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Abstract
In cancer, infection and inflammation, the immune system’s function can be dysregulated. Instead of fighting disease, immune 
cells may increase pathology and suppress host-protective immune responses. Myeloid cells show high plasticity and adapt 
to changing conditions and pathological challenges. Despite their relevance in disease pathophysiology, the identity, het-
erogeneity and biology of myeloid cells is still poorly understood. We will focus on phenotypical and functional markers of 
one of the key myeloid regulatory subtypes, the myeloid derived suppressor cells (MDSC), in humans, mice and non-human 
primates. Technical issues regarding the isolation of the cells from tissues and blood, timing and sample handling of MDSC 
will be detailed. Localization of MDSC in a tissue context is of crucial importance and immunohistochemistry approaches for 
this purpose are discussed. A minimal antibody panel for MDSC research is provided as part of the Mye-EUNITER COST 
action. Strategies for the identification of additional markers applying state of the art technologies such as mass cytometry 
will be highlighted. Such marker sets can be used to study MDSC phenotypes across tissues, diseases as well as species and 
will be crucial to accelerate MDSC research in health and disease.
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Abbreviations
Arg1	� Arginase-1
DC	� Dendritic cell
EU	� European Union
iNOS	� Inducible nitric oxide synthase
LDN	� Low density neutrophil(s)
LOX-1	� Lectin-like oxidized low-density lipopro-

tein (LDL) receptor-1
MDSC	� Myeloid-derived suppressor cell(s)

M-MDSC	� Monocytic myeloid-derived suppressor 
cell(s)

MRC	� Myeloid regulatory cell(s)
NDN	� Normal density neutrophil(s)
NHP	� Non-human primate(s)
PMN-MDSC	� Polymorphonuclear myeloid-derived sup-

pressor cell(s)
ROS	� Reactive oxygen species
SCF	� Stem cell factor
TAM	� Tumor associated macrophage(s)
TAN	� Tumor associated neutrophil(s)

Introduction

Pathological events such as cancer, infection and inflam-
mation profoundly alter the homeostasis of organisms and 
activate robust immune responses. Usually these events are 
also accompanied by increased myelopoiesis that results 
in an emergency supply of myeloid cells [1, 2]. These 
myeloid cells are innate immune cells that provide one of 
the first lines of defense against pathogens or neoplastic 
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insults and play a fundamental role in immune surveil-
lance, antigen presentation and T-cell activation.

However, conditions like chronic inflammation, auto-
immune disease and cancer cause the aberrant expansion 
of myeloid cells that are phenotypically and functionally 
distinct from normal myeloid cells and facilitate rather 
than halt disease progression [3]. In the context of the 
Mye-EUNITER COST action (http://www.mye-eunit​
er.eu) we refer to these cells as myeloid regulatory cells 
(MRC) as the heterogeneous group of myeloid cells that 
have acquired immunoregulatory and/or immunosuppres-
sive activity, usually as a consequence of the disease of 
the host. The term “regulatory” is used with reference 
to the far better characterized regulatory T cells, which 
in contrast to classical T cells are not immune effector 
cells, but rather downregulate immune responses [4]. 
Examples of regulatory myeloid cells include, but are not 
limited to immunosuppressive granulocytes, tolerogenic 
dendritic cells (DC), macrophages and myeloid-derived 
suppressor cells (MDSC), further subdivided in mono-
cytic MDSC (M-MDSC) and polymorphonuclear MDSC 
(PMN-MDSC).

The MDSC represent a heterogeneous population of 
myeloid cells that fail to complete their regular differen-
tiation to macrophages, granulocytes or DC under physi-
ological conditions like aging [5] or pathological condi-
tions like chronic inflammation or cancer, although we 
can not exclude that they are in part derived from their 
mature counterparts [6–8]. They are derived from bone 
marrow hematopoietic precursors due to the altering of 
myelopoiesis by sustained production of inflammatory 
mediators [9–11].

