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Abstract: Mass-spectrometry-based and X-ray fluorescence-based techniques have allowed the
study of the distribution of Zn2+ ions at extracellular and intracellular levels over the past few
years. However, there are some issues during purification steps, sample preparation, suitability
for quantification, and the instruments’ availability. Therefore, work on fluorescent sensors based
on 8-aminoquinoline as tools to detect Zn2+ ions in environmental and biological applications has
been popular. Introducing various carboxamide groups into an 8-aminoquinoline molecule to create
8-amidoquinoline derivatives to improve water solubility and cell membrane permeability is also a
recent trend. This review aims to present a general overview of the fluorophore 8-aminoquinoline
and its derivatives as Zn2+ receptors for zinc sensor probes. Various fluorescent chemosensor
designs based on 8-amidoquinoline and their effectiveness and potential as a recognition probe
for zinc analysis were discussed. Based on this review, it can be concluded that derivatives of
8-amidoquinoline have vast potential as functional receptors for zinc ions primarily because of
their fast reactivity, good selectivity, and bio-compatibility, especially for biological applications.
To better understand the Zn2+ ion fluorophores’ function, diversity of the coordination complex and
geometries need further studies. This review provides information in elucidating, designing, and
exploring new 8-amidoquinoline derivatives for future studies for the improvement of chemosensors
that are selective and sensitive to Zn2+.
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1. Introduction

Zinc ion plays a significant role in biological and pathological processes [1–3]. The past
decade has seen many excellent metal-ion sensors detect transition and heavy metal ions
such as zinc ions Zn2+. Zn2+, as an essential element in the human body, is actively involved
in various biochemical processes such as neuronal signal transmission, DNA binding,
enzyme regulators, and catalytic centers. Zn2+ deficiency and imbalance distribution
then lead towards a much broad range of pathologies in parts of body systems [4,5].
The deficiency of Zn2+ in the human body can lead to severe neurological disorders like
Alzheimer’s. In contrast, an excess of Zn2+ reported as an effect of excessive consumption
in time can lead to Parkinson’s disease [6–8]. According to the US Food and Nutritional
Board, the human body can receive a safe amount of Zn2+ in a range of 2 mg (0–5 years) to
15 mg (adults) [9].
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2. Significance, Development, and Challenges in the Detection of Zinc Ions with
Various Analytical Methods

In the past several years, mass-spectrometry-based, and X-ray fluorescence-based
techniques facilitating the analysis of Zn2+ ions distribution at extracellular and intra-
cellular levels. Measuring this trace element’s composition in those cells was crucial in
understanding the role of Zn2+ ions in biological and pathological, as mentioned above.
The researchers could also measure free Zn2+ ions, whether in deficiency or excess. Even
though the body system precisely needs Zn2+ ions to operate very well, the excess amount
of Zn2+ could lead to toxicity to body functions. Some challenges in monitoring free zinc
at and below nanomolar levels are widely appreciated, such as potential interference at
higher concentrations with Ca2+ and Mg2+.

Among the analytical mass-spectrometry methods that have been widely applied in
research of measuring zinc in biological samples are inductively coupled plasma mass
spectrometry (ICP-MS) and secondary-ion mass spectrometry (SIMS) [10]. Both instru-
ments are powerful analytical technologies for elemental and isotopic analysis. The method
comprises dissolving the organs, purifying the chemical zinc from the rest of the atoms, and
then measuring the isotope ratio to instruments. With multi collector-ICP-MS (MC-ICP-
MS), zinc isotope presence is determined in various organ samples of rats to comprehend
zinc metabolism on the subject of a potential biomarker for Alzheimer’s disease [11]. In an-
other study, they use laser ablation-MC-ICP-MS (LA-MC-ICP-MS) to measure Zn2+ isotope
incorporation in rat brain thin sections to identify alteration zinc’s homeostasis that has
been connected to neuronal signal transmission [12,13]. You and co-workers also studied
portions of brain tissue (hypothalamus, hippocampus, cortex, and amygdala). They found
that the ratio of 31P/66Zn decreased beyond tumor limits, indicating that variations in this
ratio can be used to distinguish healthy vs. cancerous tissue [14].

Weiskirchen and co-workers did further examples examining metal’s concentration
as disease biomarkers using LA-ICP-MS in identifying diseased liver status (diseased
liver tissue: Levels of Fe and Cu higher while levels of Zn2+ levels lower) [15]. So, if the
concentration of Zn2+ ions in that liver tissue suddenly drops from the supposed amount
of Zn2+ ions in normal tissue, liver disease is detected. In other words, this condition
could indicate the turn from ordinary to unhealthy tissue. However, as mentioned above,
chemical zinc in the target organs needed to be purified first before analyzing with the mass
spectrometry. At this stage, they are some difficulties and issues during the purification
step. The percentage of purity may lead to false results.

Secondary ion-MS (SIMS) is another analytical mass-spectrometry method used for
imaging trace elements and their isotopes. As for high resolution-SIMS (NanoSIMS),
it offers excellent sensing at 50 nm to a few microns [16]. The localization of Zn and
Cd in Poplar species (Migeon and co-workers) and radish (Ondrasek and co-workers)
grown in metal contaminated soil were analyzed by NanoSIMS. Both studies showed
that the micronutrient Zn and the toxic Cd were readily transported to the plants from
the polluted soils [16,17]. Both metals have already translocated from the rhizosphere
to edible hypocotyl radish and shoot tissues at a comparable pace, also under short-
term exposure [16]. These research types help comprehend plants’ physiology and imply
irrigation and biomonitoring of water and soil pollution. However, NanoSIMS is not
suitable as a quantification tool. Nevertheless, the preparation of the samples is quite
challenging. The samples need to be in a vacuum.

Synchrotron X-ray fluorescence (SXRF) is usually non-destructive and needs no vac-
uum instead of mass spectrometry-based techniques. Recently, McRae and co-workers
monitored the location and redistribution of phosphorus (P), sulfur (S), iron (Fe), copper
(Cu), and zinc (Zn) during mitosis of mammalian cells by using SXRF fluorescence. The
colocalization analysis distribution of Zn-S levels increased in mitosis compared to the
interphase stage. They suggested that this increased zinc amount showed zinc’s vital role
in the cell cycle [18]. This powerful method offered submicron spatial resolution and high
sensitivity, but access to this instrument is limited due to the price.
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Mammalian egg fertilization initiates a series of ‘zinc sparks’ needed to induce the
egg-to-embryo. Some studies used a combined approach to understand the importance of
zinc-efflux in the molecular mechanisms by examining zinc distributions in a single cell at
a different stage (maturation of egg: prophase I, breakdown of germinal vesical, metaphase
I, anaphase I, telophase I dan metaphase II) [19,20]. As we mentioned above, zinc plays a
vital role in biological systems, whether in plants or humans. However, the process(es) of
the distribution pathway of the metals remains unexplored. It is necessary to determine
free zinc concentration in cells for some reasons: (1) level of exchangeable Zn will express
the zinc activity in the system; (2) free zinc levels help identify thresholds of high and
low zinc toxicity according to theoretical concentrations in intracellular and extracellular
at different stages; (3) free zinc concentrations can provide an overall measure of zinc
nutrition, which is eventually useful for deficiency assessment; (4) understanding the roles
of zinc in pathological statuses and courses, such as seizures, oxidative stress, amyloid
plaque formation, ischemia, and apoptosis [21]. However, these zinc detections usually
interfere with the other ions present in the system, such as Mg2+, Ca2+, Cu2+, and Fe2+/3+.

