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With the continuous improvement of living standards but the lack of exercise,

aging-associated metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM),

and non-alcoholic fatty liver disease (NAFLD) are becoming a lingering dark cloud over

society. Studies have found that metabolic disorders are near related to glucose, lipid

metabolism, and cellular aging. Fibroblast growth factor 21 (FGF21), a member of the

FGFs family, efficiently regulates the homeostasis of metabolism and cellular aging. By

activating autophagy genes and improving inflammation, FGF21 indirectly delays cellular

aging and directly exerts anti-aging effects by regulating aging genes. FGF21 can also

regulate glucose and lipid metabolism by controlling metabolism-related genes, such

as adipose triglyceride lipase (ATGL) and acetyl-CoA carboxylase (ACC1). Because

FGF21 can regulate metabolism and cellular aging simultaneously, FGF21 analogs and

FGF21 receptor agonists are gradually being valued and could become a treatment

approach for aging-associated metabolic diseases. However, the mechanism by which

FGF21 achieves curative effects is still not known. This review aims to interpret the

interactive influence between FGF21, aging, and metabolic diseases and delineate the

pharmacology of FGF21, providing theoretical support for further research on FGF21.

Keywords: fibroblast growth factor 21, aging,metabolic disease, glycometabolism, pharmacology, lipometabolism

INTRODUCTION

Energy metabolism generally refers to the release, transfer, and utilization of energy in the process
of biomassmetabolism. Energymetabolism ismainly related to glucose, lipids, and proteins, among
which lipometabolism and glycometabolism are particularly important. Lipid metabolism refers to
digestion, absorption, synthesis, and decomposition of lipids with various related enzymes. Glucose
metabolism is responsible for the formation and storage of glucose with the help of insulin (1).
There is an interactive influence between glucose and lipid metabolism (2). Insulin resistance
causes hyperinsulinemia, which inhibits lipolysis, increases lipid synthesis, and causes excessive
lipid accumulation. Abnormal lipid metabolism, especially the accumulation of heterotopic lipids,
promotes decreased insulin sensitivity in adipose tissue. The balance of energy storage and release,
also known as energy homeostasis, is crucial for overall health and even survival (3). A long-term
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metabolic imbalance will lead to excess lipid accumulation and
further contribute to obesity, non-alcoholic fatty liver disease
(NAFLD) and type 2 diabetes mellitus (T2DM), known as aging-
related metabolic diseases (4, 5). Adipose tissue dysfunction and
excessive lipid accumulation are the basis of the pathogenesis of
metabolic disease (6).

Aging is characterized by a deterioration in homeostatic
process maintenance over time, leading to functional decline and
increased risk for diseases. Thus, energy homeostasis is gradually
disrupted with aging, and the risk of energy metabolism-related
diseases increases (7). Some studies have revealed compelling
evidence that energy metabolism has a crucial interaction with
anti-aging regulation (8, 9). Selective elimination of aging
cells can ameliorate several aging-dependent energy metabolic
diseases (10, 11).

Fibroblast growth factor 21 (FGF21) is a peptide hormone
synthesized by multiple organs and regulates energy homeostasis
(12, 13). As a FGFs family member, FGF21 is crucial because
it can directly improve lipid and glucose metabolism in cells
and delay cellular aging (14). Thus, the association between
FGF21, energy metabolic diseases, and aging has recently
attracted increasing attention. We illustrate this systematically in
this review.

CONNECTION BETWEEN AGING AND
METABOLISM

Cellular aging is an irreversible state of cell cycle arrest induced by
various stressors, including telomere dysfunction, genotoxicity,
and oxidative stress (15). Telomere shortening, which occurs
after cell divisions, is a common cause of internal cellular aging.
After several divisions, cells may activate p53, p21, and pRb
pathways due to telomere shortening, promoting growth arrest
and cell aging. Cellular aging is a complex process with dual
functions, which are both beneficial and harmful to health. Aging
helps clear damaged cells and is involved in tissue recovery
during injury or acute stress. Senescence-associated secretory
phenotype (SASP) secretes chemokines and cytokines (such as
IL-1B and MCP-1) to attract immune cells and clear aging
cells (16). However, consistently, excessive SASP induced by
cellular aging will accumulate too many aging cells, causing
insufficient tissue regeneration (17). Aging affects multiple
organs, mainly those with high metabolic demands such as liver,
heart, and brain (18). Therefore, aging may be a major risk factor
for many metabolism-related diseases (19) and closely related
to metabolism.

