrane footprint it can be shown that the tension sen-

sitivity grows without bound as the membrane tension approaches zero. This remarkable result

means that Piezo’s membrane footprint renders Piezo exquisitely sensitive in the low-tension regime;

most sensitive to the smallest perturbations around zero tension. The diverging tension sensitivity as

g ! 0 is a consequence of the idealized catenoidal membrane footprint that is formed at zero ten-

sion. The membrane footprint is large and curved, but in a special manner. Once an incrementally

small value of membrane tension is applied, this large, previously energy-free, membrane footprint

is available to release in-plane area and to unbend, reducing the free energy of the expanded (open)

conformation relative to the closed conformation.

Figure 5 presents open probability (Po) and gating sensitivity (dPo=dg) curves for the energy val-

ues in Figure 4, applied to a 2-state gating model, for which

Po

1�Po

¼ e�DG=kBT : (4)

The unknown values of GP
D were chosen so that opening occurs within the tension range shown.

Since GP
D is unknown, the Piezo gating tension is not a model prediction. The solid and dashed

curves correspond to the gating response with and without inclusion of Piezo’s membrane footprint

energy. The membrane footprint energy shifts the Po curve in the direction of smaller tension values

and steepens it (i.e., increases its sensitivity). The particular gating curves shown here depend on a

specific, simple gating equilibrium scheme and an unknown value of DGP
D. Because the contribution

of Piezo’s membrane footprint to the Piezo gating energy is so large, however, the conclusion that

the position and steepness of the Po curve should exhibit a strong dependence on Piezo’s mem-

brane footprint will apply to a wide range of possible gating schemes.

Figure 4. Energy of Piezo gating. Tension-dependent contributions to the Piezo gating energy (upper panels) and associated tension sensitivity (lower

panels) due to the Piezo dome, DGg
D, and the Piezo membrane footprint, DGM , as a function of membrane tension for the Piezo dome radii of curvature

(A) Rc ¼ 10:2 nm and Ro ! ¥, (B) Rc ¼ 10:2 nm and Ro ¼ 11:2 nm, and (C) Rc ¼ 20 nm and Ro ! ¥ in the closed and open conformational states of

Piezo, respectively. For all calculations, we set the membrane bending rigidity Kb ¼ 20 kBT .

DOI: https://doi.org/10.7554/eLife.41968.005
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Modulation of gating through the membrane
Next, we consider the influence of membrane bending stiffness on Piezo gating. We quantify the

magnitude of the membrane bending stiffness by the membrane bending modulus Kb. We are inter-

ested in this dependence because membrane bending stiffness is a function of lipid composition,

which could vary among different cell types and possibly even between different regions within the

same cell. To what extent might membrane bending stiffness influence Piezo’s response to mem-

brane tension? Membrane bending stiffness enters the Piezo gating energy through the dome con-

tribution DGb
D and the footprint contribution DGM . Figure 6A shows the sum of these two

membrane bending stiffness-dependent contributions to the Piezo gating energy and associated Po

and sensitivity curves for three different values of Kb. Note that DGb
D contributes as a

tension-independent constant, whereas the contribution DGM depends on membrane tension.

Together, DGb
D and DGM contribute significantly to DG and thus to gating. This implies that Piezo

channels in different cell types and possibly different locations within a cell will exhibit different gat-

ing characteristics.

The membrane footprint induced by Piezo is expected to influence the distribution of molecules

– both lipids and proteins – in the surrounding membrane. Piezo’s membrane footprint should

attract lipids and proteins that exhibit an energetic preference for the curved shape of the mem-

brane footprint, and repel molecules that ‘prefer’ other membrane shapes. Conversely, our model of

Piezo’s membrane footprint implies that the composition of the surrounding membrane should influ-

ence the energetics of Piezo gating. This model prediction raises interesting possibilities for the reg-

ulation of Piezo gating in different membrane environments. The membrane footprint induced by

Figure 5. Piezo activation through membrane tension. Piezo activation curves Po (upper panels) and associated tension sensitivity (lower panels)

resulting solely from the gating energy due to the Piezo dome, DG ¼ DGD, and from the gating energy due to the Piezo dome together with the Piezo

membrane footprint, DG ¼ DGD þ DGM , as a function of membrane tension for the Piezo dome radii of curvature (A) Rc ¼ 10:2 nm and Ro ! ¥, (B)

Rc ¼ 10:2 nm and Ro ¼ 11:2 nm, and (C) Rc ¼ 20 nm and Ro ! ¥ in the closed and open conformational states of Piezo, respectively. For all calculations,

we set the membrane bending rigidity Kb ¼ 20 kBT . We used the values (A) DGP
D » 180 kBT , (B) DGP

D » 31 kBT , and (C) DGP
D » 47 kBT for the (unknown)

contribution of the protein energy to the Piezo gating energy such that gating occurs within the indicated tension range.

DOI: https://doi.org/10.7554/eLife.41968.006
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Piezo also implies that Piezo channels should interact with each other through the membrane, and

hence influence each other’s local distribution in the membrane and gating properties.

Finally, we consider the effect of membrane compartment size on Piezo gating. In the calculations

presented so far Piezo was assumed to reside in an infinite membrane that approaches a planar con-

figuration far from the channel. But real cell membranes are compartmentalized. For example, cyto-

skeletal attachments, which occur at spatial frequencies of up to tens of nanometers, can restrict the

shapes a membrane can take (Kusumi et al., 2014). Figure 6B shows the sum of the tension-depen-

dent contributions to the Piezo gating energy, DG
g
D and DGM , and associated Po and sensitivity

curves, for different compartmental restrictions. Membrane compartments with diameters S approxi-

mately equal to 30nm and 40 nm are compared to an infinite membrane. These compartments

restrict the distance between Piezo’s outer perimeter and the edge of the membrane compartment

to distances of 5nm and 10nm along the membrane in the radial direction, respectively. In general,

the effects of membrane compartmentalization are greater in the low-tension regime. This result can

be understood in terms of the characteristic decay length of membrane shape deformations in Equa-

tion 2: larger values of g reduce the size of Piezo’s membrane footprint so that it fits better into the

membrane compartment.

