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INTRODUCTION 
 

Breast cancer is the most frequently diagnosed 

malignancy and one of the leading causes of cancer-

related mortality among women. It is estimated that in 

2020 breast cancer will account for ~30% of all new 

female cancer diagnoses, and for ~15% of all female 

cancer deaths [1]. Patient survival is still threatened by 

resistance to treatment, relapse and metastasis, despite 

advances in multidimensional treatment including 

surgery, chemotherapy and targeted therapy. Breast 

cancer is a heterogeneous disease that can be differently 

subtyped based on disparate classifications [2–4]. 

Identification of specific biomarkers of breast cancer 

can help to predict and monitor disease progression, and 

to reduce aggressive cases through early intervention. 

 

The interplay between tumors and host immunity  

plays a critical role in breast cancer biology [5]. 

Immunoediting has emerged as a relevant hallmark of 

cancer, which enables tumor cells to escape from 

immune attack by concealing their surface antigens or 

switching off functions of immune cell effectors [6, 7]. 

Cancer immunoediting can be described by three phases 

termed elimination, equilibrium, and escape [8]. In the 

elimination phase, tumor cells are recognized and killed 

by innate immune cells. If tumor cells evolve and 

reduce their immunogenicity, resistance will be 
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ABSTRACT 
 

Breast cancer is one of the most lethal malignancies among women, and understanding the effects of host 
immunity on disease progression offers the potential to improve immunotherapies against it. Here, we 
constructed an immunity-related gene (IRG)-based prognostic signature to stratify breast cancer patients and 
predict their survival. We identified differentially-expressed genes by analyzing the breast cancer transcriptome 
data from The Cancer Genome Atlas. Univariate Cox regression revealed 179 survival-correlated IRGs, 12 of 
which we used to construct an immunity-based prognostic signature that stratified breast cancer patients into 
high- and low-risk groups. The signature was an independent predictor for survival and was validated in an 
independent dataset. We also investigated the correlations between our prognostic signature and immune 
infiltrates and found that signature-derived risk scores correlated negatively with infiltration of B cells, CD4+ T 
cells, CD8+ T cells, neutrophils and dendritic cells. Our results show that the proposed prognostic signature 
reflects the tumor immune microenvironment, which makes it a potential indicator for survival that warrants 
further research to assess its clinical utility. 
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acquired as a result, which means they can survive host 

immune responses and equilibrium is reached. During 

the escape phase, nascent cancer cells can't be 

eradicated by immune cells, giving rise to rapid 

progression [8]. Hence, breast cancer progression is 

subject to the activity of the immune system, which 

varies among individuals. A recent study showed that 

based on immune activity, basal-like triple-negative 

breast cancer (TNBC) can be subclassified into 

immunosuppressed and immune-activated subtypes 

with distinct prognoses [3], suggesting a potential 

immunological gene-based signature in breast cancer 

that may be exploited for prognostic benefit. 

 

Recent studies have improved our understanding of the 

mechanisms underlying carcinogenesis and have 

propelled the development of anti-cancer drugs, such as 

cancer vaccines [9–11]. Genome-wide profiling has 

helped to gain insights into disease progression and is 

an efficient way to deepen our understanding of cancer 

biology [12–16]. In this study, our aim was to identify 

high-risk breast cancer patients based on a prognostic 

signature of immunity-related genes (IRGs), which we 

constructed by integrating transcriptomic data with 

clinical information to screen for survival-associated 

IRGs. We also investigated potential regulatory 

mechanisms by analyzing associated transcription 

factors and validated the reliability of the IRGs-based 

prognostic signature in an independent cohort. Lastly, to 

investigate if the signature could reflect the immune 

microenvironment of breast cancer, we analyzed the 

correlations between risk scores derived from the IRGs-

based signature and immune cell infiltration. 

 

RESULTS 
 

Identification and functional annotation of 

differentially-expressed IRGs 

 

We retrospectively analyzed the TCGA breast cancer 

dataset, which included 1104 tumor samples and 113 

normal adjacent samples, to identify differentially-

expressed genes. A total of 2459 genes were identified 

as differentially expressed, with 1231 being upregulated 

and 1228 downregulated (Figure 1A, 1B). Since host 

immunity contributes to determining neoplasm destiny, 

here we focused on immunity-related genes. From these 

differentially-expressed genes, we extracted IRGs and 

obtained 69 upregulated and 110 downregulated IRGs 

(Figure 1C, 1D), which are listed in Supplementary 

Table 1. To gain insight into the biological roles of the 

179 differentially-expressed IRGs, we performed GO 

and KEGG pathway enrichment analysis, which 

identified 64 relevant GO terms and five relevant 

KEGG pathways (Supplementary Table 2). As 

expected, GO analysis indicated that major terms 

enriched in the biological process category were signal 

transduction, inflammatory response and immune 

response. The most enriched cellular component terms 

were “extracellular region” and “extracellular space”. 