Metabolic dysregulation (including mitochondrial
dysfunction) is one of the aging hallmarks (7, 20). Interestingly,
aging-associated pathways (such as AMPK and mTOR), which
are significant targets of anti-aging interventions, either directly
regulate or intersect with metabolic pathways (21). With
the development of technology, metabolomics has received
increasing attention and quantitatively analyzes all metabolites
in organisms (22, 23). Through metabolomic analysis, it was
found that the existence of specific metabolic intermediates
is an anti-aging intervention target, and even more directly a

biomarker of aging (24). These hub metabolites represent nodes
in the metabolism and aging network that play a crucial role in
regulating information flow between metabolism and signaling
pathways to control aging.

Nicotinamide adenine dinucleotide (NAD+), a common hub
metabolite, is a crucial center connecting metabolism and aging.
As an essential cofactor, NAD+ plays a central role in regulating
energy metabolism, including glycolysis, fatty acid oxidation, and
tricarboxylic acid (TCA) cycle, and it can also mediate DNA
repair and gene expression (25). Recent studies have highlighted
the various roles of NAD+ in aging. A metabolomics study
quantified the plasma level of NAD+ in people aged 20 to 87,
showing that the levels of NAD+ decreased significantly with
age (26). Reduced levels of NAD+ are associated with several
aging-related diseases, including metabolic diseases, cancer,
and neurodegenerative diseases (27). Additionally, the dietary
administration of NAD+ precursors has been shown to increase
NAD+ levels in aging tissues, thereby improving aging and
aging-related diseases (28, 29). Research has directly proven that
NAD+ can directly control SASP and regulate cellular aging (30).
The above studies have confirmed that the metabolite NAD+

can directly regulate cellular aging. Moreover, not only NAD+,
nicotinamide adenine dinucleotide phosphate (NADP), and αKG
can regulate cellular aging (31–33).

Scholars have also directly confirmed that aging is affected by
metabolism through animal experiments. Mlekusch et al. found
that controlling the exercise of mice, leading to a decrease in
metabolic levels, will cause mice to age and shorten their life span
(34). Even as early as over a century ago, it was discovered that
the metabolic rate is related to aging: Rubner discovered that
smaller animals have a higher resting metabolic rate. Based on
this, a “rate of living hypothesis” was created, which believed that
exhausting a limited number of metabolic events would lead to
death (35, 36). This theory is not only applicable to mammals.
The metabolic rate of birds is twice that of mammals of the same
size, but their average life span is approximately three times that
of mammals that match their body mass (37).

Therefore, there is no doubt that metabolism and aging are
closely related, but whether FGF21 is related to it or whether it
can be used as a connection point between metabolism and aging
is still unknown. We will elaborate below.

THE RELATIONSHIP BETWEEN FGF21,
METABOLISM, AND AGING

FGF21 and Its Family
FGFs family consists of 23 members but only 18 FGFR ligands.
Four family members (FGF11, FGF12, FGF13, and FGF14)
cannot bind to FGFR are more correctly referred to as FGF
homologous factors (38). FGFs are effective regulators of cellular
aging. Not only that, mutations in FGFs have been linked
to many metabolic diseases, including atherosclerosis, NAFLD,
and diabetes (39). According to phylogenetic analysis, FGFs
family members can be further divided into seven subfamilies
(Figure 1) (40). FGF21 is a member of an endocrine FGF
subfamily, which includes FGF15/19 and FGF23. FGF21 can
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FIGURE 1 | Subfamilies of FGFs confirmed by phylogenetic analysis.

circulate and diffuse freely in tissues as an endocrine factor
because of the lack of heparin-binding domain (41). FGF21
is expressed in many tissues, including liver (42), adipocytes
(43), brown adipose tissue (BAT), pancreas (44), gastrointestinal
tract, brain, skeletal muscle, and heart, and it directly regulates
the metabolism and aging of peripheral tissues (12). Next,
we will introduce the relationship between FGF21 metabolism
and aging.