3. Zn2+ Fluorophore Based Sensors for the Analysis of Zn Ions

Chemical sensors, or chemosensors, are devices used for sensing target compounds by
converting chemical information into “analytical” information. These analytical terms will
imply the notion of measurability, whether in the qualitative or quantitative form [3]. A
chemosensor has two essential parts as a receptor. It binds the substrate and a transducer
that expresses the associated binding event [1,2,9], thus allowing a selective detection
of numerous metal ions in various environmental and biological samples. Molecular
recognition of chemosensor involves incorporating a chromophore or fluorophore as a
binding site for analyte and consists of a mechanism of binding interactions between
them [22,23]. Therefore, chemosensors play an essential role in detecting various analytes
in many diverse fields, especially in analytical chemistry, bio- medicinal science, and
environmental chemistry [24–29]. Multiple types of chemosensors, including fluorescent-
type sensors, use spectrophotometry and fluorimetry to detect analytes [30–39].

Development of simple design and easy to synthesize fluorescent sensors with high
selectivity recognizing metal ion is widely studied for its promising advantages. As ion-
induced sensors, a fluorescent probe is highly useful for various applications such as in vivo
and in vitro analyses of biologically essential species, including metal ions. It offers many
advantages over other techniques because of its high sensitivity, repeatability, selectivity,
and instantaneous response, offering less detection [31–36,39]. Despite the progress of
fluorescent chemosensors in various detection, several problems and challenges continue
to exist, leading to an exploration of the development of binding receptors.

Some severe facts should be aware of this fluorescence sensor. First, the result’s
observation is between the fluorescent sensor and target or the outcome affected by other
factors like microenvironment, states, and temperature, especially on the first application.
Second, the fluorescence probe should be distributed in uniform, but it is hard to be
implemented experimentally. Third, the degradation of the fluorescent probe would lead
to misunderstanding of the result. Fourth, the behavior of the sensor in solubility and cell
permeability. Lastly, the need to be explored since this fluorescent chemosensor is analytical
measuring in detecting not explaining unless combined with the other instrument.

A fluorescent chemosensor signal is typically calculated as changes of fluorescence
intensity and/or transition of fluorescence wavelength, especially before and after introduc-
ing the probe to the target [40]. Until now, this fluorescence activity that involves cations
and anions has been enabled by several mechanisms, such as internal charge transfer (ICT),
chelation enhanced fluorescence (CHEF), photoinduced electron transfer (PET), and depro-
tonation mechanism [41]. By these mechanisms, the chemosensor’s fluorescence intensity
could be quenched or enhanced depends on the probe. Several compounds had been
studied along with the mechanism involved to get a better understanding of fluorescent
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chemosensors. Table 1 shows the comparisons and assessments of collected studies that
related to the fluorescence probe.

Quinoline is an exciting compound with low initial fluorescence but can form highly
fluorescent complexes with metal ions chosen as a fluorophore [42]. Quinoline is a unique
fluorophore due to a relatively smaller molecular size, and the nitrogen in the ring makes
it formed good metal coordination. Moreover, the quinoline ring itself also provides
coordination quinoline-based metal-ligand binding by π-π intermolecular stacking ability.
Analytically, this quinoline receptor is not limited to detecting Zn2+ only, and it also exhibits
excellent coordination with the other metal cation like Cd2+, Hg2+, Al3+, Cr3+, Cu2+, Fe3+,
and of course Zn2+ [43]. However, most of the quinoline-based derivatives were selective
to Zn2+ ion and slightly interfered with the other metal ion. Therefore, the development of
the quinoline fluorophore database is ongoing.

Table 1. The comparisons and assessments of collected studies that related to the fluorescence probe.

Article/Year Analyte Binding Mode Sensing
Mechanism

Fluorescence
Signals

Detection
Limits

[44]/2015 Zn2+

Lower rim amide linked
8-amino quinoline acts as a

receptor molecule, and 8-amino
naphthalene moiety

1,3,5-triderivatives of
calix[6]arene acts as a control

molecule

Absorption and
Electrospray

Ionization (ESI) MS
Spectra

390 and 490 nm -

[45]/2016 CEA

Carcinoembryonic antigen
aptamer

(5′-nh2-ataccagcttattcaatt-3′)
conjugated to hexanedioic acid
(hda) modified ucps (hda-ucps)
by edc-nhs coupling method.

Fluorescence
Resonance Energy

Transfer (FRET)
- 0.8 pg/mL

[46]/2015 Zn2+ and Cu2+

Asymmetrical Diarylethene As
Photoswitchable Core and

Amidoquinoline As A
Multi-Responsive Group Via A

Piperazine Linkage

Fluorescence
Chemosensor

417 nm to
502 nm -

[47]/2018 Zn2+

N’-(quinolin-8-
ylmethylene)benzohydrazide
group as the binding unit and

perfluorodiarylethene as a
photoswitching trigger

Fluorescence Sensor 412 nm 3.2 × 10−8 mol L−1

[48]/2011 Zn2+ and Cu2+ Amide tautomerization Fluorescence Sensor 492 to 430 nm 0.14 and 0.86 µm

[49]/2014 Zn2+
4-amino-1,8-naphthalimide-pet,

with iminodiacetic acid as a
chelating metal group

PET-Fluorescent
Sensor 470 nm -

[50]/2013 Zn2+ and Cu2+ 2-((benzylimino)-
methyl)-naphthalen-1-ol

PET-Fluorescence
Sensor 300 nm, 370 nm 0.35 and 0.82 µm

[51]/2017 Al3+

Coumarin-Derived
Chemosensor with 2-Hydroxy-
4-Methylbenzohydrazide and

Acetylcoumarin

Fluorescence
Chemosensor 490 nm 6.7 µm

Derivatives of 8-hydroxyquinoline and 8-aminoquinoline are common fluorogenic
chelators for Zn2+ ions [40]. Mummidivarapu and co-workers synthesized 8-amino quino-
line and 8-amino naphthalene moiety 1,3,5-triderivatives of calix[6]arene and studied their
binding ability toward biologically essential metal ions. They observed a stronger binding
of Zn2+ from the absorption study, along with the complexation energies computed from
the computational data [44]. A susceptible sensor was also reported by using amidoquino-
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line as part of the recognition element towards glucosamine in living Caco-2 cells, resulted
in the enhancement of fluorescence quantum yields by 14 folds [45].

Another highly selective probe by Xia and co-workers used the diarylethene com-
pound with a piperazine-linked amidoquinoline unit as a binder for zinc ions [46]. They
reported a higher binding affinity of the complex with the targeted analyte in fluorescence
intensity. These showed the derivatives of 8-aminoquinoline in the presence of amide
gradually to be acknowledged. Several studies focusing on improving and increasing the
sensitivity and selectivity of fluorescent probes for Zn2+ based on 8-amidoquinoline and its
derivatives are widely developed [47,48]. Further, 8-amidoquinoline derivatives exhibit
fluorescence properties for sensing Zn2+ based on important signaling mechanisms and
internal charge transfer (ICT) [48,52]. Therefore, this review aims to assess collected studies
related to 8-amidoquinoline derivatives as fluorophores of zinc chemosensor.

4. Quinoline and Derivatives for Zn2+ Fluorophores

The global focus has recently been devoted to developing and synthesizing highly
sensitive fluorescent probes for the selective recognition of Zn2+ ions as a concern for
human health and environmental safety. In total, 41 titles and abstracts were screened
independently based on the criteria “practices of 8-aminoquinoline derivatives in the
detection of zinc only”. Next, the left articles were evaluated for inclusion or exclusion
based on 8-aminoquinoline with amide structure, or we might be called it 8-amidoquinoline
or N-(quinolin-8-yl) formamide. The addition of the carboxamide group, followed by
intramolecular hydrogen bond breaking of 8-aminoquinoline, inhibits intramolecular
electron-transfer, which in turn enhanced the ICT process as pronounced in the Zhang [53]
and Xu [54] study. This observation would enhance fluorescence emission.