The characterization of the subtypes of pathologically 
expanded myeloid cells in different diseases, model sys-
tems and species has generated a considerable amount of 
data regarding markers for their isolation and methods to 
study their function for the different organisms as well as 
on how to distinguish pathological subsets such as MDSC 
from immune protective myeloid cells. Unfortunately, due 
to the differences in marker and model selection, the infor-
mation available in the literature, even within one species, 
is highly heterogeneous and frequently conflicting obser-
vations are reported. Therefore, proper standardization of 
MDSC identification isolation and functional characteriza-
tion are essential to guide the field [12].

In this review we will summarize the efforts of the net-
work in the form of a panel of markers for the identifica-
tion of MDSC in mouse, human and non-human primates 
models; moreover we will discuss critical aspects of the 
isolation and study of MDSC that need to be standardized 
to avoid artifacts and allow meaningful data comparison 
across laboratories.

Isolation and characterization of major 
MDSC types from peripheral blood

Human monocytes and M‑MDSC

Human monocytes in peripheral blood can be isolated 
either through elutriation, magnetic beads separation or 
gradient centrifugation. Monocytes are readily identifiable 
among the HLA-DR+ CD11b+ myeloid compartment, as 
they constitute 10–20% of all peripheral blood mononu-
clear cells (PBMC) obtained from standard density gradi-
ent centrifugation. Blood monocytes, however, still consist 
of a phenotypically and functionally heterogeneous popu-
lations of cells that are conventionally divided into 3 sub-
sets based on the expression of CD14 and CD16 [13]. The 
major CD14highCD16neg classical monocyte population is 
rapidly recruited to sites of inflammation or tissue dam-
age, while the less-frequent CD14lowCD16high non-clas-
sical monocytes exhibit vascular surveillance functions 
during steady state. The CD14highCD16dim “intermediate” 
monocytes [14] are the least abundant monocyte popula-
tion, although their abundance can vary in pathological 
conditions [15]. Recent studies of gene expression profiles 
of the monocyte subsets [16–18] and of their kinetics in 
blood [19] have shown that the monocyte population in 
blood is a developmental continuum. A minor fraction of 
classical monocytes differentiates in blood into interme-
diate monocytes that further transition into non-classical 
monocytes [19]. In case a clear segregation of non-classi-
cal and intermediate monocytes is key, it is advised to use 
proper isotype controls in FACS sorting. Moreover, since 
natural killer (NK) cells may express CD16, it is crucial 
to include an NK-marker like CD56 (or CD335/NKp46) 
together with lymphoid lineage markers (CD3 and CD19) 
in the “dump channel”. Of note, a recent study compared 
the frequency and phenotypes of monocytes extracted 
from whole blood and gradient stratification, and found 
that the relative frequency of classical (CD14highCD16neg) 
versus non-classical (CD14lowCD16high) monocytes was 
significantly different [13]. Thus it is important to disclose 
the source of blood monocytes for useful comparisons of 
data.

Human M-MDSC are present in the same density frac-
tion as monocytes but differ from monocytes by low or the 
absence of HLA-DR expression. They are further charac-
terized as lymphocyte lineage marker negative cells with 
the following phenotype CD11b+HLA-DR−CD14+CD15−. 
It is possible to use CD33 myeloid cell marker instead of 
CD11b. In this case, M-MDSC display high CD33 expres-
sion relative to PMN-MDSC [20]. M-MDSC induction 
and expansion are mediated by a combination of solu-
ble factors (e.g., VEGF, GM-CSF, M-CSF, S100A8/A9, 
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IL-4, IL-6, IL-10, PGE2, MMP9, CXCL5, CXCL12 and 
C5a) produced by tumor and/or surrounding cells such 
as stromal cells, T cells or macrophages [21]. These fac-
tors essentially trigger activation of members of the STAT 
family of proteins, such as STAT3, STAT6 and STAT1, 
ultimately leading to expression of genes involved in the 
blockade of myeloid differentiation and in genes with 
immune regulatory activity.

Expansion of immunosuppressive M-MDSC populations 
is observed in different cancer types including breast, colo-
rectal cancer, melanoma, glioma and more, indicating that 
tumor derived factors can systemically activate this popula-
tion in the blood of cancer patients [22–25]. For a detailed 
critical review on MDSC in cancer we refer the reader to 
the companion review by Umansky et al. [26] in this sym-
posium-in-writing series.