For the molecular function category, the primary 

enriched terms were growth factor activity, cytokine 

activity and chemokine activity (Figure 2A). KEGG 

pathway analysis revealed that the differentially-

expressed IRGs were involved in cytokine-cytokine 

receptor interactions, chemokine signaling, and 

neuroactive ligand-receptor interactions (Figure 2B). 

 

Screening of survival-associated IRGs 

 

We next asked whether and which of the 

aforementioned 179 differentially-expressed IRGs could 

aid in disease management in breast cancer patients. 

Univariate Cox analyses revealed that 19 IRGs were 

associated with overall survival. Most of the 19 

survival-associated IRGs were protective factors, as 

indicated by their hazard ratios (Figure 3). 

 

Transcription factors involved in regulation of 

survival-associated IRGs 

 

Dynamic alterations in the expression level of 

transcription factors can affect immune cell fates and 

tumor development and progression [17–19]. To 

investigate potential regulatory mechanisms of the 

survival-associated IRGs, we extracted candidate 

transcription factors from all differentially-expressed 

genes to analyze the associations in gene expression 

between transcription factors and survival-associated 

IRGs. Of the 36 differentially-expressed transcription 

factors we identified (Figure 4A), E2F1 and MYBL2 

were negatively associated with LIFR expression, while 

CBX2, ELF5, FOXM1, MYBL2, MYH11 and TP63 

were in positive associations with at least one of the 

survival-associated IRGs. Figure 4B shows a 

modulatory network illustrating the regulation between 

the above seven transcription factors and survival-

associated IRGs. 

 

Construction of the immunity-related prognostic 

model 

 

The 19 survival-associated IRGs were subject to further 

analysis in order to construct an immunity gene-based 

prognostic signature. According to results of 

multivariate Cox regression analysis, 12 hub IRGs were 

eligible and we used them to construct a prognostic 

signature, which we in turn used to derive a risk score 

for each patient. This risk score was the sum of products 

of the expression value and the regression coefficient of 

each gene, per the following formula: risk score = 

(0.2699 * expression level of ULBP2) + (0.1645 * 
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expression level of FABP6) + [(-0.1348) * expression 

level of FABP7] + (0.1831 * expression level of 

LALBA) + (0.2911 * expression level of IGHE) + [(-

0.3570) * expression level of NRG1] + (0.1907 * 

expression level of SCG2) + [(-0.8889) * expression 

level of TSLP] + [(-0.2905) * expression level of 

ADRB1] + (0.1408 * expression level of NPR3) + [(-

0.1646) * expression level of TNFRSF18] + [(-0.6666) 

* expression level of TNFRSF8]. As expected, we could 

see in the formula that risky genes with a hazard ratio > 

1 had a positive coefficient, while genes with a hazard 

ratio < 1 had a negative coefficient (Figure 3). With the 

median risk score as the cutoff value, all breast cancer 

patients were assigned to either a high-risk or a low-risk 

group (Figure 5A). Figure 5B, 5C show an overview of 

the overall survival and hub IRG expression of these 

groups. Patients in the high risk group had poorer 

overall survival compared with that of the low risk 

group (Figure 5D). Receiver operating characteristic 

(ROC) curve analysis suggested good sensitivity and 

specificity of the prognostic model (Figure 5E). We 

next validated the 12 hub IRGs-based prognostic model 

in an independent breast cancer cohort, for which we 

calculated patient risk scores to group the patients into 

low- and high-risk groups using the median risk score 

as a cutoff. In line with the survival analysis result of 

the TCGA BRCA cohort, patients with a higher risk 

score showed poorer overall survival than those with a 

lower risk score (Figure 5F). These data collectively 

revealed that the 12 hub IRGs-based prognostic model 

might be useful in evaluating the risk degree of a breast 

cancer patient while predicting overall survival time. 