FGF21, the Hub Linking Metabolism and
Aging?
In 2005, FGF21 was first used as a novel metabolic regulator
(45). As a coordinator of energy metabolism in multiple organs
(especially liver and fat), FGF21 can regulate adipogenesis,
glucose uptake, and cellular insulin sensitivity (12, 46–48). The
level of FGF21 is elevated to promote the oxidation of free
fatty acids (FFAs) and inhibit lipogenesis in the liver to supply
energy when glucose levels are low or caloric restricted (49).
In an animal experiment, Inagaki et al. found that FGF21
expression increased 28-fold in the livers of mice after 12 h of
fasting. Increased FGF21 expression will stimulate ketogenesis
in the liver and promote lipolysis in white adipose tissue to
provide energy for activities (50). In addition to mice, in the
fasting state, the level of FGF21 in human serum will also
increase rapidly within a few hours to promote lipolysis (51).
Proper administration of FGF21 also effectively improved insulin
sensitivity and hepatic glucose uptake in obese mice (52). Studies
have found that long-term administration of FGF21 to genetically
obese mice will ameliorate fasting hyperglycemia via increased
glucose uptake and improved hepatic insulin sensitivity (53).
Lack of FGF21 in mice evokes insulin resistance and promotes
gluconeogenesis and liver glucose production (54). In addition
to liver and adipose tissue, the expression of FGF21 in skeletal
muscle also has important metabolic functions. FGF21 could
improve muscular dystrophy and atrophy through metabolic
pathways (55, 56).

In addition to acting as a metabolic regulator, FGF21 can
also improve aging. There are clear indications that the effect
of FGF21 in preventing aging may be related to the thymus;
overexpression of FGF21 can prevent aging-related changes,

such as retarding thymus degeneration to prevent thymus
weakness, improving immune system, and hopefully extending
human life expectancy in the future (57). With aging, tissue
autophagy is reduced, disrupting tissue ability to maintain
protein homeostasis, thus accelerating the aging process (57).
FGF21 can stimulate adiponectin secretion in fatty tissues, thus
improving autophagy in target tissues to play an anti-aging role
(58). Compared with normal mice, animal experiments show that
fasting-induced FGF21 overexpression in mice and slowed aging
(59). Transgenic overexpression of FGF21 significantly extended
the life span of mice without reducing food intake or affecting
NAD+ metabolism (60).

In summary, FGF21 mainly regulates aging by metabolism.
It is crucial to clarify the mechanism or pathways of FGF21 in
regulating metabolism and aging.

The Mechanism by Which FGF21
Regulates Aging Through Metabolism
FGF21, a new type of endocrine hormone, is primarily produced
by liver (61). Klotho proteins include α-klotho and β-klotho,
of which β-klotho is an essential part of the FGF21 receptor
complex and necessary for promoting high-affinity binding to
its homologous FGF receptor (62). FGF21 signals through a
receptor complex composed of fibroblast growth factor receptor
1 (FGFR1) and the coreceptor β-klotho, both required for
FGF21 signaling and then activates downstream genes, to exerts
its effect (63, 64). Studies have found that, as an endocrine
messenger, FGF21 could induce hormonal responses in other
tissues, such as the secretion of adiponectin from fat tissue and
corticotropin-releasing hormone (CRH) from the hypothalamus,
to maintain metabolic homeostasis (65). In addition, endocrine
FGF21 can stimulate the secretion of digestive enzymes from
pancreatic acinar cells, which require signaling through a tyrosine
kinase receptor complex composed of an FGF receptor and
β-Klotho to enhance the digestion of food in stomach (66).
FGF21 can also indirectly maintain metabolic homeostasis by
activating downstream pathways (67). In cultured adipocytes,
FGF21 could regulate metabolism by activating MAPK and
downstream ERK1/2, which triggers the activation of GLUT1
and glucose uptake (68). In liver, FGF21 positively controls the
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FIGURE 2 | The possible mechanism of FGF21 simultaneous regulation of aging and metabolism.