Human neutrophils and PMN‑MDSC

Human peripheral blood neutrophils from healthy donors 
typically sediment on top of erythrocytes after density 
gradient centrifugation (see Table 1 for human M-MDSC 
and PMN-MDSC isolation in blood). While centrifug-
ing peripheral blood of patients with acute and chronic 
inflammatory conditions (cancer, sepsis, infections, auto-
immune diseases), many studies reported the presence of 
low-density neutrophils (LDN, as opposed to the normal 
density neutrophils, NDN) within the mononuclear cell 
fraction [27–29]. These LDN display typical granulocyte 
markers (e.g., CD66b and CD15) and show neutrophil-like 
morphology. They are composed of a mixture of immature 
neutrophils at different differentiation stages as well as of 
mature neutrophils with an activated phenotype [27–29]. A 
substantial part of these LDN consist of immunosuppres-
sive PMN-MDSC. These PMN-MDSC have been found 
in patients with cancer [20, 28], HIV infection [30–32], 
trauma, [33], sepsis [34, 35], but also in individuals with 
an altered immune status, like pregnant women [36–39] 
or people receiving G-CSF for stem cell mobilization 
[40–42]. Human PMN-MDSC are typically described as 
CD66b+CD15+CD14−/dimCD33dimHLA-DR− cells [20, 28, 
43], a phenotype closely similar to NDN. Studies have 
described PMN-MDSC as being composed of immature 

neutrophils [44, 45], heterogeneous populations consisting 
of both immature and mature “neutrophil-like” popula-
tions [20, 35, 37, 46], or even “activated/degranulated” 
mature neutrophils [30, 32–34, 47–51].

Besides the lineage markers CD66b or CD15, the inclu-
sion of maturation markers such us CD16 and CD11b can 
be used to discriminate CD11bhighCD16high mature neu-
trophils from neutrophil precursors present within PMN-
MDSC [44]. Alternatively, CD10 can be used as a marker 
to identify mature neutrophils within heterogeneous PMN-
MDSC populations, instead of CD16 [41].

PMN-MDSC have been shown to also express other 
markers, including activation markers (e.g., CD62L, 
CD54/ICAM-1, CD63, CD274/PD-L1), chemokine recep-
tors (e.g., CXCR2, CXCR4) and functional markers [e.g., 
arginase 1(ARG1) and Lectin-like oxidized low-density 
lipoprotein (LDL) receptor-1 (Lox-1)], at variable levels 
depending on the disease type and severity [20, 29].

However, the precise origin of immunosuppressive 
PMN-MDSC, altered granulopoiesis and/or new functional 
properties acquired by mature neutrophils in response to 
disease-specific factors remains to be determined. Thus, 
defining specific immunophenotypic and functional mark-
ers that will allow researchers to unequivocally discrimi-
nate the features of circulating and tissue infiltrated immu-
nosuppressive PMN-MDSC from their normal counterpart 
is of key importance. The importance of standardization 
experiments has been recognized by colleagues in the field 
and first data sets have been obtained [43, 52, 53]. In this 
same context, the COST consortium has recently agreed 
on a minimal number of immunophenotypic markers 
required as a first step to identify circulating PMN-MDSC 
in blood (Fig. 1). In addition, a number of published pro-
cedures to collect and manipulate blood for PMN-MDSC 
and M-MDSC recovery has been evaluated as part of the 
activities of the Mye-EUNITER COST consortium. The 
conclusions reached from this comparison have resulted 
in a number of experimental guidelines and a minimal 
marker panel summarized in Table 1 and Fig. 1. Currently, 
the consortium is in the process of further validating the 
selected markers across laboratories and performing 
experiments applying high-end technologies to answer key 
questions regarding population homogeneity and definition 
of additional functional markers.