Figure 6. Modulation of Piezo gating through the membrane. (A) Membrane bending stiffness-dependent contribution to the Piezo gating energy

DGb
D þ DGM (left panel) and associated Piezo activation and tension sensitivity curves (middle and right panels) as a function of membrane tension for

the indicated values of the membrane bending stiffness Kb. (B) Membrane tension-dependent contribution to the Piezo gating energy DGg
D þ DGM (left

panel) and associated Piezo activation and tension sensitivity curves (middle and right panels) as a function of membrane tension for infinite and finite

membrane compartments. For both (A) and (B) we employed the Piezo dome radii of curvature Rc ¼ 10:2 nm and Ro ! ¥ in the closed and open

conformational states of Piezo, respectively. For (B) we used the unconstrained membrane arc lengths 5 nm and 10 nm separating the border of the

Piezo dome and the border of the membrane compartment along the membrane in the radial direction, which correspond to the membrane

compartment diameters S » 30 nm and S » 40 nm, respectively, and set Kb ¼ 20 kBT . We calculated the curves in the middle and right panels of (A) and

(B) from the total energy of the membrane-Piezo system in Equation 3, with the values (A) DGP
D » 270 kBT and (B) DGP

D » 280 kBT for the (unknown)

contribution of the protein energy to the Piezo gating energy such that gating occurs within the indicated tension ranges.

DOI: https://doi.org/10.7554/eLife.41968.007
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We also note that the smaller the membrane compartment, the greater influence it has on Piezo

gating. This is because in these particular calculations the membrane is constrained to planarity at

the edge of the membrane compartment, but the effect will in general also depend on the mem-

brane slope constraint at the edge of the membrane compartment. The important point is that

membrane compartmentalization can have a large effect on Piezo gating because membrane com-

partments can alter the shape and therefore the energy of Piezo’s membrane footprint. Experimen-

tally observed effects of cytoskeletal removal on some properties of Piezo gating could reflect the

importance of Piezo’s membrane footprint for Piezo gating (Cox et al., 2016).

In Figure 6 we neglected the contribution to the membrane bending energy due to the Gaussian

curvature of the membrane (Helfrich, 1973). While being independent of the shape of the mem-

brane footprint, the Gaussian contribution to the membrane bending energy depends on the mem-

brane composition and on how the membrane is constrained at the Piezo and membrane

compartment boundaries (Weikl et al., 1998; Wiggins and Phillips, 2005). Contributions to the

membrane bending energy due to the Gaussian membrane curvature may therefore further modu-

late Piezo gating in compartmentalized membranes with heterogeneous lipid compositions.

Discussion
While Piezo channels can exhibit complex gating properties, including inactivation and voltage

dependence, their dominant functional characteristic is that they open in response to mechanical

force (Coste et al., 2010; Lewis and Grandl, 2015). This paper analyzes the influence of Piezo’s

unusual dome shape on the lipid bilayer membrane that surrounds the channel. The results depend

on three key properties of the membrane-Piezo system and they are known: Piezo’s shape, the lipid

bilayer bending modulus, and the levels of tension that can be applied to a lipid membrane. Finding

the shape of the lipid membrane surrounding Piezo, and its associated energy, amounts to solving a

simple mechanics problem. And the inescapable conclusion is that Piezo, owing to its unusual shape,

imposes a large structural perturbation – a deformation called a membrane footprint – on its sur-

rounding membrane.

Depending on the applied membrane tension, Piezo’s membrane footprint can come with a large

energetic cost. Consequently, if Piezo changes its shape, for example if it becomes flatter upon

opening, then the surrounding membrane will weigh in prominently in an energetic sense to Piezo’s

tension sensitivity. Moreover, Piezo’s membrane footprint weighs in in such a way that the tension

sensitivity of Piezo gating is greatest in the low-tension regime. This property would seem to render

Piezo poised to respond to the slightest changes in cell membrane tension.

In our analysis of Piezo’s membrane footprint we used a spherical dome shape to approximate a

more complex underlying geometry of Piezo. Deviations from a spherical dome shape will alter the

shape and energetics of the membrane footprint. But the basic idea that Piezo’s curved shape will

create an energetically important membrane footprint will still apply.

Piezo’s large membrane footprint rationalizes what at first seemed to be a contradiction in the

experimental literature. Certain data show the clear importance of the membrane in mediating Pie-

zo’s mechanosensitivity (Lewis and Grandl, 2015; Syeda et al., 2016; Cox et al., 2016), while other

data show the importance of tether attachments (e.g., the cytoskeleton) to the channel or the mem-

brane (Cox et al., 2016; Wu et al., 2016). A large membrane footprint essentially demands that

both contributions be energetically important.

Piezo is a very uniquely shaped membrane protein. We think that this shape evolved specifically

to exploit the physical properties of the lipid membrane to create a large membrane footprint,

enabling exquisite tension sensitivity.

Materials and methods
We used Equation 1 to analytically and numerically calculate Piezo’s membrane footprint, and its

associated energy, through the Monge (Weikl et al., 1998; Turner and Sens, 2004; Wiggins and

Phillips, 2005; Li et al., 2017) and arclength (Peterson, 1985; Seifert et al., 1991; Deserno, 2004;

Bahrami et al., 2016) parametrizations of surfaces, respectively. Appendix 1-sections 1 and 2 pro-

vide a detailed discussion of these Monge and arclength solutions. All of the results shown in the

main text figures were calculated numerically using the arclength parametrization of surfaces, which
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allows for large membrane curvatures. In Appendix 1-section 3 we compare the analytical and

numerical solutions obtained using the Monge and arclength parametrizations of surfaces. We find

that the Monge parametrization of surfaces tends to overestimate the magnitudes of Piezo’s mem-

brane footprint and its associated membrane deformation energy but yields, for the scenarios con-

sidered in the main text figures, qualitatively similar predictions as the arclength parameterization of

surfaces.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.41968.009

We provide here a detailed description of the mathematical methods we used for the

calculation of the membrane footprint (see Appendix 1—figure 1), and associated membrane

deformation energy, of the Piezo dome. As explained in the main text, we calculated the

membrane footprint of the Piezo dome by finding the stationary membrane shapes associated

with the classic Helfrich energy.