The devotion to the spectroscopically silent behavior of the Zn2+ ion leads to interfer-
ences from the other metal ions. Aside from these interferences, the sensing results were in-
fluenced by the other factors such as the environment of the system including solvent used,
type and pH of the buffer, the concentration of Zn2+ ions present compared to the other
ions, solubility properties, and of course, the characteristic and behavior of the probe itself.
They are so many receptors used as fluorophore as binding sites such as di-2-picolylamine
(DPA) [55,56] quinoline [57,58], bipyridine [59–62], acyclic and cyclic polyamines [63,64],
iminodiacetic acid [65,66], triazole [67–69], and Schiff-base receptors [70] (Figure 1).
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Figure 1. The frequent main structure of fluorophore probe used for binding site or receptors in fluorescence chemosensor.
(as di-2-picolylamine (DPA, quinoline, bipyridine, iminodiacetic acid, and triazole).

However, it is necessary to notice that few compounds fluoresce by itself or fluoresce
after the interaction with the target. The behavior of the compounds usually can elec-
tronically go to an excited and ground state during inter-intramolecular transfer. Thus,
the most intense and valuable fluorescence is generally seen in compounds that comprise
aromatic functional groups since they have a π system orbital [71]. Therefore, the earliest
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probes for zinc (II) detection are derivatives of zinquin [72], Zinbo-5 [73], Zinpyr [74],
aminoquinoline [75], and coumarin families [76] (Figure 2).
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Aminoquinoline as a Fluorophore for Zinc’s Recognition

An aryl sulfonamide derivative of 8-aminoquinoline, 6-methoxy-(8-p-toluenesulfonam
-ido)quinoline (TSQ) is amongst the most efficient used as fluorophore in zinc sensor,
especially in the biological field [21]. This TSQ was first published in the early seventies by
Toroptsey and Eshchenko [77]. Then, referring to Meeusen and co-workers, TSQ acts as a
chelating ligand to Zn2+ by a ratio of 2 to 1 ((TSQ)2Zn), which will form a metal complex.
TSQ-Zn will increase the fluorescence intensity of TSQ by 4-fold (excitation maximum:
360 nm, emission maximum: 490 nm). They also indicate a blue-shifted emission spectrum
as a ternary TSQ-Zn-protein adduct (Figure 3) [78]. Moreover, this TSQ has been used as a
stain to recognized Zn2+ ions for biological purposes since it still provides selectivity over
concentrations of Ca2+ and Mg2+ ions [43,79].
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TSQ derivatives are extensively used as fluorogenic chelators in the detection of zinc
in biological samples. However, these derivatives have low water solubility, poor mem-
brane penetrability, and complicating free zinc ion measuring in cells quantitatively [41].
Therefore, to overcome those problems, developing on the quinoline-based derivatives
still ongoing until now. This is due to their behavior high soluble in water and showed
excellent selectivity for Zn2+ ion [80] as we can say that the importance of zinc detection
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almost in biological and environmental applications. Therefore, among other fluorophores,
quinoline-based derivatives are studied extensively.

As confirmation, the characteristic of quinoline on the zinc detection, Mikata, and
co-workers substituted pyridine ring with quinoline group in N, N, N, N-tetrakis(2-
pyridylmethyl) -ethylenediamine, (TPEN) to form N, N, N, N-tetrakis(2-quinolylmethyl)
ethylenediamine (TQEN) compound (Figure 4a). Then, they modified the combination
with the addition of the methoxy group. Those compounds are selective to Zn2+ by photoin-
duced electron-transfer (PET) and chelation enhanced fluorescence (CHEF). The modified
combination of TQEN showed strong fluorescence upon binding with Zn2+ compared to
the weak fluorescence of TPEN [81]. Steric and stereochemical effects are the key factors
of metal-binding affinity. The aromatic ring of quinoline can be versatile and exhibit dif-
ferent affinities to the other metal-ligand binding. In the development of Zn2+ chelators,
N-containing ligands like quinoline have been developed and investigated [82].
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It is crucial to keep in mind that fluorescent groups with lone pairs of electrons like
nitrogen will be quenching the emission. However, the coordinate bond formed between
that lone pairs of electrons and metal ions like Zn2+ ion can prevent fluorescence from
quenching. Hence, those nitrogen-containing heterocyclic chromophores whose nitrogen
will form a chelate ring with metal ions will give a CHEF effect [71]. Upon excitation,
the electron donor from the chelator to the acceptor will permit intramolecular charge
transfer (ICT), preceded by a large Stokes’ shift [41]. This chemosensor design would be
valued as a wavelength-shifted fluorescence intensity enhancement that will amplify the
recognition event.

Compared to quinoline isomer TQEN, isoquinoline derivates of TQEN exhibited
strong fluorescence upon binding with Zn2+, and the isoquinoline (benzene ring position)
showed higher metal binding affinity [83]. Next, hybrids of (N, N-bis(2-quinolylmethyl)
ethylenediamine-N’, N’-diacetic acid (N, N-BQENDA) (Figure 4b), shows a 32-fold emis-
sion enhancement at 456 nm in buffer 4-(2-Hydroxyethyl)piperazine-1-ethane sulfonic acid,
HEPES (pH = 7.5). The substitution of carboxylate groups into two quinolines in TQEN
reduced the steric hindrance in forming metal ligands binding between Zn2+ and remaining
N-atoms of quinolines. Figure 4c showed, under the same condition, the emission of N,
N-BQENDA-Zn is more enhanced than the emission of TQEN-Zn. With the stronger metal
bonding affinity, the sensor has higher selectivity towards Zn2+ detection [84].

Another study using quinolines scaffold as zinc’s receptor was reported by Wang and
co-workers [85]. They develop a new small molecular organic compound with excellent
bonding affinity and high selectivity towards Zn2+ ions compared to other divalent metals.
They combined 8-hydroxy-2-methyl quinoline (Oxn) that had a building block for the CHEF
process to take place once binding with metals with potent chelators like di-2-picolylamine
(DPA) moiety at the 2-position (1) (Figure 5a). Then, further saponification is conducted
to get a carboxylic moiety for increasing the solubility of the compound in water. UV-Vis,
fluorescent, and NMR titrations indicated tight binding between the compound and Zn2+

ion. Figure 5b showed three isosbestic’s points at 245, 250, and 312 nm, suggesting forming
only one UV active zinc complex. Moreover, X-ray diffraction revealed zinc coordinated
with quinoline, carboxylic moiety, and two pyridyl moieties. Bond lengths of Zn-N are
reported, like the bond lengths of other Zn-DPA complexes [86–88].

Ligand 8-hydroxyquinoline (8-HQ), an established chromophore for zinc chelation,
became the starting material as three tripodal ligands for zinc detection in research studied
by Royzen and co-workers. All these three ligands were reported bound with Zn at a ratio of
one to one. Strong fluorescent emission for all ligands (λmax 1 = 526 nm, λmax 2 = 513 nm,
λmax 3 = 486 nm). Moreover, enhancement for ligands 2 and 3 showed 13.1 folds and
11.3 folds, respectively. X-ray crystallographic of these ligands indicated different molecular
geometries of Zn-complex formation might influence their spectroscopic interactions of
metal-ligands [89].

As TSQ had low solubility in water, several attempts had been made to overcome
those properties, including diverting to quinoline-based derivatives, introducing carboxylic
acid or ester to the extent of replacing methyl in benzene with a carboxylate group, and
adding hydroxyl group as mentioned above. Other research groups take the initiative
to covalently linked 6-deoxy-6-formyl-ß-cyclodextrin (CD) into an analog of TSQ, N-(8-
quinolyl)-p-aminobenzene -sulfonamide (HQAS) (Figure 5c). As we can see, Figure 5d,
there was two bands wavelength for excitation (285 nm and 362 nm) while the emission was
emitted at 507 nm. For both situations (with/out the existence of Zn), the peak appeared at
the same wavelength. The only difference just the intensities. The fluorescence intensity is
enhanced because the electron-process was forbidden as per binding, and the π-electron
conjugation system was involved in ICT from donor to acceptor [90]. This process will
lead from weak fluorescence to strong fluorescence. They reported slight interferences
of several metal ions ordinarily present in a physiological environment, such as Na+, K+,
Ca2+, Mg2+, Mn2+, Fe2+, and Co2+. However, this fluorescence sensor still satisfies Zn2+

fluorescence response in a wide range of pH, between pH 4 and 10.
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of other cations in an aqueous solution [4]. A notable 81-nm red-shift of fluorescence emis-
sion and enhancement on the fluorescence intensity at 489 nm upon titration between lig-
ands and Zn2+ solution (0–20 eq.). A distinct isoemission point at 427 nm was noticeable 
(Figure 6b).  