 

 
 

Figure 1. Identification of differentially-expressed immunity-related genes in breast cancer. (A) Heatmap and (B) volcano plot 
showing differentially-expressed genes between breast and non-malignant tissues. (C) Heatmap and (D) volcano plot of differentially-
expressed immunity-related genes in breast cancer. 
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Figure 2. Functional annotation of differentially expressed immunity-related genes. (A) Enriched Gene Ontology terms including 

biological process (dots), cellular component (triangles) and molecular function (squares). (B) Enriched KEGG pathways. 
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Figure 3. Screening of differentially expressed immunity-related genes correlated with overall survival in breast cancer. The 

forest plot shows hazard ratios of each gene. 
 

 
 

Figure 4. Regulatory network of survival-associated immunity-related genes based on differentially-expressed transcription 
factors. (A) Highlight of up- and down-regulated transcription factors in breast cancer. (B) The regulatory network between transcription 

factors and prognostic immunity-related genes. Survival-associated immunity-related genes are shown in ellipses and differentially-expressed 
transcription factors in diamonds. A pink line represents positive regulation and a blue line represents negative regulation. 
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IRGs as an independent risk factor for breast cancer 

patients 
 

We next investigated whether the power of the 

immunity-related prognostic model was influenced by 

confounding factors. In addition to the risk score 

derived from the prognostic model, relevant clinical 

characteristics including age, tumor stage and TNM 

classification were used for univariate analysis. As 

expected, all of these factors were associated with a 

poor prognosis, with a metastatic disease being the 

most hazardous factor (Figure 6A). According to 

multivariate regression, age (HR = 1.036, 95% CI: 

1.020−1.051, P < 0.001) and risk score (HR = 1.447, 

95% CI:1.331−1.574, P < 0.001) were independent 

factors correlated with shorter overall survival  

(Figure 6B). However, the hazard ratios indicated  

that the prognostic model-derived risk score was a 

more powerful factor to assess patient prognosis.  

We also excluded patients without tumor stage 

information to investigate the correlation of the 

derived risk score with tumor stage. We compared the 

risk scores of the Stage i-iia group to those of the 

Stage iib-iv group and found that risk scores  

were higher in the latter than in the former 

(Supplementary Table 3). 

 

 
 

Figure 5. The prognostic immunity-based signature in breast cancer. (A) Distribution of risk score derived from the signature. 
Patients are ranked according to the corresponding risk score. (B) Survival status of breast cancer patients. They are ranked in the same way 
as in (A). (C) Heatmap showing expression of the 12 hub immunity-related genes in different risk groups. (D) Kaplan-Meier survival curves for 
patients in the TCGA BRCA dataset. Patients are assigned into high and low risk groups according to the median risk score. (E) The receiver 
operating characteristic (ROC) curve showing a prognostic value of the immunity-based signature. (F) Kaplan-Meier survival curves for 
patients in the validation dataset (GSE12276). 
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Associations of immunity-related signature with 

tumor-infiltrating immune cells 
 

To explore whether the immunity-related signature could 

reflect infiltration degree in the tumor microenvironment 

of immune cells, we further analyzed the associations 

between the immune prognostic model-derived risk score 

and immune infiltrates. As shown in Figure 7A–7E, 

infiltration of B cells, CD4+ T cells, CD8+ T cells, 

neutrophils and dendritic cells was negatively correlated 

with risk score, suggesting that there are fewer tumor 

infiltrates in high risk patients. These results are 

consistent with previous findings [20–24]. However, we 

didn’t find an association between macrophage 

infiltration and risk score (Figure 7F). We also 

investigated whether differences in the immune 

phenotype could be observed between high- and low-risk 

groups. According to GSEA results, a total of 44 

immunity-related GO terms were enriched (Figure 8A), 

indicating varied intensities of immune response between 

these two groups. Eight representative immunity-related 

terms correlated positively with low risk (Figure 8B), 

which included humoral immune response, regulation of 

immune effector process, T cell activation and 

differentiation involved in immune response, cytokine 

production involved in immune response, regulation of 

adaptive immune response, activation of innate immune 

response, and B cell activation involved in immune 

response. These data suggest that the low risk estimated 

for many breast cancer patients using our prognostic 

signature may be attributed to a hyperactivated immune 

response in the tumor microenvironment. 