GM ¼
1

2
Kb

Z

dAðc1þ c2Þ
2 þgDA ; (A1)

where the integral runs over the membrane surface surrounding the Piezo dome, c1 and c2 are

the local principal curvatures of the membrane surface, Kb is the lipid bilayer bending

modulus, g is the membrane tension, and DA is the decrease in in-plane area due to the

membrane shape deformations induced by the Piezo dome (see also Equation 1 of the main

text). (A given stationary membrane shape may, in principle, be unstable to small

perturbations, and hence may not be physically relevant (Peterson, 1985; Seifert et al., 1991;

Seifert, 1997). Here, we only found one stationary membrane shape for each scenario

considered, and therefore identified this stationary membrane shape with Piezo’s membrane

footprint. The functions which make a given functional such as in Equation A1 stationary are

referred to as the extremal functions of this functional (Courant and Hilbert, 1953).) For a

given radius of curvature of the Piezo dome, R, we obtained the energy cost of Piezo’s

membrane footprint by substituting the corresponding stationary membrane shape implied by

Equation A1 back into Equation A1 and evaluating the surface integral.

We obtained the stationary membrane shapes associated with Equation A1, and calculated

the corresponding energy cost of Piezo’s membrane footprint, using two complementary

mathematical approaches. On the one hand, we used the Monge parametrization of surfaces

to derive exact analytical solutions of the stationary Piezo membrane footprints implied by

Equation A1, and then used Equation A1 to determine the corresponding exact analytic

expressions for GM (Weikl et al., 1998; Turner and Sens, 2004; Wiggins and Phillips, 2005;

Ursell et al., 2008; Auth and Gompper, 2009; Sabass and Stone, 2016; Li et al., 2017) (see

Appendix 1-section 1). The Monge parametrization of surfaces is only expected to yield

quantitatively accurate results for the stationary membrane shapes implied by Equation A1 in

the limit of small membrane shape deformations. We therefore used, on the other hand, the

arclength parametrization of surfaces, which can capture arbitrarily large membrane shape

deformations, to numerically solve for the membrane footprint of the Piezo dome and the

corresponding GM (Peterson, 1985; Seifert et al., 1991; Jülicher and Seifert, 1994;

Deserno, 2004; Bahrami et al., 2016) (see Appendix 1-section 2). Our calculations show that,

for the radius of curvature R ¼ 10:2nm measured previously for a closed state of Piezo

(Guo and MacKinnon, 2017), the Piezo-induced membrane shape deformations are

pronounced enough so that the Monge parametrization of Equation A1 does not yield

quantitatively accurate results. We find, however, that on a qualitative level the Monge and

arclength parametrizations of Equation A1 yield similar predictions for the mechanical gating

of Piezo (see Appendix 1-section 3). All of the results shown in the main text were obtained

using the arclength parametrization of Equation A1.
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Appendix 1—figure 1. Cross section of the membrane shape deformations induced by Piezo

for Kb ¼ 20 kBT and g ¼ 0:1 kBT=nm
2. Based on the structural data in (Guo and MacKinnon,

2017) we assume that the Piezo dome takes the shape of a spherical cap with fixed cap area

Scap ¼ 0:3� 4p � 10:22 nm2
» 390nm

2. We denote the radius of curvature of the Piezo dome by

R, and represent the central pore axis of Piezo by the h-axis and the radial coordinate in the

reference plane by r. Furthermore, we denote the arclength along the profile of Piezo’s

membrane footprint by s, with s ¼ 0 at the interface of the Piezo dome and the surrounding

membrane and s> 0 away from the Piezo dome. We set R ¼ 10:2 nm (Guo and MacKinnon,

2017) here and obtained Piezo’s membrane footprint by numerically calculating the stationary

membrane shape implied by the arclength parametrization of Equation A1 (Peterson, 1985;

Seifert et al., 1991; Jülicher and Seifert, 1994; Deserno, 2004; Bahrami et al., 2016) (see

Appendix 1-section 2). The quantities R and Scap mathematically determine (Weisstein, 2017)

the in-plane radius of the Piezo dome, r ¼ ri, and the cap angle, a. We allowed here the

Piezo-induced membrane shape deformations to decay to a flat membrane shape over an

arbitrarily large s.

DOI: https://doi.org/10.7554/eLife.41968.010

1 Monge parametrization
For membrane profiles with no overhangs, Piezo’s membrane footprint can be represented by

the height of the lipid bilayer midplane hðrÞ as a function of the radial coordinate r, with r ¼ 0

corresponding to the central pore axis of Piezo, relative to some reference plane (see

Appendix 1—figure 1). A particularly simple form of the energy in Equation A1 is then

obtained by assuming small membrane shape deformations in the membrane region

surrounding Piezo, jrhj � 1. To leading order in jrhj and its derivatives, the resulting Monge

parametrization of Equation A1 takes the form (Weikl et al., 1998; Turner and Sens, 2004;

Wiggins and Phillips, 2005; Ursell et al., 2008; Auth and Gompper, 2009; Sabass and

Stone, 2016; Li et al., 2017)

G¼ 2p

Z

drr
Kb

2
r2h
� �2

þ
g

2
rhð Þ2

� �

; (A2)

where, for simplicity, we have dropped the subscript ’M’ in Equation A1, and we have

neglected terms that are constant in h and its derivatives. Note that the energy in

Equation A2 only depends on h through derivatives of h, and is therefore invariant under

h 7! hþ h0, where h0 is an arbitrary constant. For systems with rotational symmetry we have the

Laplacian operator

r2 ¼
d2

dr2
þ
1

r

d

dr
(A3)

in polar coordinates. The Piezo membrane deformation profile hðrÞ is obtained by finding,

subject to suitable boundary conditions on hðrÞ, the stationary membrane profile implied by

Equation A2, from which the corresponding membrane deformation energy can be calculated
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via Equation A2. The Monge parametrization of Equation A1, expressed in Equation A2, has

the advantage that it provides simple analytic expressions for the membrane deformation

energy associated with arbitrary conformational states of Piezo.

