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Summary

The aim of our studies was to investigate the expression of Toll-like receptor
(TLR)-2 and TLR-4 (and in some studies TLR-5) in myofibroblasts and small
and large intestinal crypt epithelial cells from control patients and those
affected by Crohn’s disease and ulcerative colitis. Isolated and disaggregated
crypt epithelial cells and monolayers of myofibroblasts were used for studies
by reverse transcription–polymerase chain reaction (RT–PCR), real-time
RT–PCR, flow cytometry, immunocytochemistry and Western blot analysis.
Compared to control cells, crypt epithelial cells isolated from active ulcera-
tive colitis and Crohn’s disease colonic mucosal samples showed significantly
higher expression of TLR-2 and TLR-4 transcripts and protein (on the cell
surface). There was also enhanced expression of TLR-4 in crypt cells from
ileal Crohn’s disease. Expression of TLR-2 and TLR-4 transcripts in crypt
epithelial cells isolated from inflamed mucosa of distal ulcerative colitis did
not differ significantly from such cells obtained from the normal proximal
colon. Crypt epithelial cells with side population characteristics (putative
stem cells) also expressed transcripts and protein for TLR-2, TLR-4 and
TLR-5. Colonic myofibroblast expression of these TLRs was much weaker
than in crypt epithelial cells. In conclusion, enhanced TLR-2 and TLR-4
expression by crypt epithelial cells in active inflammatory bowel disease
likely reflects greater ability to respond to microbial products. Results from
our studies using mucosal samples from patients with distal ulcerative colitis
suggest that the enhanced expression of these TLRs could be constitutive.
TLR-2, TLR-4 and TLR-5 expression by stem cells imply ability to respond to
distinct bacterial products.
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Introduction

The inflammatory bowel diseases (IBD), ulcerative colitis
and Crohn’s disease, are a group of chronic conditions
affecting the gastrointestinal tract characterized by a relaps-
ing and remitting course. Although the pathogenesis of IBD
remains to be fully understood, studies have implicated the
epithelium, innate and adaptive immunity and resident
(commensal) bacteria in disease pathogenesis [1,2].

The intestinal epithelium consists of a monolayer of
subpopulations of cells of distinct phenotype and function,
which are derived from stem cells located in crypts [3,4].
There is increasing recognition of the importance of inter-
actions between intestinal epithelial cells and commensal

bacteria (and their products) in the maintenance of normal
mucosal homeostasis [5]. Changes in the nature of these
interactions are also believed to be required for the develop-
ment of chronic inflammatory disease of the intestine, as
seen in IBD [1,2]. In addition to providing a physical
barrier to penetration by resident bacteria and their prod-
ucts, epithelial cells may also shape immune responses
mediated by cells in the lamina propria. This may occur via
specific receptors which recognize and respond to bacterial
products. Toll-like receptors (TLRs) are the best-known
sensors of microbial components [6], and act by regulating
gene expression.

Studies in mice have shown that TLR-2, TLR-4 and
TLR-5 control intestinal epithelial homeostasis and provide
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protection from injury, such as that mediated by dextran
sodium sulphate and radiation [7–10]. TLR-2 and TLR-4
sense Gram-positive and Gram-negative bacterial wall com-
ponents (lipoteichoic acid and lipopolysaccharide, respec-
tively) and TLR-5 binds monomeric flagellin of motile
bacterial cell walls. Although agonists for these TLRs have
been reported to provide protection against radiation injury
[10,11], there are conflicting reports regarding their role in
established murine models of IBD [12].

Human intestinal epithelial expression of TLR-2 and
TLR-4 has been studied in tissue sections. In histologically
normal colonic tissue the findings have been inconsistent,
with epithelial expression reported to be confined to crypts
[13,14], minimally detectable [15] or absent [16]. In tissue
affected by IBD, epithelial expression of these TLRs was
reported to be absent [16] or abundant for TLR-4 [15].

In patients with active IBD, changes in the epithelium are
prominent and include loss of barrier function and loss of
monolayer continuity (ulceration). During remission, epi-
thelial repair and regeneration occurs via stem cell-derived
progeny and processes such as restitution. Epithelial barrier
function [17] and restitution [18] can be regulated by
myofibroblasts that are located under the basement mem-
brane. Myofibroblasts are also believed to be important
regulators of intestinal stem cell function, via secretion of
Wnt ligands [19] and bone morphogenetic protein (BMP)
antagonists [20]. Moreover, myofibroblasts are capable of
responding to luminal bacterial products via expression of
TLRs [21,22], but relative expression compared to epithelial
cells is unknown.