PI3K/AKT, insulin-like growth factor 1 (IGF-1), and mTOR
pathways to maintain metabolic homeostasis (69).

AMPK, the downstream protein of FGF21, consists of
three subunits (AMPKα, AMPKβ, AMPKγ), each with multiple
phosphorylation sites, which can regulate lipid metabolism
(70). AMPK phosphorylates sterol regulatory element binding
protein-1c (SREBP1c) at Ser372, inhibiting the proteolytic
cleavage of the precursor SREBP1c to mature SREBP1c, thereby
inhibiting steatosis in diet-induced hepatic insulin-resistant mice
(71). AMPK can also indirectly inhibit the expression of SREBP1c
by reducing mTORC activity, thus decreasing liver lipid content
(72) or phosphorylating adipose triglyceride lipase (ATGL), to
stimulate TG lipase activity and activate lipolysis (73).

Amazingly, AMPK is highly conserved in eukaryotes, giving
them the ability to expand their lifespan (74). By activating
AMPK, FGF21 may delay aging and extend mammals’ lifespan
(75). Increased longevity has been observed in transgenic
worms expressing the modified AMPK-γ subunit (76, 77).
Overexpression of a single AMPK-α subunit in the fat body also
extended the life span of fruit flies (78).

As a pro-longevity kinase, AMPK can also prevent cellular
aging by activating downstream pathways (79–81). AMPK
is associated with some downstream pathways involved in
controlling aging, such as rapamycin complex 1 (mTORC1),
nuclear factor kappa-B (NF-κB), and sirtuin-1(SIRT1). Low
levels of inflammation promote aging (82). AMPK may extend
longevity by inhibiting the NF-κB pathway and NF-κB-mediated

inflammatory response (83). Activation of mTORC1 will inhibit
autophagy and accelerate aging, while FGF21 exposure can
inhibit the activation of mTORC1 in the liver resulting in anti-
aging effects (84). AMPK can directly activate SIRT1 (75, 85, 86).
After being triggered, SITR3 will mediate autophagy to anti-aging
(87). FGF21 regulates mitochondrial biogenesis by activating
PGC-1α through the FGF21-AMPK-SIRT1 pathway (88). FGF21
also stimulated the expression of PGC-1α in mouse liver (89) and
human dopaminergic neurons (90, 91). Improved mitochondrial
function and activation of PGC-1α play a crucial anti-aging role
(92). AMPK-SIRT1 axis is also connected to several other aging-
linked targets, such as p53 and HIF1α (93). Therefore, it is clear
that anti-aging effects can be achieved by activating AMPK, but
whether FGF21 can inhibit aging by upregulating the expression
of AMPK requires further experimental proof.

Combined with the above analysis, we believe that AMPK,
the downstream protein of FGF21, may be the key to FGF21
simultaneous aging and metabolism regulation (Figure 2).

THE ACTIONS OF FGF21 IN
AGING-RELATED METABOLIC DISEASES

The possible mechanism by which FGF21 simultaneously
improves metabolism and cellular aging has been described
above. However, the relationship between FGF21 and various
aging-related metabolic diseases has not yet been clarified; thus,
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in the following, we will focus on the relationship between FGF21
and obesity, T2DM, and NAFLD.