1.1 Membrane deformation profile
In our simple model of lipid bilayer-Piezo interactions we assume rotational symmetry about

the central pore axis of Piezo with, potentially, a finite membrane compartment size (see the

main text). The most general boundary value problem to be considered for Equation A2 then

corresponds to the membrane deformations in an annulus ri � r � rm, where ri and rm

correspond to the radii of the inner and outer rims of the annulus. The value of ri is fixed

(Weisstein, 2017) by the radius of curvature, R, and surface area, Scap, associated with the

Piezo dome (Guo and MacKinnon, 2017) (Appendix 1—figure 1),

ri ¼
Scap

4p2R2
4pR2 � Scap
� �

� �1=2

: (A4)

From Equation A4 one finds (Weisstein, 2017) that the angle subtended by the r-axis in

Appendix 1—figure 1 and the tangent to hðrÞ at the boundary between the Piezo dome and

the surrounding membrane is given by

a¼ tan�1
1

2pR2 � Scap
Scap 4pR2 � Scap

� �� �1=2
� �

: (A5)

We note that, as far as the membrane footprint of the Piezo dome is concerned, Piezo can

effectively be regarded as a conical membrane inclusion of radius ri and opening angle

2a (Weikl et al., 1998; Turner and Sens, 2004; Wiggins and Phillips, 2005; Ursell et al.,

2008; Auth and Gompper, 2009; Sabass and Stone, 2016; Li et al., 2017).

The Euler-Lagrange (Lagrange) equation (Courant and Hilbert, 1953; Kibble and

Berkshire, 2004) associated with Equation A2 is given by (Weikl et al., 1998)

r2 r2�l�2
� �

h¼ 0 ; (A6)

where l ¼
ffiffiffiffiffiffiffiffiffiffiffi

Kb=g
p

is the characteristic decay length of membrane shape deformations. For

rotationally symmetric systems with the Laplacian operator in Equation A3, Equation A6 has

the general analytical solution (Weikl et al., 1998)

hðrÞ ¼ A0I0 r=lð ÞþB0K0 r=lð ÞþC0 þD0 lnr ; (A7)

where I0 and K0 are the zeroth-order modified Bessel functions of the first and second kind,

and the constants A0, B0, C0, and D0 must be fixed through the boundary conditions on hðrÞ at

r ¼ ri and/or r ¼ rm.

1.2 Boundary conditions
Consistent with previous work (Weikl et al., 1998; Deserno, 2004; Turner and Sens, 2004;

Wiggins and Phillips, 2005; Ursell et al., 2008; Auth and Gompper, 2009; Sabass and

Stone, 2016; Li et al., 2017), we demand continuity of hðrÞ and its derivative at the boundary

of the Piezo dome and the surrounding membrane. In particular, we fix the (arbitrary) height

of the membrane-dome boundary relative to the reference plane,

hðriÞ ¼ 0 ; (A8)

and impose

dh

dr

�

�

�

�

r¼ri

¼ tana� a ; (A9)
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where a is given by Equation A5. Having fixed hðriÞ ¼ 0 via Equation A8, we take hðrÞ to be

free at the outer (membrane compartment) boundary r ¼ rm (Courant and Hilbert, 1953). In

other words, we assume that the difference of the membrane heights at the outer and inner

boundaries, hðrmÞ � hðriÞ, can be freely varied when finding the stationary membrane shape

implied by Equation A2, resulting in the boundary condition (Weikl et al., 1998; Auth and

Gompper, 2009; Sabass and Stone, 2016; Li et al., 2017)

d

dr
r2h�l�2h
� �

�

�

�

�

r¼rm

¼ 0 : (A10)

Equation A10 is sometimes referred to as a ‘zero vertical force boundary condition’ or a

‘natural boundary condition’ (Courant and Hilbert, 1953). Furthermore we take, in analogy to

Equation A9, the membrane gradient to be fixed at the outer boundary (Auth and Gompper,

2009; Li et al., 2017),

dh

dr

�

�

�

�

r¼rm

¼ tanb� b ; (A11)

where we use here the value b ¼ 0 corresponding to a flat membrane at the membrane

compartment boundary. The boundary condition in Equation A11 mathematically expresses

the assumption that the membrane compartment boundary imposes a given (flat) membrane

shape far enough away from Piezo.

The four boundary conditions in Equations A8–A11 determine the four independent

constants A0, B0, C0, and D0 in Equation A7 (Li et al., 2017):

A0 ¼
bK1 ri=lð Þ� aK1 rm=lð Þ

F
; (A12)

B0 ¼
bI1 ri=lð Þ� aI1 rm=lð Þ

F
; (A13)

C0 ¼
aK0 ri=lð ÞI1 rm=lð Þþ aI0 ri=lð ÞK1 rm=lð Þ� bl=ri

F
; (A14)

D0 ¼ 0 ; (A15)

where I1 and K1 are the first-order modified Bessel functions of the first and second kind, and

F ¼
1

l
K1 ri=lð ÞI1 rm=lð Þ� I1 ri=lð ÞK1 rm=lð Þ½ � : (A16)

If, instead of Equations A8 and A10, we had imposed the boundary conditions

hðrmÞ ¼ 0 ; (A17)

d

dr
r2h�l�2h
� �

�

�

�

�

r¼ri

¼ 0 ; (A18)

we would have obtained identical expressions for A0, B0, and D0 in Equations A12–A15, but

C0 would be shifted so as to account for this redefinition of the (arbitrary) height of the

membrane surface relative to the reference plane.

1.3 Analytic membrane deformation energy
Upon substitution of Equation A7 into Equation A2 and application of Gauss’s theorem one

obtains (Li et al., 2017)

G¼pg brm A0 I0 rm=lð ÞþB0K0 rm=lð Þ½ �� ari A0 I0 ri=lð ÞþB0K0 ri=lð Þ½ �f g ; (A19)

where A0 and B0 are given by Equations A12 and A13. Equation A19 is, within the Monge

parametrization of Equation A1, expressed in Equation A2, the exact analytical solution of

the energy cost associated with Piezo’s membrane footprint. For b ¼ 0, Equation A19 reduces

to
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G¼pKba
2
ri

l

K1 rm=lð Þ I0 ri=lð Þþ I1 rm=lð ÞK0 ri=lð Þ

K1 ri=lð ÞI1 rm=lð Þ� I1 ri=lð ÞK1 rm=lð Þ
: (A20)

Note that Equations A19 and A20 only depend on the particular solutions in Equation A7

containing Bessel functions. These solutions are independent of the coefficient C0 in

Equation A7, and we would have obtained expressions identical to those in Equations A19

and A20 if, instead of Equations A8 and A10, we had imposed the boundary conditions in

Equations A17 and A18. This result can be understood by noting that the energy in

Equation A2 only depends on h through derivatives of h, and hence does not depend on the

absolute value of h.