High yield of synthesized Py2 by the reaction of pyrene-1-carbaldehyde with quino-
line derivative (Figure 6c) was selective to Zn2+ ion in ethanol: water solution (95:5 v/v). 
Based on the Benesi-Hildebrand equation [91], the binding constant, Ka, of Py2 with Zn2+ 
was calculated to be 5.1 × 10−4 M−1 with a ratio of one metal-ligand. Moreover, the reversi-
bility of the sensor occurred over EDTA. Both enhancing (500 nm) and quenching (420 
nm) fluorescence response of Py2 (10 μM) upon addition of increasing Zn2+ (0–30 eq.) in 
ethanol-water solution (Figure 6d). Regarding interferences studied, no other transition 
metals interfered at all except for Cu2+[92].  

Figure 5. (a) Hexadentate of sodium 2-((2-((bis(pyridin-2-ylmethyl)amino)methyl)quinolin-8-yl)oxy)acetate (1) ligand-Zn;
(b) Absorbance upon binding 0–1 equivalent to Zn2+ (25 mM HEPES, 0.1 M NaClO4, pH 7.4, 25 ◦C). Inset: Focused
absorbance between 300 to 370 nm. (c) Covalently linked 6-deoxy-6-formyl-ß-cyclodextrin(CD) into an analog of TSQ,
N-(8-quinolyl)-p-aminobenzene -sulfonamide (HQAS)-Zn. (d) Excitation and emission without Zn2+ (blue), with Zn2+ (red)
at λex = 285 nm and 362 nm, λem = 507 nm.

The development of an aminoquinoline-based fluorophore for zinc sensors has been ex-
plored extensively. The combination of carboxamidoquinoline (2-hydroxy-3-hydroxymethyl)
-5-methylbenzaldehyde (Figure 6a) was found to improve water solubility. Simultaneously,
the sensor displayed remarkable selectivity for Zn2+ ions in the existence of other cations
in an aqueous solution [4]. A notable 81-nm red-shift of fluorescence emission and en-
hancement on the fluorescence intensity at 489 nm upon titration between ligands and
Zn2+ solution (0–20 eq.). A distinct isoemission point at 427 nm was noticeable (Figure 6b).

High yield of synthesized Py2 by the reaction of pyrene-1-carbaldehyde with quinoline
derivative (Figure 6c) was selective to Zn2+ ion in ethanol: water solution (95:5 v/v). Based
on the Benesi-Hildebrand equation [91], the binding constant, Ka, of Py2 with Zn2+ was
calculated to be 5.1× 10−4 M−1 with a ratio of one metal-ligand. Moreover, the reversibility
of the sensor occurred over EDTA. Both enhancing (500 nm) and quenching (420 nm)
fluorescence response of Py2 (10 µM) upon addition of increasing Zn2+ (0–30 eq.) in
ethanol-water solution (Figure 6d). Regarding interferences studied, no other transition
metals interfered at all except for Cu2+ [92].
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A series highly soluble of the carboxamidoquinoline-based fluorophore on the recog-
nition of Zn2+ ion in aqueous buffer was investigated (Figure 7) [93]. They reported the 
affinity’s influences of four different substituents and three various sites on the quinoline 
ring. As reported by Jiang and co-workers, chelation of Zn2+ ion with two N-atoms car-
boxamidoquinoline produces a five-membered ring due to conjugation increases, and the 
energy gap between HOMO-LUMO decreases [94]. The coordinated binding still the same 
as the parent compound similar. However, absorption and fluorescence response varied 
with a different substituent. These related to the substituent’s behavior, whether it en-
hanced or prevented the ICT of AQZ upon binding with increasing Zn2+. As the position 
of the same substituent, there is not so much difference in the fluorescence response be-
tween 2-position and 4-position. In contrast, 5-position showed no emission with or with-
out Zn2+ ion presence due to the carboxamide group [93].  

The carboxamide group is deprotonated after Zn2+ binding, and the 8-aminoquino-
line intramolecular hydrogen bond is broken to inhibit the electron-transfer process, 
which quenches the fluorescence of quinoline [95]. As reported, this carboxamidoquino-
line affords two coordination sites for Zn2+ ions to bind [96]. Aside from these two sites, 

Figure 6. (a) Formation of (E)-2-((2-hydroxy-3-(hydroxymethyl)-5-methylbenzylidene)amino) -N-(quinoline -8-yl)
acetamide-Zn at ratio 1:1. (b) Fluorescence spectra of L1 (10 mM) was titrated with Zn2+ (0–20 equiv) in buffer (CH3CN–
Tris-HCl buffer solution (50 mM Tris, 50:50, v/v, pH 7.2). (c) Structure of (E)-2-((pyren -1-yl methylene)amino)-N-(quinolin-
8-yl)acetamide (Py2). (d) Fluorescence spectra of 10 µM Py2 in aqueous solution (water-EtOH) in the presence of different
concentrations of Zn2+ (0–30 equiv), λex = 340 nm. Inset: Plots of fluorescence responses changes upon binding to different
concentration of Zn2+ at λem = 500 nm.

A series highly soluble of the carboxamidoquinoline-based fluorophore on the recog-
nition of Zn2+ ion in aqueous buffer was investigated (Figure 7) [93]. They reported the
affinity’s influences of four different substituents and three various sites on the quinoline
ring. As reported by Jiang and co-workers, chelation of Zn2+ ion with two N-atoms car-
boxamidoquinoline produces a five-membered ring due to conjugation increases, and the
energy gap between HOMO-LUMO decreases [94]. The coordinated binding still the same
as the parent compound similar. However, absorption and fluorescence response varied
with a different substituent. These related to the substituent’s behavior, whether it en-
hanced or prevented the ICT of AQZ upon binding with increasing Zn2+. As the position of
the same substituent, there is not so much difference in the fluorescence response between
2-position and 4-position. In contrast, 5-position showed no emission with or without Zn2+

ion presence due to the carboxamide group [93].
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Figure 7. The carboxamidoquinoline-based AQZ family.

The carboxamide group is deprotonated after Zn2+ binding, and the 8-aminoquinoline
intramolecular hydrogen bond is broken to inhibit the electron-transfer process, which
quenches the fluorescence of quinoline [95]. As reported, this carboxamidoquinoline affords
two coordination sites for Zn2+ ions to bind [96]. Aside from these two sites, introducing a
2-(2-hydroxyethoxy)-ethylamino group recorded an eight-fold rise in quantum fluorescence
yield and a red-shift of 75 nm in fluorescence emission when Zn2+ was bound in an aqueous
buffer solution.