The aims of our studies were to investigate the expression
of TLR-2, TLR-4 and TLR-5 in human intestinal crypt epi-
thelial cells and putative stem cells isolated from control
tissue and that affected by IBD. Myofibroblast expression of
the TLRs was also studied.

Materials and methods

Patients and samples

For isolation of crypt epithelial cells, mucosal samples were
obtained from operation resection specimens. These
included colonic tissue from 18 patients with ulcerative
colitis [mean age 51·5, standard error of the mean (s.e.m.)
4·75 years], 11 patients with Crohn’s colitis (48·9,
s.e.m. = 4·10 years) and 11 patients (70·5, s.e.m. = 4·15
years) undergoing colonic resection for cancer (for control,
histologically normal mucosal samples, > 5 cm from
tumour). Control and inflamed ileal mucosal samples were
obtained from seven patients (74·1, s.e.m. = 3·36 years)
undergoing right hemicolectomy for cancer and seven
patients (44·3, s.e.m. = 7·18 years) with ileal Crohn’s
disease.

Histological examination of mucosal samples from
patients with inflammatory bowel disease showed mild to

severe inflammation and they were on the following treat-
ment at the time of intestinal resection: mesalazine (14),
corticosteroids (eight), azathioprine/6-mercaptopurine
(15), methotrexate (four), infliximab/adalimumab (eight),
cyclosporin (one), metronidazole (one) (see Supporting
information, Table S1). Specimens from patients who had
received pre-operative chemotherapy or radiotherapy of
any type or duration were excluded.

The above mucosal samples, which were surplus to clini-
cal requirements, were used following informed consent
from patients. This research was approved by the Notting-
ham Research Ethics Committee.

Isolation and disaggregation of crypt epithelial cells

Intestinal crypts were isolated and disaggregated as
described previously [23,24]. In brief, after washing with
calcium- and magnesium-free Hanks’s balanced salt solu-
tion (HBSS), mucosal strips were incubated (for 30 min at
37°C, with shaking), on three occasions in 1 mM
ethylenediaminete traacetic acid (EDTA) plus 0·05 mM
dithiothreitol (DTT). Between the incubation steps, the
mucosal strips were washed with HBSS. Released crypts
were subsequently disaggregated using 0·25% pancreatin
(Sigma, St Louis, MO, USA) and the cell suspensions were
stored on ice prior to use in experiments.

Myofibroblast isolation and co-culture with crypt
epithelial cells

Primary colonic myofibroblasts were isolated and cultured as
described previously [25]. Briefly, mucosal samples denuded
of epithelial cells (as described above), were cultured [at
37°C, in RPMI-1640 supplemented with 10% fetal calf serum
(FCS)] to allow myofibroblasts to migrate out via basement
membrane pores and to establish in culture. Established colo-
nies of myofibroblasts were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% FCS, 1%
non-essential amino acids (Gibco, Carlsbad, CA, USA), and
200 mM glutamine (Sigma). Following passage, the
myofibroblasts were kept frozen prior to their use in experi-
ments. Expression of α-smooth muscle actin and vimentin
(by immunohistochemistry) confirmed the phenotype of the
myofibroblasts.

For co-culture, myofibroblasts were grown to confluency
on sterile glass coverslips before application of isolated and
disaggregated crypt epithelial cells, as described previously
[24]. Following co-culture for 30 min, non-adherent cells
were removed by washing before the coverslips were fixed in
cold acetone for 1 min and stored at −20°C until required.

Immunocytochemistry

Immunocytochemistry was undertaken as reported previ-
ously [24] using Vectastain ABC Universal kit (Vector
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Laboratories, Peterborough, UK). Cells on coverslips were
thawed, hydrated and endogenous peroxidase activity was
quenched in 0·3% H2O2 in methanol for 30 min. Coverslips
were incubated with the following primary antibodies (for
1 h at room temperature or overnight at 4°C): anti-BerEP4
(Dako, Glostrup, Denmark), anti-α-smooth muscle actin
(abcam, Cambridge, UK), anti-vimentin (abcam), anti-
desmin (abcam), anti-TLR-2 (eBioscience, San Diego, CA,
USA), anti-TLR-4 (eBioscience) or anti-TLR-5 antibody
(Santa Cruz Biotechnology, Santa Cruz, CA, USA). Follow-
ing incubation with biotinylated secondary antibody and
avidin–biotin complex, peroxidase activity was developed
with diaminobenzidene (DAB) solution as per the manu-
facturer’s instructions.