The special case of infinitely large, asymptotically flat membranes (Weikl et al., 1998;

Deserno, 2004; Turner and Sens, 2004; Wiggins and Phillips, 2005; Ursell et al., 2008;

Sabass and Stone, 2016) corresponds to b ¼ 0 and rm ! ¥ in Equations A7 and A19. In this

limit we have I1 rm=lð Þ ! ¥ and K1 rm=lð Þ ! 0. Via Equation A20, Equation A19 then yields

G¼pKba
2
ri

l

K0 ri=lð Þ

K1 ri=lð Þ
; (A21)

and Equation A7 with Equations A12–A15 reduces to

hðrÞ ¼C0 � al
K0 r=lð Þ

K1 ri=lð Þ
: (A22)

Equations A21 and A22 agree with previous results (Deserno, 2004; Wiggins and Phillips,

2005) on the protein-induced lipid bilayer midplane deformations implied by the stationary

shapes of Equation A2 in asymptotically flat membranes. The limit g ! 0 in Equations A21

and A22 corresponds to l ! ¥. Note that we have

K0ðxÞ» � lnx ; (A23)

K1ðxÞ»
1

x
(A24)

for x � 1. As l ! ¥, Equation A21 therefore yields

G~

1

l2
ln ri=lð Þ! 0 ; (A25)

and Equation A22 yields

hðrÞ»C0 þ ari ln ri=lð Þ : (A26)

In agreement with previous studies (Deserno, 2004; Auth and Gompper, 2009),

Equations A25 and A26 show that, for a membrane that is asymptotically flat, the energy cost

of Piezo’s membrane footprint vanishes for g ¼ 0, with the membrane taking the shape of a

minimal (catenoidal) surface. While this result followed from the Monge parametrization of

Equation A1 (i.e., in the limit of small membrane shape deformations), the arclength

parametrization of Equation A1 (see Appendix 1-section 2), which is valid for arbitrarily large

membrane shape deformations, also yields for g ¼ 0 and asymptotically flat lipid membranes

minimal (catenoidal) lipid bilayer deformations with zero bending energy (Deserno, 2004).

2 Arclength parametrization
The arclength parametrization of surfaces provides an elegant approach for the representation

of axisymmetric shapes with, potentially, large gradients, and thus complements the Monge

parametrization considered in Appendix 1-section 1. In the arclength parametrization, the

Euler-Lagrange (Lagrange) equations associated with Equation A1 are, in general, highly

nonlinear (Peterson, 1985; Seifert et al., 1991; Jülicher and Seifert, 1994) and must be

solved numerically. The arclength parametrization of lipid membrane surfaces has allowed the

systematic determination of the minimum energy shapes of axisymmetric lipid bilayer vesicles

(Peterson, 1985; Seifert et al., 1991; Jülicher and Seifert, 1994; Seifert, 1997), and has
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been used to study the wrapping of spherical and cylindrical colloids by lipid bilayers

(Deserno and Bickel, 2003; Deserno, 2004; Hashemi et al., 2014), endocytosis (Nowak and

Chou, 2008; Bahrami et al., 2016; Agudo-Canalejo and Lipowsky, 2016), and the self-

assembly of protein coats on lipid bilayer membranes (Zhang and Nguyen, 2008;

Foret, 2014).

The arclength parametrization of Equation A1 (Peterson, 1985; Seifert et al., 1991;

Jülicher and Seifert, 1994) specifies the surface shape as a function of the arclength s along

the contour of the surface profile and the azimuthal angle about the symmetry axis of the

system under consideration which, in the case of Piezo, corresponds to the central pore axis of

Piezo. We denote the coordinate parallel to the axis of symmetry by hðsÞ, the (in-plane)

coordinate perpendicular to the axis of symmetry by rðsÞ, and the angle between the tangent

to the membrane deformation profile and the r-axis by  ðsÞ (Appendix 1—figure 1). (For the

most part, we use here the same notation as Deserno and Bickel,

2003 and Deserno, 2004 for the arclength parametrization of Equation A1.) Note that rðsÞ

and hðsÞ are geometrically related to  ðsÞ via

_r¼ cos ; (A27)

_h¼ sin ; (A28)

where we use the notation _r � dr=ds and _h � dh=ds in anticipation of s being analogous to the

‘time’ coordinate in classical dynamics. In the arclength parametrization of surfaces, the energy

in Equation A1 takes the form (Peterson, 1985; Seifert et al., 1991; Jülicher and Seifert,

1994; Deserno and Bickel, 2003; Deserno, 2004; Foret, 2014)

G¼pKb

Z s0

0

dsr _ þ
sin 

r

� �2

þ
2

l2
1� cos ð Þ

" #

(A29)

subject to the geometric constraints in Equations A27 and A28, where, for simplicity, we have

dropped the subscript ’M’ in Equation A1, we have set s ¼ 0 at the boundary of the Piezo

dome and the surrounding membrane, s> 0 away from the Piezo dome, and s0 ! ¥ for an

infinite membrane. The terms _ and sin =r in Equation A29 are the two principal curvatures

of the membrane in the arclength parametrization (the term sin =r can be rationalized by

noting that the planes associated with the two principal curvatures must be perpendicular to

each other, and the radius of curvature ¼ r= sin in the plane perpendicular to the r-h plane in

Appendix 1—figure 1), while the term r cos yields the in-plane area of Piezo’s membrane

footprint (this can be seen by noting from Equation A27 that cos ¼ dr=ds), with the

undeformed reference state of the membrane corresponding to a flat membrane with  ¼ 0.