A research study by Lee and co-workers demonstrated the binding complex formation
between Zn2+ and receptors are versatile. It depended on the receptor itself and the envi-
ronment of the binding. They proved three different receptors (QP, NA, QA) (Figure 8) gave
dissimilar coordination upon binding with Zn2+ even though all the receptors were almost
similar, which contained 8-carboxamidoquinoline and dipicolylamine (DPA). Generally,
Zn2+ favored nitrogen of quinoline and nitrogen or oxygen from the amide group and
nitrogen from DPA [97]. These results proved to add an amide group into 8-aminoquinoline
to improve chemosensor Zn(II). As mentioned before, aside from increasing the water
solubility and membrane permeability, the amide group also helps the sensor to be more
selective and efficient by growing the binding tendency.
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Subsequently, 8-carboxamidoquinoline derivatives started to get attention as fluo-
rophore to detect Zn2+ ion, especially in biological fields due to more reports related to
carboxamidoquinoline focused on introduction various receptor [98–101] and the use of
it [102,103] and nanoparticle functionalize onto carboxamidoquinoline [104–106]. Therefore,
a systematic search is needed to better understand the development of 8-carboxamidoquinoline
as receptors of the Zn(II) sensor with all due respect to enhanced sensitivity and selectivity
for future biological studies application. The interaction and coordination of Zn2+ with exist-
ing 8-carboxamidoquinoline derivatives differed, requiring many factors to be considered.
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5. 8-Amidoquinoline Derivatives as Zn Ions Recognition Probes and Their Properties

All the articles reviewed were cross-sectional studies with four sections—first, the
function of synthesized, second, titration analysis between probe and zinc ion (fluorescence
titration or UV-Vis titration or both), third, the selectivity of the probe sensor with other
competitive metal cations, and finally, the limit of detection and reliability of the assessment
according to the real sample applications. Most of the papers, starting with the synthe-
sizing 8-amidoquinoline derivatives, then proceed with solution works that are involved
titration of the compound with a zinc ion. They continued with certain optimization before
undergoes selectivity test with other transition metals such as cadmium (Cd2+), copper
(Cu2+), cobalt (Co2+), nickel (Ni2+), chromium (Cr3+), silver (Ag2+), ferum (Fe2+), lead
(Pb2+), and mercury (Hg2+). Latterly, they tested the sensor with real samples either from
biological or environmental samples that involved requirement detection of zinc as per
validation status. However, out of 13 articles, one research does not validate with real
sample(s), only three articles tested with water, one article tested with cabbage, and the
rest tested with biological samples (Table 2).

Table 2. The comparisons and assessments of collected studies that related to 8-amidoquinoline derivatives as fluorophore
of zinc chemosensor.

Articles Year University/Countries Probe Binding Mode
(Probe: Zn) Interferences Detection

Limits Real Sample

[42] 2018 Thailand 1 1:1 Ni2+, Cu2+,
Co2+ 160 × 10−8 M Cabbage

[73] 2012
The Chinese
University of

Hong Kong, China
QPA 1:1 Cd2+, Fe2+,

Cu2+ 13 × 10−8 M HK-1 cells

[96] 2012 Lanzhou
University, China L1 - Cd2+, Ni2+,

Cu2+, Hg2+ 100 × 10−8 M
Human
bladder
cancer

[97] 2013 Korea QP - Cu2+, Fe2+,
and Co2+ - -

[53] 2012 Lanzhou
University, China Probe 1 1:1 Hg2+, Cu2+,

Cr3+, Ag2+ 8.14 × 10−8 M HELA cells

[107] 2013 Lanzhou
University, China PMQA 2:1 Cd2+, Co2+,

Cu2+ 8.85 × 10−8 M HELA cells

[108] 2019 Shenzhen
University, China QLNPY - Cu2+ 3.8 × 10−8 M HepG2 cells

[109] 2014 Nanjing Normal
University, China QA 1: 1 Hg2+, Cu2+ 3.36 × 10−8 M

Intracellular
cells

[110] 2019 Xi’an Jiaotong
University, China Probe 1 1:1 Cr3+ 6.3 × 10−8 M Tapwater

[111] 2018 Zhoukou
University, China

AQZ-
2COOH - Cu2+ 10.2 × 10−8 M HeLa cells

[112] 2013 Xinxiang
University, China HAQT 1: 1 Ni2+, Cu2+ 25.6 × 10−8 M River water

[113] 2014 Jilin University,
China

CuInS2
QDs/8-

aminoquinoline
1:1 Pb2+, Hg2+ 445 × 10−8 M Tap water

[114] 2011 United States QTEPA-
SiNPs - Fe2+, Cu2+, 10 × 10−8 M Yeast cells

5.1. Binding Studies of 8-Amidoquinoline Probes via Solution Studies

Most of the researchers started and trying to develop sensors specifically for the detec-
tion of zinc intensively. Among various conventional probes for zinc (II) are derivatives
of zinquin [72], Zinbo-5 [73], Zinpyr [74], aminoquinoline [75] and coumarin families [76].
Meanwhile, 8-aminoquinoline and its derivatives [115] were among the first probes devel-
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oped for zinc (II) detection. They exhibited excellent stability, high affinity to metal ions,
and good membrane permeability [41]. However, this zinc (II) chemosensor developed
had suffered to differentiate between zinc ion and other competitive cation metals, such as
Cd2+, Cu2+, Co2+, Ni2+, Hg2+, and its 3d10 electronic configurations [44,111].

An ideal chemosensor contains a receptor with the most robust affinity binding
towards Zn2+ ion without interferences (signal-selectivity) of other heavy metals. It has
a broad linear responsive range that is highly explored. By inserting a functional group
of amide into a conjugated molecule of 8-aminoquinoline, Zn2+ ion (borderline acid) is
coordinated favorably with aromatic nitrogen atoms (borderline bases), N-amide, and
O-amide. Based on this HSAB theory, some researchers [116,117], including us thinking of
adding some more nitrogen and oxygen atoms into the 8-aminoquinoline molecule. We
believed it could increase the binding affinity towards Zn(II) ion so that it will help to null
out the competitive metals that have the same electronic configuration, 3d10.

In determining the binding studies between receptor 8-amidoquinoline compounds,
all the papers reviewed were reported on characterization spectroscopy, fluorescence
titration, and UV-Vis titration [42,112,118]. They seek binding mode via job plot method
and binding constant (Kd) or association constant (Ka). However, not all papers were
recorded for job plot data. The binding modes were summarized in Table 2. Out of
13 papers, six of them do not conduct the job plot analysis. The left articles stated binding
mode between probes and zinc ion was one to one ratio except for research studied by
Zhang and co-workers [107], with a ratio of 2:1.

Other than fluorescence and UV-Vis titration, some researchers reported on NMR
titration and X-ray crystallography as methods for binding studies between the ligands
and Zn2+ ion. Both of these studies could help in proposing and determining the binding
modes of coordination of metal complexes. As in 8-amidoquinoline derivatives reported,
which atom(s) or position(s) had interaction (directly or indirectly) upon binding with
Zn2+ ion. Therefore, these methods also crucial in metal-ligand binding characterization
methods as fluorescence and UV-Vis titration. The combination of fluorescence and UV-
Vis titration (gave information on the changes in absorption, emission, and wavelength,
provide binding constant and binding ratio) and NMR titration and X-ray crystallography
(supported in understanding on how and where they bind) necessitating to get a better
experience in determining the interaction between receptors and analytes.

Molecules containing bonding and non-bonding electrons (n-electrons) can absorb
energy in the form of ultraviolet or visible light to excite these electrons to higher anti-
bonding molecular orbitals [119]. The more quickly the electrons are excited (i.e., the lower
the energy difference between HOMO and LUMO), the longer the light wavelength they
can absorb. This is the basic principle of UV-Vis spectroscopy, and it is also applied to
the UV-Vis titration method for host-guest complexations [120]. The titration method of
UV absorbance has the advantages of quick determination and effortless efficiency. It is
likely to become the latest approach to studying interactions between ligands and trace
metal ions [121]. Much information could gain from this UV-Vis titration method, such as
molar absorptivity or extinction coefficient, changes of absorption (increase or decrease),
binding constant, constant rate, job’s plot result (binding ratio), and isobestic’s point in
kinetic measurement [122].