FGF21 With Obesity
Obesity is a global epidemic metabolic disease that affects infants,
children, and adults (94). Over the past three decades, the global
prevalence of obesity has nearly doubled; the number of obese
and overweight people has exceeded that of underweight people
globally (95). Obesity is associated with several complications,
such as cardiovascular disease, hypertension, dyslipidemia,
NAFLD, insulin resistance, hyperglycemia, T2DM, and is related
to neurodegenerative diseases, and cancer (96, 97). Thus, it is
urgent to pay more attention to obesity.

Studies have found that FGF21 is nearly negatively related to
obesity. FGF21 transgenic mice fed high-fat, high-carbohydrate
(HFHC) food are resistant to weight gain and obesity (45).
Activation of FGF21 will cause weight loss in obese patients.
For example, recombinant FGF21 treatment can reduce weight
without changing the food intake of diet-induced obese (DIO)
mice (98). After FGF21 intervention for 6 weeks, the weight and
fat content of DIO mice were significantly lower than those of
mice that did not receive FGF21 treatment. Lipid homeostasis
and hepatic steatosis in DIO mice in the FGF21 treatment
group were significantly improved. An animal experiment also
found that chronic treatment with recombinant FGF21 reduced
serum and liver TGs levels in diet-induced obese mice by
inhibiting sterol regulatory element-binding protein-1 (SREBP-
1), a transcription factor critical for fat formation, to achieve the
goal of weight loss (98). Potential application of FGF21 as an anti-
obesitymolecule has even been approved in a study (99), in which
exogenous FGF21 was administered.

Interestingly, FGF21 can promote weight loss, and FGF21
analogs also have the same effect. The FGF21 analog Fc-FGF21
protein (RG), results in weight gain inhibition in diabetic mice
(100). FGF21, an FGF21 mutant used in combination with other
weight-reducing drugs or exercise, could effectively cause weight
loss in db/db mice (101). Recombinant murine FGF21 and leptin
coadministration can also reduce the weight of mice (102). As
a result, FGF21 is currently considered a potential target for the
treatment of obesity.

FGF21 With T2DM
Diabetes mellitus (DM) is defined as a metabolic disease
characterized by hyperglycemia due to insulin secretion, insulin
action, or a combination of both. T2DM, one subtype of
DM, accounts for 90–95% of diabetic cases (103). World
Health Organization (WHO) estimates that 347 million people
worldwide have DM, of which 90% are T2DM (104). T2DM is
characterized by insulin resistance, a relative lack of insulin, and
hyperglycemia. Complications of T2DM include heart disease,
stroke, diabetic retinopathy, and kidney failure (105). Because
of its pervasiveness and dangerous effects, T2DM deserves
more attention.

Some studies have found that FGF21 is an emerging T2DM
treatment target. FGF21 can increase the therapeutic benefits of
antidiabetic compounds such as metformin, glucagon/glucagon-
like peptide 1 (GLP1) analogs, and thiazolidinedione (TZD)

(106). The direct use of FGF21 can also reduce plasma glucose
and TGs to near-normal levels in diabetic patients and animals.
The experiment found that administering human recombinant
FGF21 for 6 weeks can significantly improve fasting plasma
glucose, TGs, insulin, and glucagon in diabetic rhesus monkeys
(107). Interestingly, although human recombinant FGF21 has
an excellent effect on lowering plasma glucose, it will not
cause a hypoglycemic crisis. Human recombinant FGF21 can
also improve the lipoprotein profile, including increasing high-
density lipoprotein cholesterol, lowering low-density lipoprotein
cholesterol, and significantly decreasing weight. Studies have also
found that FGF21 can protect islets from glycolipid toxicity and
cytokine-induced apoptosis and increase the insulin content of
pancreatic β cells, which helps maintain glucose homeostasis in
T2DM mice (108). Taken together, these results all support the
idea that FGF21 is feasible for treating T2DM.