2.1 Hamilton equations
Incorporating the subsidiary conditions in Equations A27 and A28 (Courant and Hilbert,

1953), the energy in Equation A29 can be expressed as

G¼pKb

Z s0

0

dsL  ; _ ; r; _r; _h
� �

; (A30)

where

L¼ r _ þ
sin 

r

� �2

þ
2

l2
1� cos ð Þ

" #

þlr _r� cos ð Þþlh _h� sin 
� �

; (A31)

in which the Lagrange parameter functions lrðsÞ and lhðsÞ must be chosen such that the

constraints in Equations A27 and A28 are satisfied by the extremal functions associated with

Equation A30. The integrand L in Equation A30 is analogous to the Lagrangian function in

classical dynamics (Kibble and Berkshire, 2004), with the arclength s being the analogue of

the time coordinate in classical dynamics.
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The stationary membrane shapes implied by Equation A30 could be obtained by directly

solving the corresponding Euler-Lagrange equations (Courant and Hilbert, 1953; Kibble and

Berkshire, 2004) subject to suitable boundary conditions on Piezo’s membrane footprint. In

particular, Equation A30 is a function of the three generalized coordinates q ;r;h �  , r, h

capturing the shape of Piezo’s membrane footprint, which implies that the corresponding

Euler-Lagrange equations are given by a set of three coupled ordinary differential equations

(Courant and Hilbert, 1953; Kibble and Berkshire, 2004),

_pd ¼
qL

qqd
(A32)

for d ¼  , r, h, where the generalized momenta pd are defined by

p �
qL

q _q 
�

qL

q _ 
¼ 2r _ þ

sin 

r

� �

; (A33)

pr �
qL

q _qr
�
qL

q_r
¼ lr; (A34)

ph �
qL

q _qh
�
qL

q _h
¼ lh : (A35)

As an alternative to the direct solution of Equation A32 the extremal functions of

Equation A30 can also be obtained by solving the corresponding Hamilton equations. The

Euler-Lagrange equations generally contain derivatives up to second order with the

corresponding Hamilton equations only containing first-order derivatives (Kibble and

Berkshire, 2004), which can make their (numerical) solution more straightforward.

Furthermore, the Hamiltonian formalism is well suited for finding conserved quantities – that

is, quantities that are constant with s – and making use of them when analyzing the system at

hand (Kibble and Berkshire, 2004). We follow here previous work on the arclength

parametrization of membrane surfaces (Deserno and Bickel, 2003; Deserno, 2004;

Nowak and Chou, 2008; Zhang and Nguyen, 2008; Hashemi et al., 2014; Foret, 2014) and

determine the extremal functions of Equation A30 by (numerically) solving the corresponding

Hamilton equations. To this end, we note that the Hamitonian function associated with qd and

pd is given by (Kibble and Berkshire, 2004)

H ¼ p _ þ pr _rþ ph _h�L : (A36)

Using Equation A31 and Equations A33–A35, Equation A36 yields (Deserno, 2004)

H ¼
p2 

4r
� p 

sin 

r
�
2r

l2
1� cos ð Þþ pr cos þ ph sin : (A37)

Note that, as in many (unforced) classical systems (Kibble and Berkshire, 2004), H in

Equation A37 is a function of qd and pd only. In particular, H in Equation A37 does not have

an explicit dependence on s, and H is therefore conserved along s (Kibble and Berkshire,

2004). The Hamilton equations are given by (Kibble and Berkshire, 2004)

qH

qpd
¼ _qd ;

qH

qqd
¼� _pd ; (A38)

which, for Equation A37, yields (Deserno, 2004)
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_ ¼
p 

2r
�
sin 

r
; (A39)

_r¼ cos ; (A40)

_h¼ sin ; (A41)

_p ¼
p 

r
� ph

� �

cos þ
2r

l2
þ pr

� �

sin ; (A42)

_pr ¼
p 

r

p 

4r
�
sin 

r

� �

þ
2

l2
1� cos ð Þ ; (A43)

_ph ¼ 0 : (A44)

The solutions of Equations A39–A44 specify the stationary shapes of Piezo’s membrane

footprint implied by Equation A29, from which the corresponding membrane deformation

energy can be calculated (numerically) via Equation A29 or via Equation A30.

2.2 Boundary conditions
Equations A39–A44 must be solved subject to the boundary conditions set by the Piezo

dome and the membrane compartment boundary. A first set of boundary conditions is

obtained from simple geometric considerations. In particular, at the boundary of the Piezo

dome and the surrounding membrane, we set

rð0Þ ¼ R sina ; (A45)

hð0Þ ¼�Rcosa ; (A46)

which amounts to fixing the origin of the r-h coordinate system (Appendix 1—figure 1).

Having fixed the origin of the r-h coordinate system via Equations A45 and A46, we take rðs0Þ

and hðs0Þ to be free, that is, we assume that the values of rðs0Þ and hðs0Þ can be freely varied

when finding the extremal functions of Equation A30. The corresponding ‘natural’ boundary

conditions are given by (Courant and Hilbert, 1953)

qL

q_r

�

�

�

�

s¼s0

¼ 0 ; (A47)

qL

q _h

�

�

�

�

s¼s0

¼ 0 : (A48)

From Equation A48 with Equation A31 it follows that lhðs0Þ ¼ 0, and Equation A44 with

Equation A35 then yields ph ¼ 0 for 0 � s � s0, that is, the generalized momentum ph is

conserved along s and drops out of the problem. Using Equations A31 and A34,

Equation A47 can be rewritten as

prðs0Þ ¼ lrðs0Þ ¼ 0 : (A49)

A second set of boundary conditions encapsulates the key physical properties of the

specific experimental setup under consideration. In particular, assuming that the tangents to

the membrane profile change smoothly at the boundary of the Piezo dome and the

surrounding membrane (Appendix 1—figure 1), we have

 ð0Þ ¼ a ; (A50)

where a is given by Equation A5. Furthermore, we assume (Deserno, 2004), based on

physical reasoning analogous to that behind Equation A11, that the tangent and curvature of

the membrane profile in the r-h plane are kept fixed at s ¼ s0,

 ðs0Þ ¼ b ; (A51)

_ ðs0Þ ¼ C ; (A52)

Haselwandter and MacKinnon. eLife 2018;7:e41968. DOI: https://doi.org/10.7554/eLife.41968 21 of 29

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.41968


where we use here the values b ¼ 0 and C ¼ 0 corresponding to a flat membrane surface far

enough away from Piezo.

Since b ¼ 0 and C ¼ 0 in Equations A51 and A52, we expect from Equation A33 that

p ðs0Þ ¼ 0 and, hence, Equation A37 yields H ¼ prðs0Þ. (It is assumed here that rðs0Þ is

finite.) Because H in Equation A37 is conserved along s, we have H ¼ prðs0Þ for 0 � s � s0. The

boundary condition in Equation A49 thus implies H ¼ prðs0Þ ¼ 0 for 0 � s � s0. At s ¼ 0, we

therefore have (Deserno, 2004)

prð0Þ ¼
tana

R
1þ

2R2

l2
1� cosað Þ� R _ ð0Þ

� �2

� �

; (A53)

where we have used Equation A37 with Equations A33, A45, and A50, and _ ð0Þ is unknown.