As fluorescence titration, the purposes are just as same as UV-Vis titration, except
it reads the solution’s emission when comparing. Therefore, fluorescence titration could
obtain binding interaction of ionophore towards metal [123]. As mentioned by Tamayo
and co-workers, spectrophotometric and spectrofluorimetric titration was prepared by the
same methods [124]. The stock solutions of ligand and metal were prepared separately by
diluting the same concentration. The ligands and metal titration were done by adding the
metal ions before proceeded with absorbances and emission reading.

NMR provides specific abilities to characterize ligand molecules that bind enough
to be rapidly exchanged between attached and independent state binding modes [125].
Within spectroscopy, NMR spectroscopy plays a vital role in many areas of chemistry and
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related sciences. The reason for this is that the spectra can be very easily interpreted. In
theory, the number of peaks in that spectra could analyze the number of atoms present
in the solution. Sometimes, the position of those atoms can be predicted by running a
variety of NMR methods. Other than that, NMR also plays a dominant role in studying
complex coordination [126]. As we can see, many researchers reported on NMR binding
studies of metal-ligands by analyzing the chemical Shift’s change of the presented peaks in
ligand upon binding with increasing metal. They proposed that the interaction happened
at the peaks that shifted more downfield or upfield once the proportion of the metal
increased [42,97,110,111].

As in 1H NMR titration of the ligand’s stock solution with various of the equivalent
of stock solution of Zn2+ ion (0–1.0 eq.), NMR spectra showed NH proton at 11.34 ppm
gradually absent upon increase the equivalent of Zn2+ ions. Another noticeable change, a
new peak of OH, appeared at 10.01 ppm as pile up the volume of Zn2+. They suggested that
the ligand (Probe 1) probably coordinated with the Zn2+ ion in the imidic acid form resulted
from tautomerization in acetonitrile. The benefit of Probe 1 (Figure 9) was demonstrated
with good selectivity to differentiate between Zn2+ and Cd2+ through two tautomers, amide
and imidic acid [53]. The resonance of amide that was inserted into 8-aminoquinoline
offered different binding modes and coordination complex. Therefore, the fluorescence
response signal varied according to the introduced metal or Zn2+. In Song and co-worker’s
case, other cations could have different binding behavior. Aside from that, the solvent also
significantly affected the fluorescence response where Zn2+ in water, THF, DMSO, ethanol,
and Cd2+ only in CH3CN [110].
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Research by Boonkitpatarakul and co-workers also focused on distinguished between
Zn2+ and Cd2+ by using Compound 1 (Figure 9) that contained amidic acid. Deprotonation
of amidic proton of Compound 1 upon binding with Zn2+ resulted in a large bathochromic
shift of UV-Vis absorption from 300 nm to 344 nm. This indicated greater electron delocal-
ization. Zn-Compound 1 binding gave a substantial fluorescent enhancement and shifted
from 420 nm and 504 nm. The binding involved strong CHEF, PET of the quinoline’s amino
group, and excited-state intramolecular proton transfer (ESIPT) from the amidic proton to
N atom of quinoline. The coordination geometry of the Zn2+ complex was distorted square
pyramidal by three chelating nitrogen from one ligand, one oxygen from another ligand,
and one more oxygen of NO3− anion [42].

Proton chemical shift changes on methylene of DPA and amide N verified Zn2+

ions bound to QP (Figure 9) by coordinating with carbonyl oxygen (C=O). The peak of
methylene protons of DPA split into doublets and more deshielded upon addition of Zn2+

ion equivalent. These methods were tried in various solvents like methanol, acetonitrile,
DMSO, and acetonitrile/water mixture. The result was different since the N-H proton
moves towards the downfield in DMSO while vice versa when in acetonitrile. However,
once over two equivalent of Zn2+ proton of amide (N-H) shifted upfield. Therefore, the
binding position suggested taking place was carbonyl O since the proton changes recorded
at neighbour proton (methylene DPA and N-H amide) [97].

1H NMR titrations in CD3CN suggesting three N atoms of amino groups of QLNYP
(Figure 9) were coordinate with Zn2+ ions since the chemical Shift of secondary amine’s
proton were shifted and gradually missing by increasing Zn2+ ion equivalent up to 2.0 eq.
In the meantime, protons of quinoline, pyridine, and methylene group showed downshift.
The peak changes in the position of -CH2 deduced the neighbour of the methylene group
might be the one that coordinated with Zn2+ ions [108]. This suggestion is like a deduction
of proton chemical shift changes on DPA from research done by [97].

Given the advantage of fully water-soluble AQZ-2COOH (Figure 9) due to carboxyl
groups’ insertion, make it a promising receptor for testing Zn2+ in aqueous solution [111].
Crystallography result of binding between Zn2+ and AQZ-2COOH confirmed Zn2+ formed
five-coordinated with three N atoms of pyridine, amide, and amine and another two O
atoms of carboxyl groups. These five-membered chelation rings made the Zn-complex
more stable. The strong and red-shift of UV-Vis absorption explained the deprotonation of
amide moiety, reducing the HOMO-LUMO energy gap and the electron transfer reaction
of heterocyclic ligand-metal [111].

Fluorescence enhancement of HAQT (Figure 9) increased proportionally with the
increasing zinc concentration up to 10 µM by five-fold at 488 nm, and further addition
did not record any further enhancement. Zn2+ was proved coordinated with the HAQT
via infrared spectroscopy. It noted the disappearance of OH group at 3419 cm−1, amide
carbonyl absorption slightly shifted to 1656 cm−1, and significant difference of N atom
of pyridine group at 1300 cm−1 and 755 cm−1 characteristic hydroxyls [42]. Thus, the
plausible reaction between HAQT-Zn involved the deprotonation process that increases
electron-donating from N atom of 8-amino to quinoline ring and ICT process that transfers
an electron from N atom of the pyridyl group to the metal ion.

Deprotonation and ICT process of L1-Zn (Figure 9) also like the plausible interaction of
HAQT-Zn. Fluorescence intensity remarkably shifted from 408 to 489 nm with a quantum
yield of 0.138. As in, the isoemissive point was observed at 427 nm. L1 exhibited weak
fluorescence, while the coordination of L1 as a ligand to metal gave strong fluorescence [75].
Slightly different from the QPA receptor, other than the transferred electron of N-atom from
quinoline, it is also involved in breaking an intramolecular hydrogen bond. The chelation
ring formed is more firmed and rigid. Therefore, the fluorescence emission spectrum
showed a new emission at 500 nm with a 106-fold rise [73].

Surprisingly, the crystal structure of PMQA-Zn shown uncommon evidence of binding
between 8-aminoquinoline and Zn2+. Neither N atom of 8-aminoquinoline was bound to
zinc even though PMQA (Figure 9) formed a hexadentate chelate ring with Zn2+. Those N
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atoms are critically coordinated to Cu2+ perfectly. PMQA-Cu complexes are more stable
than PMQA-Zn because ligands containing nitrogen ligands usually have a higher affinity
with Zn2+, Cd2+, and Cu2+. Even though the fluorescence emission quenching when
introduced to Cu2+, this PMQA also provides information for elucidating zinc probes to
prevent Cu2+ interferences [107].

A novel and simple turn-on fluorescent were developed by embedded modified 8-
amiquinoline (Figure 9) and on the surface of semiconductor nanocrystal quantum dots
(QDs), QDs-carboxylic groups. Covalent bonds linked the carboxylic groups of CuInS2
QDs and 8-aminoquinoline at NH2 groups to form the CuInS2 QDs/8-aminoquinoline con-
jugate. Next, upon introducing of Zn2+ ions into CuInS2 QDs/8- aminoquinoline conjugate
system, the lone pair of electrons of N atoms makes the hole-transfer mechanism inhibit
and enhanced the fluorescent of CuInS2 QDs/8- aminoquinoline [113]. Therefore, the fluo-
rescence intensity of CuInS2 QDs/8- aminoquinoline conjugate in the total concentrations
of Zn(II) was enhanced with the addition of Zn2+ ions.