 

 
 

Figure 6. Effects of critical clinical characteristics on patients’ overall survival in breast cancer. (A) Forest plot showing prognostic 
values of age, stage, TNM staging and the immunity-based signature-derived risk score. (B) Forest plot showing the prognostic value of age, 
stage, TNM staging and risk score as an independent factor. 
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DISCUSSION 
 

Breast cancer is a heterogeneous disease that severely 

threatens the health of females. Although advances in 

early diagnosis and multiple therapies have contributed 

to large improvements in survival rate, no specific risk 

factors have been identified yet for the majority of 

breast cancer patients [5], and patients afflicted with 

metastatic disease will eventually succumb to it [25]. 

The immune system is actively involved in the 

development and progression of many solid tumors, 

including those of breast cancer. Accumulating 

evidence highlights that the response to antitumor 

therapy and overall survival of breast cancer patients is 

subject to host immunity [26]. In this regard, an 

immunity-based prognostic signature can be rationally 

applicable to identify patients with poor survival in 

advance. In this study, using two breast cancer cohorts 

containing over 1000 patients, we constructed and 

validated a prognostic signature based on the expression 

of 12 immunity-related genes. According to the risk 

score yielded from the prognostic signature, patients 

could be stratified into subgroups with distinct survival 

outcomes. Moreover, we found that this immune 

signature was negatively associated with immune 

infiltrates in the tumor microenvironment. These 

findings suggest that our immunity-related signature 

could be used effectively to evaluate prognosis and 

provide potential immunotherapeutic targets for breast 

cancer patients. 

 

The current study identified 179 differentially-

expressed IRGs between tumoral and normal tissues, 

which might be involved in breast cancer initiation and 

progression. Accumulating studies establish that chronic 

inflammation can trigger tumor progression and an 

inflammatory surrounding microenvironment is 

indispensable to all tumors [27–29]. Cytokines, 

regardless of their source, play opposing roles in cancer 

progression, either facilitating or suppressing it. A 

delicate balance between antitumor immunity and 

tumor-promoting inflammation is achieved through 

cytokines and chemokines released by immune cells, 

tumor cells and other components in the tumor 

microenvironment [27, 30]. Our functional enrichment 

analysis revealed that the differentially-expressed IRGs 

participated in extracellular region components, 

inflammatory response, immune response, cytokine 

activity, interaction of cytokines with their receptors, 

and chemokine signaling pathways, which reflected the 

intricate relationship between inflammation, immunity 

and cancer, and the involvement of the differentially-

expressed IRGs in breast cancer initiation and 

progression. Increasing evidence demonstrates a critical 

role of signal transducer and activator of transcription 

(STAT) proteins in determining whether immune 

 

 
 

Figure 7. Correlations between the prognostic signature-derived risk score and infiltration abundances of multiple immune 
cells. (A) B, (B) CD4+ T, (C) CD8+ T, and (D) dendritic cells; (E) neutrophils; (F) macrophages. 
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responses in the surrounding milieu are pro-

carcinogenic or anti-carcinogenic [31, 32]. In particular, 

cytokine-activated STAT3 can promote cancer 

proliferation and invasion while suppressing anti-tumor 

immunity by regulating the expression of immune 

checkpoint proteins PD-1, PD-L1 and CTLA4 [31, 33–

35]. According to the KEGG pathway analysis in our 

study, enrichment of Jak-STAT signaling suggested that 

differentially-expressed IRGs disrupt the balance 

between anti-tumor immunity and tumorigenesis. 

 

 
 

Figure 8. Comparison of immune traits between high-risk and low-risk groups via gene set enrichment analysis. (A) Enriched 

immunity-related GO terms. (B) Representative immunity‐related terms positively correlated with low risk. 
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In order to answer whether and which of the 

differentially-expressed IRGs have an effect on the 

clinical outcomes of breast cancer patients, we assessed 

the associations between expression levels of these IRGs 

and patient overall survival. Out of the 179 IRGs, 7 were 

positively and 12 were negatively associated with 

favorable prognosis. The TFs-based regulatory network 

we built for these 19 survival-associated IRGs showed 

that MYH11, TP63 and ELF5, were critical regulators of 

the survival-associated IRGs. To date, the function of 

MYH11 in breast cancer remains elusive. Increasing 

evidence demonstrates that TP63 proteins are tumor 

suppressors which block the metastatic potential of tumor 

cells [36, 37], although an oncogenic TP63 isoform has 

also been identified [38]. ELF5 was established as a 

suppressor of epithelial-mesenchymal transition that 

inhibited metastasis in breast cancer [39]. We found that 

MYH11, TP63 and ELF5 were downregulated in breast 

cancer tissues, which is consistent with previous findings 

highlighting TP63 and ELF5 as tumor suppressors. 