Note that, for a given set of values of rð0Þ,  ð0Þ, and _ ð0Þ, the generalized momentum p in

Equation A33 is completely determined at s ¼ 0. Since Equations A39–A44 are a set of first-

order (coupled) ordinary differential equations, their solution is fixed by the ‘initial’ conditions

 ð0Þ, rð0Þ, hð0Þ, p ð0Þ, prð0Þ, and phð0Þ, with the only unknown being _ ð0Þ. A practical strategy

for obtaining Piezo’s membrane footprint through numerical solution of Equations A39–

A44 is therefore to generate a set of solutions corresponding to different values of _ ð0Þ and

to select, among these solutions, the specific solution(s) satisfying Equations A51 and A52 up

to some numerical accuracy. Such a ‘shooting’ method (Burden and Faires, 2011;

Gautschi, 2012) has been employed widely for numerically finding the stationary shapes

implied by the arclength parametrization of Equation A1 (Peterson, 1985; Seifert et al.,

1991; Jülicher and Seifert, 1994; Seifert, 1997; Deserno and Bickel, 2003; Deserno, 2004;

Nowak and Chou, 2008; Zhang and Nguyen, 2008; Foret, 2014; Hashemi et al., 2014;

Agudo-Canalejo and Lipowsky, 2016; Bahrami et al., 2016), and we used the same

approach here.

For completeness, we outline here the basic procedure for the solution of Equations A39–

A44 through the shooting method (Deserno and Bickel, 2003; Deserno, 2004; Nowak and

Chou, 2008; Zhang and Nguyen, 2008; Hashemi et al., 2014; Foret, 2014). First, based on

intuition gained from numerical experimentation, we chose a range of suitable _ ð0Þ. More

automated approaches for choosing _ ð0Þ are also available (Burden and Faires, 2011;

Gautschi, 2012). Note that, to achieve a flat membrane profile far enough away from Piezo,

we generally expect that _ ð0Þ< 0. For the scenarios considered here we have that

�0:4< _ ð0Þ< 0. Second, we solved Equations A39–A44 subject to the initial conditions  ð0Þ,

rð0Þ, hð0Þ, p ð0Þ, and prð0Þ described above with ph ¼ 0 using standard numerical solvers of

ordinary differential equations (Wolfram Research, Inc., 2017) up to some large (but

necessarily finite) maximum value of the arclength. For each of these solutions, we numerically

determined the smallest value of s for which Equations A51 and A52 are satisfied. (In

practice, we only considered here Equation A51 (Deserno, 2004).) For scenarios in which we

assume that Equations A51 and A52 hold only asymptotically for s ! ¥, we identified this

value of s with s0 (Deserno, 2004), and selected among all the solutions corresponding to

different _ ð0Þ the solution with the largest value of s0. (It is assumed here that the exact

solutions of Equations A39–A44 do not oscillate about the boundary conditions

in Equations A51 and A52.) For scenarios in which we assume that membrane

compartmentalization favors solutions with a given value s0 ¼ sm, we selected the solution with

the smallest magnitude of  ðsmÞ, and confirmed for this solution that sm approximately

corresponds to the smallest value of s for which Equation A51 is satisfied. (Again, it is

assumed here that the exact solutions of Equations A39–A44 do not oscillate about the

boundary conditions in Equation A51 and A52.) The resulting solutions of Equations A39–

A44 specify the shape of the membrane footprint of the Piezo dome, from which we obtained

the corresponding energy cost of Piezo-induced membrane shape deformations by

numerically evaluating Equation A30 over the integration domain

0 � s � s0 (Wolfram Research, Inc., 2017). We tested this numerical solution procedure

(Deserno and Bickel, 2003; Deserno, 2004; Nowak and Chou, 2008; Zhang and Nguyen,

2008; Hashemi et al., 2014; Foret, 2014) for Piezo’s membrane footprint by comparing the
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membrane deformation energies implied by the Monge and arclength parameterizations of

Equation A1 (see Appendix 1-section 3).

3 Comparing arclength and Monge solutions
To check the numerical solution procedure described in Appendix 1-section 2 it is useful to

compare numerical solutions obtained using the arclength parametrization of Equation A1

with the corresponding exact analytical solutions obtained in Appendix 1-section 1 using the

Monge parametrization of Equation A1 (see Appendix 1—figure 2). For infinite (see

Appendix 1—figure 2A) as well as finite (see Appendix 1—figure 2B) membrane

compartment sizes, which we specify in terms of the arclength sm such that 0 � s � sm, we find

that the numerical solutions obtained in the arclength parametrization of Equation A1 agree

with the corresponding analytical solutions obtained in the Monge parametrization of

Equation A1 for small enough membrane shape deformations (large enough R). In the case of

infinite membrane compartments, the decrease in the relative difference of the analytical and

numerical solutions with increasing R, shown in the lower panel of Appendix 1—figure 2A, is

consistent with previous results (Deserno and Bickel, 2003). In the case of finite membrane

compartments we find, in Appendix 1—figure 2B, a similar convergence of analytical and

numerical results with increasing R, with a particularly small relative difference of the analytical

and numerical solutions for g ¼ 1:0 kBT=nm
2. This can be rationalized by noting that, for g ¼

1:0 kBT=nm
2 with Kb ¼ 20 kBT, the characteristic decay length of Piezo-induced membrane

shape deformations, l ¼
ffiffiffiffiffiffiffiffiffiffiffi

Kb=g
p

» 4:5 nm, is of a comparable magnitude as the membrane

compartment size sm ¼ 5 nm used in Appendix 1—figure 2B.

In Appendix 1—figure 2B, as well as the main text, we implemented finite membrane

compartments by fixing the value of the maximum arclength sm such that 0 � s � sm and

imposing a flat membrane shape at the membrane compartment boundary. There are other

ways of implementing finite membrane compartments in our physical model of the mechanical

gating of Piezo. In particular, one may define the membrane compartment as having a fixed

surface area, a fixed in-plane area, a fixed in-plane radius, or a fixed arclength. Furthermore,

the boundary of the membrane compartment may locally impose different membrane shapes.