Flow cytometry and cell sorting

Isolated and disaggregated crypt epithelial cells were incu-
bated (in the dark at 4°C for 1 h) with the following
fluorophore-conjugated monoclonal antibodies: BerEP4-
fluorescein isothiocyanate (FITC) (Dako), immunoglo-
bulin (Ig)G2aκ isotype control-allophycocyanin (APC)
(eBioscience), TLR-2-APC (eBioscience), TLR-4-APC
(eBioscience) or CD45-AF488 (BioLegend, London, UK).
Additional control included incubation in medium only
(no primary antibody). Cells were subsequently washed,
resuspended in 0·5% formaldehyde in phosphate-buffered
saline (PBS) and stored at 4°C in the dark until analysis. A
minimum of 20 000 total events per sample tube were col-
lected for analysis on Moflo XDP (Beckman Coulter, High
Wycombe, UK). Initial analysis was by forward- and side-
scatter to exclude aggregates and non-viable cells. Side
population cells were identified as reported previously
[24,26].

Disaggregated crypt epithelial cells were used with and
without prior incubation (at 37°C for 15 min) with either
50 μmol/l verapamil (Sigma-Aldrich, St Louis, MO, USA)
or 10 μmol/l fumitremorgin C (Alexis Biochemicals, Exeter,
UK). Hoechst 33342 (Sigma) was added to a final concen-
tration of 2·5 μg/ml and the cells incubated (in the dark)
for 30 min at 37°C, followed by 30 min at 4°C. Following
centrifugation, the cells were resuspended in 0·5 ml of 2%
fetal calf serum in HBSS with Ca/Mg and 10 mM HEPES,
followed by incubation with normal mouse serum and
fluorophore-conjugated monoclonal antibodies (above) for
1 h at 4°C. Following resuspension in medium at 4°C, the
cells were analysed immediately on Moflo XDP (Beckman
Coulter).

Viable and non-aggregated crypt cells were identified
using forward- and side-scatter analysis and lack of cellular
uptake of propidium iodide (PI), and analysed on a
Beckman Coulter MoFlo cell sorter. Hoechst 33342 was
excited at 405 nm and fluorescence emission measured
using a 450/50 nm band-pass filter (‘Hoechst blue’) and a
620 nm long-pass filter (‘Hoechst red’).

Side population cells were demonstrated as those with
low fluorescence in both the blue and red channels, which
was ameliorated in cells pre-incubated with verapamil or
fumitremorgin C, which block multi-drug resistance
protein (mdr) or mdr-like mediated efflux of the Hoechst
dye [26]. Following measurement of the fluorescence signal
in the relevant gated region, 5 × 103 side population cells
were sorted into Eppendorf tubes on ice and centrifuged,
before total RNA was isolated for subsequent mRNA
expression analysis, as described below. All flow cytometric
data were analysed using Weasel version 3 software.

RT–PCR (conventional and real-time)

Total RNA was extracted using Qiagen RNeasy Plus Mini
Kit (Qiagen, Venlo, the Netherlands), as per the manufac-
turer’s instructions for eukaryotic cellular RNA. Synthesis
of complementary DNA (cDNA) from mRNA was under-
taken using the Qiagen QuantiTect RT kit (Qiagen), accord-
ing to the manufacturer’s instructions.

The following primer pairs were used for conventional
reverse transcription–polymerase chain reaction (RT–
PCR): hypoxanthine–guanine phosphoribosyltransferase
(HPRT) sense 5′-GAC CAG TCA ACA GGG GAC AT-3′;
HPRT anti-sense 5′-CGA CCT TGA CCA TCT TTG GA-3′
[to give a 160 base pairs (bp) PCR product]; TLR-2 sense
5′-AGT TGA TGA CTC TAC CAG ATG-3′; TLR-2 anti-
sense 5′-GTC AAT GAT CCA CTT GCC AG-3′ (599 bp
PCR product); TLR-4 sense 5′-TGG ATA CGT TTC CTT
ATA AG-3′; and TLR-4 anti-sense 5′-GAA ATG GAG GCA
CCC CTT C-3′ (507 bp PCR product). Primers for TLR-5
were also used (QuantiTect Primer Assay primers; Qiagen),
according to the manufacturer’s instructions. Following
RT–PCR, nucleic acid amplicons were separated by 1%
agarose gel electrophoresis and visualized using ethidium
bromide ultraviolet (UV)-transillumination. Amplicon
specificity was confirmed by sequencing the PCR products.