Moreover, targets of MYH11 and TP63 (LIFR, NRG1, 

TSLP, TACR1), and of ELF5 (LALBA, MIA, S100B, 

FABP7) in the network were also downregulated (except 

LALBA), which were indicators of better overall survival 

according to univariate Cox regression. Further, positive 

associations between the hub TFs (MYH11, TP63 and 

ELF5) and their targets were found and showed in the 

network. Collectively, our data suggest that altered 

expression of certain IRGs correlated with survival in 

breast cancer patients, perhaps owing to changes in 

expression of tumor-related TFs, and that the tumor 

suppressors TP63 and ELF5 can exert their anti-tumor 

effects by disrupting immune responses in the  

tumor microenvironment. Further evidence is needed to 

experimentally elucidate underlying regulatory 

mechanisms of these immunity-related genes. 

 

Our immunity-based prognostic signature consists of 12 

survival-associated IRGs. Among them, ULBP2, TSLP, 

TNFRSF8 and TNFRSF18 are involved in intercellular 

cytokine-mediated communications. ULBP2 is one of 

the NKG2D ligands to cause release of multiple 

cytokines and chemokines that help to activate NK 

cells. However, soluble ULBP2 secreted by tumor cells 

also contributes to evasion of immunosurveillance. 

Recent studies have found that elevated expression of 

ULBP2 is an indicator of poor prognosis in ovarian and 

pancreatic cancer [40, 41]. Similarly, our analysis 

revealed that ULBP2 is upregulated in breast cancer 

with detrimental effects on patient overall survival. 

TNFRSF8 is a tumor necrosis factor with unclear 

contributions to breast cancer. Here, we found a 

decreased expression of TNFRSF8, similar to a recent 

immunohistochemistry-based study that reported a lack 

of CD30 expression in breast cancer [42]. Moreover, its 

downregulation was found to be associated with poor 

prognosis. Interestingly, here we found that TSLP 

expression is reduced in breast cancer patients and 

correlates positively with a favorable prognosis, both in 

disagreement [43] and agreement [44] with previous 

reports. Further efforts are required to better understand 

TSLP functions in breast cancer. In line with previous 

research [45], we confirmed here that NRG1 is 

downregulated in breast cancer tissues, with detrimental 

effects on long-term survival. FABP7 was previously 

associated with lower lymph node stage and a longer 

disease-free survival [46], which supports our finding 

that high FABP7 expression contributes to a low risk 

score. Serum alpha-lactalbumin (LALBA) was 

previously identified as a marker for breast cancer [47]. 

We found that high LALBA expression was a 

hazardous prognostic factor. The roles of other IRGs in 

our signature in breast cancer, including IGHE, SCG2, 

NPR3 and FABP6, require further clarification. 

 

We also investigated the relationships between risk 

score derived from IRGs-based signature and immune 

cell infiltration to figure out if the signature could 

reflect the immune microenvironment of breast cancer. 

Our data revealed that patients with a higher risk score 

had decreased infiltration degrees of B cells, CD4+ T 

cells, CD8+ T cells, neutrophils, and dendritic cells. The 

negative associations of risk score with immune cell 

infiltration suggested that the signature might serve as a 

predictor for local immune responses in the tumor bed. 

Tumor infiltrating B cells express and secrete antibodies 

to facilitate lysis and apoptosis of tumor cells [48]. The 

direct and indirect cytotoxic effects of CD8
+
 T cells and 

CD4
+
 T cells support the finding that their infiltration is 

correlated with favorable survival outcomes [20, 49]. 

Neutrophils play a critical role in activating and 

regulating immune cells as well as their effector 

functions [50]. A recent study has shown that 

infiltration by myeloperoxidase-positive neutrophils is 

an independent prognostic factor associated with a 

better overall survival in breast cancer [51]. Dendritic 

cells-mediated priming of T cells is a crucial step in 

antitumor immunity. It was found that a defective 

function of dendritic cells in patients with early breast 

cancer might be important for tumor progression [52]. 