To illustrate how a finite membrane compartment size can affect the mechanical gating of

Piezo, we focused here on the particularly straightforward case of membrane compartments

with a fixed arclength around the Piezo dome and a flat membrane shape at the membrane

compartment boundary. Membrane compartments with other properties would yield different

results. For instance, if the membrane shape at the membrane compartment boundary was

chosen so as to locally match the shape of the corresponding solution obtained for an

asymptotically flat, infinite membrane, a finite membrane compartment would yield, for g> 0,

an energy cost of Piezo’s membrane footprint that is decreased compared to the associated

energy cost of Piezo’s membrane footprint for an asymptotically flat, infinite membrane. In

contrast, we find in the main text (and also Appendix 1—figure 2) that, for a flat membrane

shape at the membrane compartment boundary, the energy cost of Piezo’s membrane

footprint is increased in a finite membrane compartment compared to an asymptotically flat,

infinite membrane.
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Appendix 1—figure 2. Comparison of arclength and Monge solutions. Energy cost of Piezo’s

membrane footprint GM as a function of the radius of curvature of the Piezo dome R

calculated numerically using the arclength parametrization of Equation A1 (see Appendix 1-

section 2) [G
ðAÞ
M ] and analytically using the Monge parametrization of Equation A1 (see

Appendix 1-section 1) [G
ðMÞ
M ] (upper panels), and corresponding relative difference of the

analytical and numerical solutions (lower panels), for (A) infinite and (B) finite membrane

compartments. We set Kb ¼ 20 kBT and Scap ¼ 0:3� 4p � 10:22 nm2
» 390 nm

2 (Guo and

MacKinnon, 2017), and used the indicated values of the membrane tension. For (B) we used

an unconstrained membrane arclength sm ¼ 5nm separating the boundary of the Piezo dome

and the boundary of the membrane compartment along the membrane in the radial direction.

For ease of visualization, we shifted the curves corresponding to g ¼ 0:01 kBT=nm
2 by � ¼

0:4 kBT in the upper panel of (B).

DOI: https://doi.org/10.7554/eLife.41968.011

The Monge parametrization of Equation A1 fails to give quantitatively accurate results for

the large membrane shape deformations implied by the observed Piezo dome structure with

R » 10:2nm (Guo and MacKinnon, 2017) (see Appendix 1—figures 3–7). In particular, the

Monge parametrization of Equation A1 overestimates the magnitude of the membrane shape

deformations induced by the Piezo dome (Appendix 1—figure 3). Furthermore, the Monge

parametrization of Equation A1 yields contributions to the Piezo gating energy due to Piezo’s

membrane footprint, DGM , that are too large by a factor of approximately 4=3 to 12

depending on the specific scenario considered (Appendix 1—figures 5 and 7). However, we

also find that the Monge parametrization of Equation A1 gives the same qualitative results as

the arclength parametrization of Equation A1 for the scenarios considered in the main text

(Appendix 1—figures 3–7).
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Appendix 1—figure 3. Supplement to membrane footprint of the Piezo dome. (A) Same plots

as in Figures 1C and 2 of the main text, with the membrane footprints calculated numerically

using the arclength parametrization of Equation A1 (see Appendix 1-section 2) and (B)

corresponding results with the membrane footprints calculated analytically using the Monge

parametrization of Equation A1 (see Appendix 1-section 1). We use the same labeling
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conventions for (A) and (B). Scale bars, 4 nm. See Figures 1C and 2 of the main text for

further details.

DOI: https://doi.org/10.7554/eLife.41968.012

Appendix 1—figure 4. Supplement to energy of the Piezo membrane footprint. (A) Same plots

as in Figure 3A of the main text, with GM calculated numerically using the arclength

parametrization of Equation A1 (see Appendix 1-section 2) and (B) corresponding results with

GM calculated analytically using the Monge parametrization of Equation A1 (see Appendix 1-

section 1). We use the same labeling conventions for (A) and (B). See Figure 3A of the main

text for further details.

DOI: https://doi.org/10.7554/eLife.41968.013

Haselwandter and MacKinnon. eLife 2018;7:e41968. DOI: https://doi.org/10.7554/eLife.41968 26 of 29

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.41968.012
https://doi.org/10.7554/eLife.41968.013
https://doi.org/10.7554/eLife.41968


Appendix 1—figure 5. Supplement to energy of Piezo gating. (A) Same plots as in Figure 4 of

the main text, with DGM calculated numerically using the arclength parametrization of

Equation A1 (see Appendix 1-section 2) and (B) corresponding results with DGM calculated

analytically using the Monge parametrization of Equation A1 (see Appendix 1-section 1). We

use the same labeling conventions for (A) and (B). For ease of visualization, we rescaled DGM

by C1 ¼ 1=4, C2 ¼ 1=12, or C3 ¼ 3=4 in (B) (left to right panels). See Figure 4 of the main text

for further details.

DOI: https://doi.org/10.7554/eLife.41968.014
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Appendix 1—figure 6. Supplement to Piezo activation through membrane tension. (A) Same

plots as in Figure 5 of the main text, with DGM calculated numerically using the arclength

parametrization of Equation A1 (see Appendix 1-section 2) and (B) corresponding results with

DGM calculated analytically using the Monge parametrization of Equation A1 (see Appendix 1-

section 1). We employed the same values of DGP
D, and use the same labeling conventions, for

(A) and (B). See Figure 5 of the main text for further details.

DOI: https://doi.org/10.7554/eLife.41968.015
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Appendix 1—figure 7. Supplement to modulation of Piezo gating through the membrane. (A)

Same plots as in Figure 6 of the main text, with DGM calculated numerically using the

arclength parametrization of Equation A1 (see Appendix 1-section 2) and (B) corresponding

results with DGM calculated analytically using the Monge parametrization of Equation A1 (see

Appendix 1-section 1). We use the same labeling conventions for (A) and (B). For ease of

visualization, we rescaled DGM by C1 ¼ 1=4 in the left panels of (B). For (B) we set

DGP
D » 520 kBT (upper middle and upper right panels) and DGP

D » 550 kBT (lower middle and

lower right panels) for the (unknown) contribution of the protein energy to the Piezo gating

energy such that gating occurs within the indicated tension ranges. See Figure 6 of the main

text for further details.

DOI: https://doi.org/10.7554/eLife.41968.016
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