For real-time RT–PCR reactions, the following primer
pairs were used: HPRT sense 5′-GAC CAG TCA ACA GGG
GAC AT-3′; HPRT anti-sense 5′-CGA CCT TGA CCA TCT
TTG GA-3′; TLR-2 sense 5′-GGG TTG AAG CAC TGG
ACA AT-3′; TLR-2 anti-sense 5′-CTG CCC TTG CAG ATA
CCA TT-3′; TLR-4 sense 5′-CGG AGG CCA TTA TGC TAT
GT-3′; and TLR-4 anti-sense 5′-TCC CTT CCT CCT TTT
CCC TA-3′. Real-time RT–PCR studies used the SYBR
green method (QuantiTect SYBR green kit; Qiagen), using
Stratagene MX4000 real-time PCR cycler and MxPro
Mx3000P version 4·01 software (Stratagene, La Jolla, CA,
USA). The RT–PCR reactions (in triplicate) for colonic
crypt epithelial cells were undertaken in one run and those
for crypt cells from the small intestine in a separate run.
Relative quantification of the transcripts of interest (in cells
isolated from ulcerative colitis and Crohn’s disease mucosal
samples) was deduced by comparing the cycle threshold
(Ct) value of each sample to the mean Ct value of the
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Fig. 1. Relative quantitative expression of Toll-like receptor (TLR)-2

(a) and TLR-4 (b) mRNA transcripts in isolated and disaggregated

colonic crypt epithelial cells obtained from histologically normal

control mucosal samples (n = 11) and those affected by active

ulcerative colitis (UC, n = 13) and Crohn’s colitis (n = 11). Extracted

RNA was used for real-time reverse transcription–polymerase chain

reaction (RT–PCR) and data for UC and Crohn’s colitis are presented

as ‘fold change’ in expression of transcripts compared to mean

expression in the control group in which the crypt epithelial cells were

obtained from histologically normal colonic mucosal samples. Each

data point represents mean mRNA expression of three samples per

patient and the horizontal bars represent median expression.

(a)

(b)

P=0⋅030

IIeal crypt epithelial cells

Nor
m

al 
co

nt
ro

l

Cro
hn

’s 
inf

lam
ed

R
el

at
iv

e 
T

LR
-4

 e
xp

re
ss

io
n

0

10

5

20

15

IIeal crypt epithelial cells

Nor
m

al 
co

nt
ro

l

Cro
hn

’s 
inf

lam
ed

R
el

at
iv

e 
T

LR
-2

 e
xp

re
ss

io
n

0

3

2

1

5

4

Fig. 2. Relative quantitative expression of Toll-like receptor (TLR)-4

(a) and TLR-2 (b) mRNA transcripts in isolated and disaggregated

ileal crypt epithelial cells obtained from mucosal samples affected by

active Crohn’s disease (n = 7) and histologically normal control ileal

tissue (n = 7). Extracted RNA was used for real-time reverse

transcription–polymerase chain reaction (RT–PCR) and data for

Crohn’s ileal crypt cells are presented as ‘fold change’ in expression of

transcripts compared to mean expression in cells from the control

group. Each data point represents mean mRNA expression of three

samples per patient and the horizontal bars represent median

expression.
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control group, normalizing to housekeeping gene HPRT, as
reported previously [27]. Data are presented as a ‘fold
change’ in expression of transcript in each sample com-
pared to mean expression in the control group.

Western blot analysis

Disaggregated crypt epithelial cells (106) or colonic
myofibroblasts were washed in PBS and incubated in
CelLytic M reagent (Sigma) supplemented with phos-
phatase inhibitor cocktail 2 (Sigma) and protease inhibitor
cocktail (Sigma), according to the manufacturer’s instruc-
tions. The lysate was centrifuged at 10 000 g and the
protein-containing supernatant was stored at −80°C until
required.