Taken together, high risk score may be ascribed to, at 

least in part, unbalanced immune infiltrates and 

dysfunctional immune responses in the milieu 

surrounding tumors. It is proposed here that strategies 

attempting to enrich immune cells in the tumor 

microenvironment may have positive effects in breast 

cancer immunotherapy. 

 

Although an immunity-related gene signature 

constructed based on IRGs differentially expressed 

between high- and low-immune-score groups in breast 

cancer was previously reported [53], our study differs 
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from it in that the current prognostic signature was 

computed on the basis of differentially-expressed IRGs 

between breast cancer tissues and adjacent normal 

tissues. This is a well-established approach to identify 

candidate genes involved in tumorigenesis. Some 

limitations exist in this study. First, although we 

validated the signature in an independent cohort, a larger 

sample size would allow for stronger validation. Second, 

the prognostic signature should be applied in clinical 

contexts to test its efficacy. Third, since our immunity-

based prognostic signature is constructed using a set of 

specific genes, further experimental studies are 

warranted to reveal their functions in breast cancer 

initiation and progression. Fourth, breast cancer is a 

heterogeneous disease; thus, whether our prognostic 

signature is applicable to different histological types of 

breast cancer remains to be further evaluated in 

subsequent studies with samples from various 

histopathologic types. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing 

 

RNA-sequencing data of TCGA BRCA and relevant 

clinical information were downloaded from UCSC 

Xena (https://xena.ucsc.edu/). A validation cohort 

(GSE12276) was downloaded from Gene Expression 

Omnibus (GEO). In these two breast cancer datasets, 

only patients with complete survival information and a 

follow-up longer than three months were included for 

survival analysis. In addition, patients with prior 

treatment such as neoadjuvant chemotherapy and 

surgery were excluded. 

 

Differentially-expressed, immunity-related gene 

analysis 
 

To identify IRGs involved in breast cancer progression, 

we first screened differentially expressed genes (DEGs) 

between tumoral and normal tissue. FPKM data were 

transformed in the form of log2 (FPKM+0.001), |log2 

fold change| > 1 and false discovery rates (FDR) < 0.05 

were set as the cutoff values. A list of 2498 immunity-

related genes was obtained from the Immunology 

Database and Analysis Portal (ImmPort) [54]. Then, the 

immunity-related gene list and DEGs were intersected 

to extract differentially-expressed IRGs. We performed 

hierarchical clustering analysis to visualize the 

expression patterns of the differentially-expressed IRGs 

between normal and breast cancer tissues. 

 

Functional enrichment analysis 
 

To further annotate the biological function of IRGs of 

interest, we carried out enrichment analysis of Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

[55] and Gene Ontology (GO) including biological 

process (BP), molecular function (MF) and cellular 

component (CC) genes by using the well-established 

DAVID Bioinformatics Resources [56]. P values were 

adjusted by the False-Discovery Rate (FDR) method for 

multiple comparisons and pathways with FDR < 0.05 

were considered enriched. 

 

Construction of the IRGs-based prognostic signature  
 

Univariate Cox regression analysis was performed using 

the “survival package” of R to investigate the 

prognostic value of differentially-expressed IRGs in 

breast cancer patients. Ones with P < 0.05 were 

considered survival-associated IRGs, which were 

selected for multivariate Cox regression analyses to 

obtain independent prognostic IRGs and construct an 

immunity-based prognostic model. The risk score of 

each patient was the sum of products of the expression 

value and the regression coefficient of each independent 

prognostic IRG, 
1

risk score
n

ii iExp


 . Patients 

were then divided into high- and low-risk groups 

according to the median risk score. Survival analysis 

was performed by the Kaplan-Meier method and the 

log-rank test was utilized to compare the statistical 

significance of the difference between high- and low-

risk groups.  

 

Additionally, univariate and multivariate analyses were 

conducted to evaluate the effects of risk score and other 

critical clinical features on patient overall survival. 

 

Regulatory network analysis between transcription 

factors and survival-associated IRGs 

 

The Cistrome Cancer web resource enables us to 

investigate regulatory links between TFs and 

transcriptomes in cancer by integrating public cancer 

genomics data with chromatin profiling data [57]. We 

downloaded a total of 318 TFs from Cistrome Cancer, 

according to which we screened differentially-expressed 

TFs from the DEGs. Correlation tests were conducted 

between differentially-expressed TFs and survival-

associated IRGs, and the regulatory network between 

them was visualized by using Cytoscape. 