FGF21 With NAFLD
NAFLD is one of the most common liver diseases globally, and
it affects 25% of the population globally and 8% of children
(109, 110). The disease is characterized by accumulating TGs
in hepatocytes with little or no alcohol consumption (111).
The NAFLD spectrum includes non-alcoholic fatty liver (NAFL)
in the early stage, non-alcoholic steatohepatitis (NASH) in the
middle stage, fibrosis in the late stage, and liver fibrosis associated
with cirrhosis, liver failure, and even hepatocellular carcinoma
(HCC) (112). Moreover, NAFLD is predicted to be the most
frequent indication for liver transplantation inWestern countries
by 2030 (113).

There is growing evidence that aging is a vital risk factor
for the occurrence of NAFLD (114, 115). Studies have found
that cellular aging can induce mitochondrial dysfunction and
reduce fat metabolism, resulting in excessive accumulation
of hepatocytes and fatty degeneration (116). Mitochondrial
dysfunction contributes to increased reactive oxygen species
(ROS) (117, 118). Excessive ROS will lead to abnormal
inflammation of the liver, leading to the deterioration of NASH.
In aged mice fed a high-fat diet, age-related mitochondrial
dysfunction further promotes oxidative stress, leading to
worsening of NAFLD (119). In an animal experiment, rats were
divided into obesity-prone and obesity-resistant groups. The
former group showed more severe steatosis and significantly
increased mRNA levels of p16 and p21, cellular aging-related
genes, in the liver (120). In vitro studies found that the
lack of cellular aging-related gene p53 in primary cultured
hepatocytes could reduce the level of apoptosis and steatosis
(121). Liver biopsies from patients with NAFLD also showed a
significant increase in p53 expression in the liver compared to
normal controls (122). These experimental results all confirmed
that the overexpression of aging-related genes could promote
hepatocyte steatosis, suggesting a crucial relationship between
aging and NAFLD.

NAFLD can be improved by taking FGF21 as a therapeutic
target, which is crucial for regulating cellular aging and energy
metabolism. Some studies found that administration of FGF21,
FGF21 analogs, or adenoviral delivery of FGF21 will reduce
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hepatic steatosis in diverse rodent models of NAFLD (123–
125). In diet-induced obese mice, FGF21 or FGF21 analogs also
decreased the expression of lipogenic genes, including stearoyl-
CoA desaturase-1(SCD1), fatty acid synthase (FASN), and sterol
regulatory element binding transcription factor 1 (SREBF1)
(126). Inhibition of the expression of the lipogenic genes can
effectively inhibit the synthesis of lipids and promote lipolysis.
Acting as an autocrine agent, FGF21 can also activate genes that
protect against oxidative stress to treat NAFLD. Many animal
experiments support this conclusion. FGF21 also protects mice
from acetaminophen-induced hepatic oxidative damage (127). In
obese diabetic mice, FGF21 treatment reduces hepatic oxidative
damage and lipid peroxidation (128). Moreover, in wild-type
mice, FGF21 increases transcription of the oxidative stress
response and antioxidant genes, including superoxide dismutase
2 (Sod2), glutathione peroxidase 1 (Gpx1), sirtuin (Sirt1), and
forkhead box transcription factor 3 (Foxo3) (129).

POTENTIAL THERAPEUTIC
PHARMACOLOGY OF FGF21

FGF21 has beneficial pharmacological effects on T2DM, obesity,
and NAFLD, and a large number of preclinical studies have been
reported (99, 130). A single injection of FGF21 in obese (ob/ob)
mice and DIOmice, can cause a rapid reduction in blood glucose
and plasma insulin levels. At the same time, glucose tolerance and
insulin sensitivity improve (131). Nevertheless, the application of
natural FGF21 as a drug has encountered some obstacles. Because
it requires intravenous administration and the circulation half-
life (0.5–2 h) is too short, it may be due to rapid renal clearance
and proteolysis. Thus, this has led to the development of FGF21
analogs and FGF21-receptor agonists.