Aliquots of total protein, mixed in a 1:1 ratio with
Laemmli buffer (Bio-Rad, Hercules, CA, USA), were sepa-
rated by sodium dodecyl sulphate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) before transfer to a polyvinylidene
difluoride (PVDF) membrane (GE Healthcare, Little
Chalfont, UK).

The PVDF membrane was incubated (at 4°C) overnight
with or without the following antibodies: anti-β-actin
(Sigma), anti-TLR-2 (eBioscience) and anti-TLR-4 (abcam).

Immunostaining was performed using a Vectastain ABC
Universal kit (Vector Laboratories), according to the manu-
facturer’s instructions.

Statistical analyses

Normally distributed data were analysed using paired or
unpaired Student’s t-test, as appropriate. Non-normally dis-
tributed data were analysed using non-parametric tests,
Kruskal–Wallis test and either a Wilcoxon signed-rank test
or Mann–Whitney U-test. Categorical data were analysed
using Fisher’s exact test. Statistical analyses were undertaken
using spss (version 19) and Graphpad Prism (version 5)
statistical software packages. All statistical tests were two-
tailed and those with P-values less than 0·05 (5%) were
deemed statistically significant.

Results

Expression of TLR-2 and TLR-4 transcripts in colonic
crypt epithelial cells

Conventional RT–PCR studies using isolated and
disaggregated crypt epithelial cells from normal control and
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colonic mucosal samples.
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IBD mucosal samples showed amplification products spe-
cific for TLR-2 and TLR-4 (see Supporting information,
Figure S1). In studies using real-time RT–PCR, compared to
normal control colonic mucosal samples, crypt epithelial
cells isolated from inflamed ulcerative colitis (UC) and
inflamed Crohn’s colitis mucosal samples showed signifi-
cantly increased expression of TLR-2 [median (range) fold
increase (relative to mean, corrected to 1·0, of normal
control cells): UC 3·18 (0·91–474·9), P = 0·003; Crohn’s
colitis 3·45 (0·75–10·51), P = 0·012; Fig. 1a] and TLR-4 [fold
increase: UC 2·33 (0·40–10·07), P = 0·024; Crohn’s colitis
1·71 (0·91–10·30), P = 0·042; Fig. 1b and Supporting infor-
mation Table S2]. In the UC group, the two highest values
of TLR-2 expression were from crypt cells isolated from
severely inflamed specimens.

Compared to cells from normal control colonic mucosal
samples, there was enhanced expression of TLR-4 mRNA in
crypt cells isolated from histologically normal mucosal
samples obtained from the right colon of five patients with
left-sided UC [fold increase: 1·90 (1·63–5·75), P = 0·017].
Difference in the expression of TLR-2 mRNA transcripts
between these two groups [UC fold increase: 1·36 (0·75–
5·77), P = 0·254] did not reach statistical significance.

It is of interest that there were no statistically significant
differences in expression of TLR-2 [median (range) fold
increase (relative to mean, corrected to 1·0, of normal
control cells): inflamed distal: 1·14 (0·89–8·93) versus 1·4
(0·23–8·65)] and TLR-4 [2·56 (0·4–3·54) and 1·9 (1·16–
5·76)] mRNA between crypt cells isolated from inflamed
(distal colon) and histologically normal proximal colon of
the five patients with left-sided ulcerative colitis.

Expression of TLR-2 and TLR-4 transcripts in ileal
crypt epithelial cells

There was significantly enhanced expression of TLR-4 tran-
scripts in crypt cells isolated from inflamed ileal Crohn’s
disease mucosal samples, when compared to cells obtained
from normal control ileal tissue [fold increase: 1·84 (1·39–
17·69), P = 0·030; Fig. 2a]. Although some Crohn’s ileal
crypt cell samples showed high levels of TLR-2 mRNA
expression, the difference between the two groups was not
statistically significant [fold increase for Crohn’s group:
1·72 (0·23–3·89); Fig. 2b and Supporting information,
Table S2].