 

Association analysis between immunity-related 

signature and immune infiltrates 

 

The correlation of the risk score of each patient with 

immune cell infiltration was analyzed by virtue of 

Tumor Immune Estimation Resource (TIMER), which 

is an online resource for systematical analysis in diverse 

cancers of immune infiltrating cells, including B cells, 

https://xena.ucsc.edu/
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CD4+ T cells, CD8+ T cells, neutrophils, macrophages 

and dendritic cells [58]. We used TIMER-estimated 

abundances of tumor-infiltrating immune cells to 

analyze their associations with IRGs-based prognostic 

signature in breast cancer. 

 

Gene set enrichment analysis 
 

To investigate immune response processes affected by 

the hub IRGs in the prognostic signature, we performed 

gene set enrichment analysis (GSEA) between high- 

and low-risk groups. Immunity-related gene sets in GO 

terms were downloaded from the Molecular Signatures 

Database (MSigDB) for GSEA analysis. A gene set was 

considered enriched for P < 0.05 and FDR < 0.25. 

 

Statistical analysis 
 

All analyses were performed using R software (version 

3.4.4), except for GSEA analysis. Unless otherwise 

indicated, differences were considered statistically 

significant when P < 0.05. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Differentially expressed immunity-related genes identified between breast cancer and 
normal tissues. 

Regulation Gene symbol 

Up-regulated (69) CST4, CGA, VGF, CCL11, SCT, FABP6, S100A7A, TUBB3, CCL7, CCR8, IGHE, CAMP, 

PRLH, ORM1, TFR2, ULBP1, EPO, TNFRSF9, UMODL1, S100P, PROC, ARTN, OPRD1, 

IL21R, AMH, CXCL11, BIRC5, BMP8A, IL20, IL9R, CD1A, ORM2, ESM1, INHBA, PCSK1, 

PYY, IL27, TNFRSF18, BMPR1B, LTA, TRH, CCL20, ICOS, TMPRSS6, KCNH2, TNFSF4, 

EDN2, IL11, CCR4, ADM2, PDCD1, LCN12, ANGPTL6, WFIKKN1, CD19, OLR1, CXCL10, 

SCG2, SLC11A1, MMP12, TRAV26-1, OASL, PIK3R2, FGFR3, THPO, ULBP2, RBP2, 

TRAV39, INHA 

Down-regulated (110) ANGPTL7, ACVR1C, DEFB132, LEP, TSLP, LALBA, PENK, GDF10, RNASE7, EDN3, 

GFAP, RXRG, CCL14, SSTR1, PAK3, ADCYAP1R1, GPR17, CCL24, NTF4, NRG2, CXCL2, 

CMA1, ADIPOQ, AVPR2, TACR1, KL, PLXNA4, IL17B, BMP5, ANGPTL1, RBP4, OXTR, 

PROK1, NRG1, ANGPT1, DES, CXCL3, FAM3D, ALB, IGF1, ADRB2, PTGFR, FGF2, 

LEPR, SEMA3D, GREM2, BMP2, PTGS2, SAA2, S100B, CNTFR, IL6, TAC1, NTS, CD209, 

NPR1, CCL23, ADRB1, PTH1R, IL22RA2, PPARG, NR3C2, IL33, FABP4, PI15, PTX3, 

ROBO3, SEMA3A, SEMA6D, PI3, NTF3, GHR, FABP7, BMP6, TNFRSF10D, OGN, CTSG, 

LGR6, EGFR, LIFR, NR4A3, CCL13, SCGB3A1, SPINK5, CXCL5, MASP2, EDNRB, CCL28, 

IL17D, TGFBR3, SHC3, NPR3, NGFR, FGF10, FGF7, CXCL6, MIA, PTH2R, BACH2, 

NR5A2, FGF16, SEMA3G, FGF1, GNAI1, MARCO, CCL21, DEFB1, TNFRSF8, SAA1, 

S100A12 

 

Supplementary Table 2. Functional enrichment analysis for differentially expressed immunity-related genes in breast 
cancer. 

 

Supplementary Table 3. Correlation of risk score with tumor stage in breast cancer. 

Tumor stage Number of patients Risk score P 

i-iia 497 1.205 ± 1.011 0.044 

iib-iv 466 1.338 ± 1.054  

 