LY2405319 (Eli Lilly and Co.), an FGF21 analog, was the
first analog to be applied in obese patients with T2DM (132).
It can improve dyslipidemia, reduce plasma insulin and body
weight, and increase adiponectin levels. Nevertheless, only a
tendency to decrease glucose was observed. This study shows
that the treatment of LY2405319 is generally well-tolerated.
PF-05231023 (Pfizer Co.) consists of two recombinant FGF21
molecules fused into the antibody fragment, which is a long-
acting FGF21 analog that is can be administered once a week. For
T2DM patients with hypertriglyceridemia who received a single
dose of PF-05231023 (0.5–200mg), dose-dependent decreases
in triglycerides were observed. In addition, total cholesterol
and low-density lipoprotein cholesterol decreased, while high-
density lipoprotein cholesterol increased in the high-dose group
(133). Another study with PF-05231023 reported a direct
effect of FGF21 in the absence of weight loss (134). Recently,
two clinical trials showned that pegbelfermin (BMS-986036),
a PEGylated long-acting FGF21 analog (Bristol-Myers Squibb
Co.), can be administered once a week. Subcutaneous injection
of pegbelfermin for 12 weeks in obese and T2D patients can
improve dyslipidemia, increase adiponectin and reduce the N-
terminal level of fibrosis biomarker type III collagen propeptide
(PRO-C3) without causing changes in HbA1c (135). A phase
IIa clinical trial confirmed the efficacy of pegbelfermin in the

treatment of NASH. Patients in this trial received subcutaneous
pegbelfermin once a week for 16 weeks (136). The results
showed that liver fat content in patients with NASH was
significantly reduced andwell-tolerated. Efruxifermin (AKR-001)
is an FGF21-fc analog that has a sustained effect on insulin
sensitivity and lipid metabolism in patients with T2DM. Short-
term adverse reactions are limited, but more research is needed
to study potential long-term safety issues (137).

In addition to FGF21 analogs, the FGFR1/β-klotho complex
(FGF21 receptor agonists, FGF21RAs) opened a new door for
aging-associated metabolic diseases, which have been tested
in non-human primates (NHPs) and humans (138, 139).
Thus far, it is unclear whether FGF21 receptor agonists
have therapeutic advantages over FGF21 analogs. The first
FGF21RA is C3201, an 18 kDa bispecific avimer peptide
with high affinity and specificity for FGFR1 and β-klotho
(140). The avimer showed FGF2-like activity, which was
more potent than FGF21. It had a terminal half-life of 50 h
after fusion with human serum albumin (C3201-HSA), and
simulated the effects of FGF21 on obese monkeys, which
lowered body weight. Due to the excellent pharmacokinetics
and targeting specificity of monoclonal antibodies (mAbs), many
research methods have been used to develop agonist mAbs
for FGF21 receptor complexes. Two fully humanized FGF21-
mimetic mAbs (mimAb1 and 39F7 mAb) bind to distinct
conformational epitopes of β-klotho with high affinity and
specifically activate cellular signaling via the FGFR1c–β-klotho
complex. Injection of mimab1 in obese monkeys, resulted in
FGF21 like metabolic effects, including body weight, plasma
insulin, plasma triglyceride and glucose levels (141). In vitro
characterization demonstrated that, 39F7 mAb is specific for β-
Klotho/FGFR1c activation, but it does not compete with FGF21.
Furthermore, the agonistic activity of 39F7 mAB required the
full IgG molecule to be bivalent, suggesting that 39F7 functions
by promoting β-Klotho/FGFR1c dimerization (142). Recently,
Merck Sharp & Dohme is developed a monthly antibody MK-
3655 (previous name NGM313) that activates the β-klotho-
FGFR1c complex. A single-dose of MK-3665 can reduce liver
fat content, improve dyslipidemia, and reduce HbA1c and
transaminase in patients with obesity, insulin resistance and
NAFLD (143) (Table 1).