Surface crypt epithelial expression of TLR-2 and TLR-4

Studies by flow cytometry showed that most of the isolated
and disaggregated crypt cells obtained from normal control
colon [mean 90·7 (s.e.m. ± 2·1)%], ulcerative colitis
[92·4 (s.e.m. ± 3·0)%] and colonic Crohn’s disease
[90·0 (s.e.m. ± 2·1)%] tissue expressed the epithelial cell-
specific marker Ber-EP4 (Fig. 3). Small populations of non-
epithelial cells (identified by expression of CD45) were also
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present in disaggregated crypt cell preparations from
normal control colon [1·5 (s.e.m. ± 0·4)%], ulcerative colitis
[2·4 (s.e.m. ± 1·3)%] and colonic Crohn’s disease [2·5
(s.e.m. ± 0·7)%] tissue. Immunocytochemical staining of
cytospin preparations using anti-Ber-EP4 and anti-CD45
antibodies confirmed these findings (data not shown).

Compared to cells isolated from normal control colonic
mucosal samples [median (range) fluorescence intensity:

TLR-2, 10·1 (0·50–31·40); TLR-4, 12·10 (4·90–37·4)],
BerEP4-positive crypt epithelial cells isolated from inflamed
UC and Crohn’s colitis mucosal samples demonstrated
significantly greater expression of surface TLR2 [median
fluorescence intensity: UC 89·10 (33·40–153·90), P = 0·006;
Crohn’s colitis 65·80 (8·50–222·70), P = 0·029; Fig. 4a
and Supporting information, Table S3] and TLR-4 [UC
72·95 (21·90–210·10), P = 0·024; Crohn’s colitis 69·70
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Fig. 5. Characterization of side population cells

(putative stem cells). (a) Identification of cells

with side population characteristics in isolated

and disaggregated crypt epithelial cells. Crypt

epithelial cells isolated from histologically

normal colonic mucosal samples were

incubated with Hoechst 33348 either alone (left

panel) or following exposure to verapamil

(right panel). The small population of cells with

low fluorescence in both the red (FL10) and

blue (FL7) channels (region R4; 2·38% in left

panel) was identified, and most of the cells in

this region showed side population

characteristics, as illustrated by amelioration of

low florescence (in both channels) in the

presence of verapamil (right panel). (b) Side

population cells express BerEP4. Sorted side

population cells were labelled with isotype

control (i) or anti-BerEP4-fluorescein

isothiocyanate (FITC)-conjugated (ii)

monoclonal antibodies. The histogram (iii)

shows median fluorescent intensity of side

population cells labelled with anti-BerEP4

monoclonal antibody. (c) Side population cells

express Toll-like receptor (TLR)-2 and TLR-4.

Sorted and labelled with anti-TLR-2-

allophycocyanin (APC), anti-TLR-4-APC or

isotype control monoclonal antibodies. The

histograms show median fluorescent intensity

of side population cells labelled with

anti-TLR-2 (i; red), anti-TLR-4 (ii; blue) or

isotype control (i, ii; black) monoclonal

antibodies. The figures are representative of

crypt epithelial cells isolated from 12 [(a) and

(b)] and six [(c)] operation resection

specimens.
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(6·40–170·90), P = 0·020; Fig. 4b and Supporting informa-
tion, Table S3]. The presence of TLR-2 and TLR-4 tran-
scripts in sorted BerEP4-positive cells was confirmed by
RT–PCR (not shown).

TLR expression by putative stem cells

Side population cells present in isolated and disaggregated
crypt cell preparations from normal control colon were
characterized by flow cytometry (Fig. 5a), as described pre-
viously [24]. Sorted side population cells were labelled by
anti-BerEP4 (Fig. 5b), anti-TLR-2 and anti-TLR-4 (Fig. 5c)
antibodies. When studied by RT–PCR, sorted side popula-
tion cells also expressed transcripts for TLR-2, TLR-4 and
TLR-5 (Fig. 6). In contrast to other disaggregated crypt epi-
thelial cells, side population/putative stem cells adhere
readily to monolayers of intestinal myofibroblasts [24].
Such co-cultures were used to demonstrate immuno-
reactivity for not only BerEP4 (Fig. 7a), but also TLR-2
(Fig. 7b), TL-4 (Fig. 7c) and TLR-5 (Fig. 7d). In contrast to

the epithelial cells, myofibroblast immunoreactivity for
TLR-2, TLR-4 and TLR-5 in these co-cultures was weak.

Studies in isolated intestinal myofibroblasts

Using conventional RT–PCR, myofibroblasts isolated from
normal control and active IBD mucosal samples showed
PCR products specific for TLR-2 and TLR-4 (not shown).
TLR-2 and TLR-4 protein expression was confirmed by
Western blot analysis, but the level of expression was much
lower than that for isolated crypt epithelial cells (Fig. 8).