The ligand added for 8-carboxamidoquinoline consisted of either nitrogen, oxygen,
and/or sulfur due to existing of lone pairs of electrons for each atom (Figure 9). These
three atoms may react as electron-donating during the coordination binding with Zn2+.
However, Zn2+ does not behave reliably either as a soft or as a hard Lewis acid. It poses a
borderline case with no particular fondness for oxygen, nitrogen, or sulfur-donor ligands
to be coordinated. The results of the concluded binding coordination sites to form com-
plexes were different. Roughly, we reviewed all of them as there were no fixed preferences
and they differ based on derivative, atoms presenting, molecular geometry, medium, and
environment. Therefore, the results might contradict. Nevertheless, the importance of de-
velopment in sensing Zn2+ was successful since the different enhancement for fluorescence
upon binding with Zn2+ was recognized.

5.2. Detection Limits for Zn2+ Ions and Possible Interferences

In analytical chemistry, the detection limit or, in other terms, is the limit of detection
(LOD), defined as the lowest concentration of target substance reliably distinguished
from the blank [127–129]. As we mentioned earlier, the purpose of this systematic review
was to summarize the research design and outcomes of the recognition of zinc ions by 8-
amidoquinoline. Herein, the lowest concentration of analyte zinc ion detected was reported.
Based on our review, the LOD range of the included articles was between 3.36 × 10−8 M to
445 × 10−8 M. Therefore, the detection limit of 8-amidoquinoline-based zinc chemosensor
was in nanomolar proven these derivatives are highly sensitive to recognized Zn(II) ion.

There are potential interferences of transition metals, especially metals that belong
to the same group (Group 12) or same period (Period 4) as Zn(II) ion in the periodic
table. They showed almost similar characteristics to Zn(II), 3d10 configuration. Therefore,
Zn(II) detection had suffered from the cross-interference of Cd2+, Cu2+, Co2+, Ni2+, and
Hg2+ [130–132]. Based on [71], when the chelation of a metal-ligand complex coordinated
from a five-membered to a six-membered ring, ligands usually selective for the smaller
metal ions compared to the larger metal ions. For example, TQA ligands are more selective
to metal Zn2+ (smaller radius) than Cd2+ (larger radius). In this research, they demonstrated
the selectivity of the ligand to the metal ion radius. They concluded, good metal-ligand
binding depends on two factors that are the size of metals ion and the size of chelate rings.

Thus, all the included articles performed a screening and analysis of 8-amidoquinoline
derivatives on the study of the interference of the other heavy metals towards zinc
detection—evaluations between those studies on the interference of the transition metals
are documented in Table 2. All of the studies recorded interference. Trace metals like Cd2+,
Cu2+, Co2+, Ni2+, Hg2+, Fe2+, Pb2+, and Cr3+ interfered in the detection of zinc using 8-
amidoquinoline derivatives. The only difference in those studies is the interference metals
and the metal ratio to zinc used. Nevertheless, certain studies [53,72,96,109,110,112,113,133]
demonstrated that the sensing probe could be used in a real sample due to the metals
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involved not present or least in biological applications. These exhibited 8-amidoquinoline
derivatives are selective to zinc detection due to minor interferences issues.

5.3. The Reliability of Zn Fluorophores for Zn Ion Determinations

As per the development of any analytical methods like fluorescence sensor, it will
require some validation assessments and testing with real samples to ensure consistency,
accuracy, and applicability. By definition, validation is to verify that the analytical method
is appropriate for its intended purpose. The analyte can be tested correctly, clearly, and
precisely over the specified range [134]. After the sensor’s optimization, performances
of the sensors that comprise among these parameters (calibration curve, linear range,
detection limits, selectivity, specificity, repeatability, reproducibility, reversibility, stability,
analysis time, response time, and others) needed to be done as validation [135]. As for the
chosen papers, validation for specific parameters was done after each optimization step.
They also test the fabricated sensor with a real sample that has been selected, as mentioned
before, in Table 2. As the detection of Zn2+ ions is crucial for biological purposes, eight of
13 articles were tested with biological samples involving cells. The remaining papers were
tested with river or tap water and cabbage.

5.4. Possible Mechanisms and Interactions Involved 8-Amidoquinoline Derivatives upon Binding
with Zn2+

Fluorescence occurs when a substance can absorb energy from photons and emit the
energy as fluorescence by internal conversion mechanisms and losing the energy from an
excited state to ground state level. It is indicated for better visualization and explanation
on a simplified Jablonski diagram (Figure 10a). The diagram showed the increasing energy
level from the ground state (S0) to the excited state (S1) and an excited singlet state (S2). The
excitation from S0 to S1 or S2 depends on the photons’ energy given during the excitation
and absorption process. The energy absorbed will then undergo vibrational relaxation by
dissipating energy into the surrounding medium before released to S0. The losing energy
involved the transition of higher to lower electrical energy and lower to higher vibrational
energy. These changes made the substance fluoresce [136,137]. From Jabslonki’s diagram,
we can say that the longer the wavelength, the lower the energy, and vice versa.

Stokes shift is a difference between absorbance maximum and emission maximum.
The calculation of this may present in wavelength or wavenumber (Figure 10b). In some
instances, it is essential in determining the value of the Stokes shift, especially in the
biological application. The smaller distance between excitation and emission wavelength
can hardly distinguish the wavelength, and the spectral will significantly overlap. As we
can see in Figure 10c, the table showed the difference between the two wavelengths were
in the range of 65–204. It is considered wide Stokes shift for all the probes, and therefore,
they were suitable in testing the bio-real samples.

Those are the basic principle of interactions in fluorescence spectroscopy. Next, the
photophysical mechanisms for the fluorescent probe of 8-amidoquinoline for Zn2+ ions
involve CHEF, ICT, PET, ESIPT, and FRET signals. Among the chosen articles, some
probes used multi-signal mechanisms, and others using conventional mechanisms (only
one). It should be noted that a combination of two or more mechanisms sensors produces
much better results. Figure 10c shows that the largest Stokess shift was Compound 1 by
Boonkitpatarakul and co-workers [42]. The more significant difference may be due to the
(1) strong CHEF signal upon binding with Zn2+, (2) PET process of N-atoms from amino
group to the fluorophore, (3) ESIPT mechanism of H-amidic to N-quinoline, and ICT of the
complex Zn-1 (Figure 11).
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Figure 11. Possible mechanisms and interactions involved 8-amidoquinoline derivatives upon binding with Zn2+.

As for QA-Zn, we believed the FRET mechanism occurred. It was between fluorophore
anthracene and fluorophore quinoline due to the spectral of anthracene (emission) was
overlapped with quinoline (excitation) [109]. In this case, anthracene became a donor while
quinoline became an acceptor. Figure 11, probes L1, AQZ-2COOH, and HAQT showed dual
signal mechanisms, CHEF and ICT [96,111,112]. Upon binding with Zn2+, intramolecular
hydrogen bonding of 8-amino broken. It leads to the intramolecular transfer of electrons of
N-atom of the amide to quinoline (CHEF). Other than that, ICT mechanisms were involved
between N-quinoline to Zn. These will enhance the intensity of the fluorescence. The
mechanisms involved between 8-amidoquinoline derivatives upon binding with Zn almost
have the same signals and more than one signal.
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5.5. Another Recent Studies Related to 8-Amidoquinoline Derivatives as Fluorophores for
Zinc’s Detection

Zn2+ sensors based on fundamental carboxamidoquinoline have rapidly developed
because of simple synthesis, binding ratio, and ratio detection. Zebin and co-workers
linked functional magnetic core-shell fibrous silica material (AQ-Fe3O4@SiO2@KCC-1)
and amidoquinoline group with piperazine to get high selectivity and enhanced the flu-
orescence intensity in aqueous solution [138]. As for combination of diarylethene based
sensors with carboxamidoquinoline unit were reported by three groups, (1) Diarylethene-
based sensor with a carboxamidoquinoline unit (linker-piperazine) that can differentiate
Zn2+ and Cu2+ [46], (2) Consist of diarylethene with a benzyl-linked 8-aminoquinoline-2
-aminomethyl pyridine reported naked eye Zn fluorescent chemosensor [139], (3) Ratiomet-
ric and reversible of fluorescence Zn sensor based on diarylethene and carboxamidoquino-
line unit [140].