FGF21 analogs and FGF21RA tested in clinical trials are
generally well-tolerated. However, PF-05231023 increased heart
rate and blood pressure and caused moderate changes in bone
resorption and resorption markers, which is consistent with the
effect of FGF21-induced bone loss (139). Therefore, PF-05231023
improved the safety of FGF21 induced bone loss, which was
observed in mice. Another side effect is the production of anti-
fgf21 antibody caused by the immunogenicity of engineered
FGF21, which was detected in more than 50% of patients treated
with pegbelfermin and those treated with ly2405319(135). Of
note, the duration of all the above clinical trials for FGF21
treatment is quite short (several weeks). Since FGF21 based
treatment is targeted for chronic metabolic diseases, which
often require lifelong medication, the safety issues related
to long-term treatment need to be thoroughly examined in
the future.
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TABLE 1 | Pharmacological strategies to modulate the effects of FGF21 on related metabolic diseases.

Brand name Diseases/symptoms Effects

FGF21 analogs

LY2405319 Obesity and T2DM

(144, 145)

Dyslipidemia↓

Body weight↓

Plasma insulin↓

PF-05231023 Obesity with or without T2DM

(134)

Serum TGs↓

Pegbelfermin

(BMS-986036)

Obesity, T2DM, and NASH

(135)

Dyslipidemia↓

Adiponectin ↑

The fibrosis biomarker N-terminal type III

collagen propeptide (PRO-C3) ↓

Efruxifermin (AKR-001) NASH and T2DM

(146)

Liver fat↓

Body weight↓

Fibrosis↓

FGF21-receptor agonists

C3201–HSA Obesity and insulin resistance

(147)

Body weight↓

MimAb1 and 39F7

mAb

Obesity

(148)

Body weight ↓

Blood glucose and triglycerides ↓

MK-3655

(NGM313)

Obesity, insulin resistance, T2DM and NAFLD

(143)

Liver fat↓

Dyslipidemia↓

HbA1c and transaminase↓

SUMMARY

Aging and metabolism are inextricably linked. With aging,
metabolic function decreases, and metabolic homeostasis
becomes unbalanced. Long-term metabolic imbalance will
also accelerate cellular aging. Studies have found that steatotic
hepatocytes always display severe DNA damage and cell cycle
arrest, indicating that they have entered an aging state (149).
Inducing aging cells in vivo and in vitrowill disrupt the metabolic
balance and promote excessive lipid deposition.

As a metabolism regulator, FGF21 can regulate the
homeostasis of lipid and glucose metabolism and improve
cellular aging (150, 151). AMPK, the downstream protein of
FGF21, may be the key to FGF21’s effect. AMPK plays a pivotal
role in lipid metabolism. By upregulating the expression of
ATGL, AMPK promotes lipolysis. In contrast, by regulating
the expression of ACC1 and SREBP1c, AMPK can inhibit
lipid synthesis. After being activated by FGF21, AMPK can
also regulate the autophagy-related gene mTORC1 and the
inflammation gene NF-κB to achieve anti-aging effects. AMPK
can control the autophagy-related pathways SIRT1/PGC-1α,
SIRT1, and its downstream aging-related genes P53, HIF-1α
to prevent cellular aging. At present, some FGF21 analogs
(LY2405319, PF-05231023, pegbelfermin, efruxifermin, etc.)
and FGF21 receptor agonists (C3201–HSA, mimAb1, and
39F7 mAb, NGM313, etc.) have been confirmed by animal
or clinical experiments to have an excellent ability to reduce
weight and improve glucose and lipid metabolism. However, no
clinical studies have clarified the efficacy of FGF21 analogs and
receptor agonists to improve cell aging. This requires further
in-depth research.

Overall, the above preclinical and clinical studies indicate
that FGF21 has a vital role in alleviating dyslipidemia,
lipid metabolism and glucose metabolism through different
molecular pathways and/or target organs. FGFmay soon become
a key target for the treatment of aging-related metabolic
diseases. Although FGF21 has received much attention and
is frequently used in treating aging-related diseases, it is
almost entirely involved in improving metabolism. There
are few or no studies involving FGF21 for the treatment
of aging-related metabolic diseases by improving aging. I
hope this review, which summarizes many previous studies,
can help promote more research on FGF21 in aging-related
metabolic disorders.
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