Discussion

To date, the role of TLRs in intestinal epithelial cells has
been investigated predominantly in mice and human cell
lines, with only limited studies in primary human mucosal
epithelial cells. Heterogeneity in expression of TLR-4 has
been reported in epithelial cell lines [28–30]. In tissue sec-
tions of human intestinal mucosal samples, reports of epi-
thelial expression of TLR-2 and TLR-4 have been
inconsistent [13–16].

In findings that we believe have not been reported previ-
ously, our studies using isolated and disaggregated colonic
crypt epithelial cells consistently showed expression of not
only transcripts, but also TLR-2 and TLR-4 protein on the
cell surface. Compared to histologically normal controls,
crypt epithelial cells isolated from colonic mucosal samples
affected by ulcerative colitis and Crohn’s disease demon-
strated enhanced expression of TLR-2 and TLR-4 tran-
scripts and cell surface protein. These studies suggest
greater capacity for colonic crypt epithelial cells in inflam-
matory bowel disease to respond to luminal microbial
products that bind these receptors.

The enhanced epithelial expression of TLR-2 and TLR-4
is likely to have occurred in response to proinflammatory
cytokines [28,31]. However, we report for the first time that
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of RNA, for subsequent reverse transcription–polymerase chain

reaction (RT–PCR) using primer pairs specific for TLR-2, TLR-4 and

TLR-5. Lane M represents the 100 base pair size ladder. The figure is

representative of crypt epithelial cells isolated from three operation

resection specimens.
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expression of transcripts for both TLR-2 and TLR-4 was
similar in crypt epithelial cells isolated from histologically
normal and inflamed parts of colectomy specimens with
left-sided ulcerative colitis. Indeed, compared to control
normal colonic mucosal samples, there was enhanced
expression of TLR-4 in crypt epithelial cells isolated from

histologically normal proximal colon of these colectomy
specimens with distal ulcerative colitis. It is possible, there-
fore, that compared to those without IBD, there is
enhanced constitutive expression of TLR-4 in crypt epithe-
lial cells throughout the colon of patients with ulcerative
colitis.

(a) (b)

(d)(c)

(e)

Fig. 7. Expression of BerEP4 (a), Toll-like receptor (TLR)-2 (b), TLR-4 (c) and TLR-5 (d) protein in co-cultures of myofibroblasts and adherent

crypt epithelial cells [(e) is negative control]. Isolated and disaggregated colonic crypt epithelial cells were cultured (at 37°C for 30 min) on

monolayers of primary human colonic myofibroblasts. After washing, the myofibroblasts and adherent crypt epithelial cells (which are enriched for

side population cells) were fixed and used for immunocytochemistry using relevant specific monoclonal antibodies in (a–d), or control buffer (e).

Immunolabelled crypt epithelial cells (arrowed) are seen adherent to the much larger underlying myofibroblasts. Myofibroblasts (majority indicated

by #) are negative for epithelial cell-specific BerEP4 (hence only their nuclei are seen) and weakly positive for TLR-2, TLR-4 and TLR-5. Each figure

is representative of co-cultures using cells isolated from > 5 resection specimens.
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Limitations of our studies include the use of relatively
small numbers of samples, which were obtained from
operation resection specimens. Although the control histo-
logically normal mucosal samples were obtained distant
from the cancer in the resection specimen, it is conceivable
that the presence of the neoplasm may affect TLR expres-
sion in the adjacent tissue. We believe this is unlikely, but
future studies using samples from patients without cancer
can address this issue. Studies using epithelial cells isolated
from endoscopic biopsies from IBD patients while not on
any treatment will also be of interest.

Isolated and disaggregated crypt epithelial cells used in
our studies also contain stem cells, which give rise to the
progeny that differentiate as they migrate to the surface of
the mucosa.

Stem cells with so-called side population characteristics
(based on the ability to efflux the DNA-binding dye
Hoechst 33342) have been characterized in the bone
marrow [26] and murine intestine [32,33]. We have shown
previously that isolated and purified (using cell sorter)
putative human colonic epithelial stem cells with side popu-
lation characteristics adhere to monolayers of primary
human colonic myofibroblasts [24]. In novel studies, we
now report that these putative human colonic stem cells
express TLR-2, TLR-4 and TLR-5. Wnt signalling is impor-
tant in regulating stem cell function and a recent study has
reported the ability of TLR-4 to activate the canonical Wnt
pathway in colonic epithelial cell lines [34]. Expression of
TLR-4 in Lgr5-positive murine small intestinal stem cells
has also been reported [35]. Moreover, loss of TLR-4 in

murine intestinal epithelial cells has been shown to lead to
goblet cell differentiation, probably via suppression of
Notch signalling in stem cells [36].