Hydrogen bonds are readily formed by the nitrogen center in quinolines, rendering
those derivatives weak in fluorescent intensity in protic polar solvents. However, as
mentioned above, the coordination between NH-amide and Zn would induce ICT and
ESIPT mechanisms and inhibit the PET process resulting in enhanced fluorescence intensity
(CHEF). Other than that, a metal complex coordination in the presence of an amide-
containing ligand along with a carboxylate ligand will boost the self-assembly required
for an emission induced by aggregation. This mechanism is also known as aggregation-
induced emission (AIE) [141].

Simple chemosensor 1 (2-(N-(2-hydroxyethyl)-N-((pyridin-2-yl) methyl)amino)-N-
(quinoline-8 -yl) acetamide) (Figure 12a) consists of both the binding site and the water-
soluble functional group of quinoline as fluorophore and 2-((pyridin-2-yl)methylamino)
ethanol. The probe showed changes from weak fluorescence to strong fluorescence upon
binding with Zn2+ (Figure 12a,b). In Figure 12c, we can see that other than Zn2+, Cd2+ also
showed the enhancement of fluorescence intensity at wavelength 500 nm. However, both
intensities could be compared. Therefore, this chemosensor demonstrated its potential
in monitoring Zn2+ in human dermal fibroblasts. We could see that the fluorescence
imaging of the cells with 1 at different concentrations of Zn2+ was significantly enhanced
(Figure 12d–f) [142].

A novel fluorescent sensor of AQTF1-Zn (Figure 13a) made up of N-(quinolin-8-yl)
tetrahydrofuran-2- carboxamide moiety demonstrated color changes under a UV lamp
long-wavelength. The color was enhanced upon adding the Zn. Therefore, the fluorescence
intensity of AQTF1 lower compared to AQTF1-Zn (Figure 13b). The probe was tested
at fluorescence emission at 511nm in solvent DMSO-water at pH 7.4, 1:1. This condition
makes this sensor suitable for the Zn testing cell imaging in vivo. Du and co-workers also
stated this sensor produced high selectivity to Zn2+ ions without interference from Cd2+

ions. [143].
Followed by AQTF1-Zn as a type of fluorescent chemosensor for the relay recog-

nition of Zn2+ and H2PO4
−, Kumar and co-workers explored “Off-On-Off” fluorescent

chemosensor based on the receptor 2-(diethylamino)-N-(quinolin-8-yl) acetamide (L) for
the same relay’s detection (Figure 14a) [144]. Zn2+ ions and phosphate are two necessary
biomolecular involved in DNA and RNA, pharmaceutical drugs, and therapeutic [145].
Other than that, excessive H2PO4

− in the environment will cause algal growth that will
lead to decomposition and reduce the dissolved oxygen levels and lower the water qual-
ity [146]. Upon interaction with Zn2+, three N-atom formed complexation with Zn2+, led to
PET’s inhibition, and promoted ICT and CHEF. Therefore, the color intensity was changed
from blue to cyan under visible fluorescence change by the naked eye (Figure 14a,b). The
metal complex may then turn off fluorescent upon binding with H2PO4

− (visible under
UV light–colourless) (Figure 14c).
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Vongnam and co-workers proved that emissions’ impacts depended on the structure;
even the structure consisting of 8-amidoquinoline and salicylaldimine moieties, slightly
different in structure, will produce different results (Figure 15a). These salicylaldimine
group 1) lowered the fluorescence intensity by isomerization of C=N and PET, 2) Formed
pentacoordinate complex with Zn2+ via chelation. The range of detection limits for the
four sensors was recorded from 0.024 to 0.431 mM, and among the four sensors, only
sensor 1 could be fabricated as a paper-strip fluorescent chemosensor. Sensor 1 showed
changes in intensity upon binding with Al3+ ions (Figure 15a). However, the emission was
at different wavelength (Al3+ = 439 nm, Zn2+ = 550 nm). Figure 15b) displayed fluorescence
enhancement ratios of sensors 1–4 in 9 EtOH: 1 H2O in the presence of different metal ions,
respectively [147].

5.6. Limitations of and the Future of Quinoline and Derivatives Fluorophore for Zn Ion Analysis

This review has made an effort to systematically analyze the existing literature on
the 8-amidoquinoline derivatives as fluorophore in detecting Zn2+ ions (2010–Jan 2020).
As a result, 13 articles were analyzed and discussed in this review. The developing and
synthesizing of highly sensitive fluorescent probes for zinc recognition, especially in the
biological field, is expected to be ongoing. Based on the recent exploration on the 8-
amidoquinoline to improve cell permeability and HSAB theory’s rule, we believed N-atom
and O-atom in 8-amidoquinoline derivatives could be an excellent probe in detecting Zn.
The identification of 8-amidoquinoline derivatives conducted for decades may help to
elucidate and plan future studies. According to HSAB theory’s rule, as borderline acid, zinc
will be preferred to bind to borderline bases like aniline, pyridine, N3−, Br−, NO2−, SO3

2−,
N2. As in Figure 9, at least one of these borderline bases is added to the 8-amidoquinoline
combination structure.

We summarized that fluorescent chemosensors of Zn2+ based on 8-amidoquinoline
succeed in improved water solubility and membrane permeability as most of the applica-
tions were tested with biological samples. Nevertheless, some of these sensors showed that
Zn2+ could be distinguished with Cd2+, the most competitive metal ions, since it is in the
same group as Zn2+. Development of these sensors also provides visibility by naked-eye
on color changes before and after binding with Zn2+ under long-wavelength (365 nm).
The apparent color changes would help in determining the presence of Zn2+ ions without
using the instrument. It also could be used as preliminary results before proceeding to the
next steps.
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However, some limitations still exist for these compounds as Zn fluorophores. All of
the fluorophores suffered some interferences, especially in higher concentrations of the
interfering ions. Thus, some of the binding mechanisms were not as expected, probably
attributed to the ligand and steric hindrance position in forming five chelation with zinc.
Some studies showed the most affected on the fluorophore changes were environments
like the type of solvent and environment of the target ions. These fluorescent probes may
be explored more by changing the chemical structure. We can also confirm from this
analysis that it does not mean that a probe with a rich borderline base will offer the best
zinc detection performance.



Sensors 2021, 21, 311 24 of 29

6. Conclusions

Fluorescence is best known for its high sensitivity, repeatability, low detection lim-
its, simplicity, and potential to allow real-time monitoring due to their quick response
times. These characteristics made fluorescence sensing of metal ions one of the most
potent detection tools to be explored. In this review, we covered tremendous interest in
8-amidoquinoline as Zn2+ probes in fluorescent sensor design reported in the last few years,
and the output of their research was discussed. Zinc sensors were involved via various
binding modes and different fluorescence response mechanisms based on the system and
experimental conditions such as the type of metal salt used, type of pH, type of buffer,
and solvent used, and the analyte’s concentrations. However, all the selected sensors were
stilled, allowing the selective detection of Zn2+ ions in various environmental or/and
biological samples. Most of the receptors use nitrogen as the binding site as it is favorable
and form relatively simple geometries with Zn2+. Based on this review, there is still much
to improve regarding the derivative of 8-amidoquinoline as a receptor, such as fast response
and bio-compatibility, especially for biological applications. Further studies are suggested
for a better understanding of the diversity of the coordination complexes and geometries.
This review could help to elucidate, design, and explore new 8-amidoquinoline derivatives
for future chemosensor applications that are more selective and sensitive to zinc ions.
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