Studies suggest that, in contrast to the epithelium, TLR
signalling in lamina propria cells leads to proinflammatory
responses [37]. Beneficial effects mediated by TLR-2 and
TLR-4 receptors in the intestinal epithelium have been
observed predominantly in models of radiation injury [11]
and colitis induced by dextran sulphate sodium [9,38,39]
and Citrobacter rodentium [40]. Stem cells are sensitive to
radiation [3], and our studies suggest that the protective
effects of TLR-4 [11] and TLR-5 [10] ligands could be
mediated directly via receptors expressed on the surface of
these cells.

Human intestinal myofibroblasts, which demonstrate
characteristics of fibroblasts and smooth muscle cells [25],
are located immediately subjacent to the epithelium. In the
crypt, they represent an important component of the stem
cell niche [19,20], and have also been implicated in
adenoma initiation and growth [41]. The demonstration of
intestinal myofibroblast expression of TLRs [21,22] repre-
sents an increasing appreciation of their role in mediating
mucosal immunological responses [42,43]. Our studies
have confirmed the expression of TLR-2 and TLR-4 in
myofiboblasts isolated from normal colonic mucosal
samples, and report for the first time that levels of the pro-
teins were lower than in isolated crypt epithelial cells.
Future studies can investigate the significance of the differ-
ences between crypt epithelial cells and myofibroblasts in
expression of these TLRs.
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Additional Supporting information may be found in the
online version of this article at the publisher’s web-site:

Fig. S1. Toll-like receptor (TLR)-2, TLR-4 and
hypoxanthine–guanine phosphoribosyltransferase (HPRT)
mRNA expression by isolated and disaggregated intestinal
crypt epithelial cells obtained from histologically normal
(control) small intestine (lane 1), inflamed small bowel
Crohn’s disease (lane 2), histologically normal (control)
large intestine (lane 3), inflamed colonic Crohn’s disease
(lane 4) and inflamed large intestinal mucosal samples
affected by ulcerative colitis (lane 5). Following reverse

transcription, extracted RNA was used for polymerase chain
reaction (PCR) using specific primer pairs and controls
included omission of reverse transcriptase (lane 6) and lack
of cDNA template (lane 7). The figure is representative of
experiments undertaken using crypt epithelial cells isolated
from ≥ 5 specimens for each group identified in lanes 1–5.
L = DNA size markers.
Table S1. Details of patients studied. TNFα = tumour
necrosis factor-α. *P < 0·05; **P < 0·01 versus healthy
controls.
Table S2. Relative quantitative expression of Toll-like recep-
tor (TLR)-2 and TLR-4 mRNA transcripts in isolated and
disaggregated colonic and small intestinal crypt epithelial
cells obtained from histologically normal control mucosal
samples and those affected by active ulcerative colitis (UC),
Crohn’s colitis and ileal Crohn’s disease. Extracted RNA was
used for real-time reverse transcription–polymerase chain
reaction (RT–PCR) and data for UC and Crohn’s disease
are presented as ‘fold change’ in expression of transcripts
compared to mean expression in the control group in which
the crypt epithelial cells were obtained from histologically
normal colonic and small intestinal mucosal samples.
IQR = interquartile range.
Table S3. Quantitative surface Toll-like receptor (TLR)-2
and TLR-4 protein expression by colonic crypt epithelial
cells. Isolated and disaggregated crypt epithelial cells were
obtained from mucosal samples affected by active Crohn’s
colitis, active ulcerative colitis or from histologically normal
control colonic tissue. The cells were labelled with anti-
BerEP4-fluorescein isothiocyanate (FITC) antibody and
either anti-TLR-2 allophycocyanin (APC), anti-TLR-4-APC
or isotype control monoclonal antibodies and analysed by
flow cytometry. Surface TLR-2 and TLR-4 protein-
associated median fluorescence intensity was determined in
BerEP4-positive (gated) epithelial cells. IQR = interquartile
range.
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