Table 1   Guidelines for the 
isolation of human M-MDSC 
and PMN-MDSC in blood

Variable Indication

Time Isolate cells within one hour after blood withdrawal, avoid use of frozen samples
Anticoagulant Collect peripheral blood in either ethylenediaminetetraacetic acid (EDTA) or 

sodium citrate containing tubes
Separation reagent Use commercially available gradient solutions (1.077 g/L)
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Murine M‑MDSC and PMN‑MDSC

Murine MDSC have initially been defined to express Gr1 
and CD11b surface molecules. Further dichotomy is based 
on the differential expression of the cell surface mol-
ecule Ly6C and Ly6G as they define two major subsets: 
CD11b+Ly6G−Ly6Chi M-MDSC that share phenotypical 
and morphological characteristics with monocytes, and 
CD11b+Ly6G+Ly6Clo PMN-MDSC, which resemble neu-
trophils [6, 7, 43, 54]. These markers are present on multi-
ple hematopoietic cells thereby calling for a careful exclu-
sion gating for stringent flow cytometric identification of 
the MDSC subsets. A dump channel for identifiers unique 
to lymphocytes, dendritic cells, and distinct eosinophilic 
granulocytes (NK1.1, NKp46, CD3, CD19/220, CD11c, 
CCR3, Siglec-F) is advisable. Of note, recent identifica-
tion of a subset of suppressive eosinophils (also coined as 
MDSC) further complicates the flow cytometric identifica-
tion of PMN-MDSC [55]. Whereas in humans and non-
human primates (NHP) MDSC are primarily characterized 
in the blood, in mice these cells are often investigated in a 
tissue context, besides a few exceptions [46]. This analy-
sis adds additional layers of complexity. Tissue confound-
ing factors, primarily tissue resident phagocytes, may be 
minimized by a rigorous multiparameter/multidimensional 
study design. For instance, for analysis of MDSC in lung 
tumors, besides addition of the hematopoietic CD45 to 
the marker panel as above, inclusion of the alveolar mac-
rophage marker Siglec-F ensures distinction of M-MDSC 
from these non-MDSC cell types. Further expansion of 
the phenotype panel by inclusion of functional markers, 
primarily Arg1 and iNOS, also contributes as well to the 

characterization of these MDSC subsets. However, unique 
phenotypic markers have not been specifically assigned to 
murine MDSC implying that functional studies are critical 
for definition of this MDSC subset [12].

Differentiation of MDSC from other myeloid cells, 
including bonafide monocytes and neutrophils, tumor 
associated macrophages (TAM) and tumor associated neu-
trophils (TAN) is currently challenging. In diseases associ-
ated with expansion of the MDSC it appears impossible 
to make a phenotypic distinction between inflammatory 
monocytes and M-MDSC. Cell surface markers, as well as 
the buoyant properties of such cells are overlapping [56]. 
TAM exhibit certain markers, which may be employed to 
distinguish them from M-MDSC. TAM express F4/80 and 
lack or show low expression of Ly6C, abundant transcripts 
coding for IRF8, M-CSF and reduced ER-stress markers 
[53, 57, 58]. CD115 and CD244 are expressed by subsets 
of PMN-MDSC infiltrating tumors and are absent on bon-
afide neutrophils [59]. In addition, the buoyant properties 
of the murine PMN-MDSC appear distinct from neutro-
phils [46, 56]. Additional studies are nevertheless required 
to substantiate such phenotypic discrepancies between 
PMN-MDSC and neutrophils and validate their value in 
phenotypic studies.

The Mye-EUNITER network analyzed several pub-
lished reports on MDSC phenotyping [43, 52, 60] and 
agreed on a minimal list of markers for the identifica-
tion of M- and PMN-MDSC in mouse (Fig. 1); multiple 
mouse clones are used and no recommendations are given 
beyond the markers. Validation of the suppressive activity 
is essential given the challenges in immune phenotyping.

Fig. 1   MDSC populations and their markers in humans, mice 
and non-human primates. Each colored box (yellow = human, 
blue = mouse, pink = non-human primates) contains the markers for 
the identification of M and PMN-MDSC, in blood after density cen-

trifugation. These cells are mainly found in the blood of patients or 
animals with cancer, inflammatory diseases or infection (green ticks); 
so far no reports indicated a correlation between M and PMN-MDSC 
and cancer in NHP (question mark)
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Non‑human primate M‑MDSC and PMN‑MDSC

NHP are unique animal models due to their close genetic and 
physiological similarities to humans. One of major NHP spe-
cies used are rhesus macaques (macaca mulatta), which are 
critical in several late state preclinical investigations prior to 
testing in humans [61]. The immune cell subsets are largely 
similar in phenotype, function, and distribution between rhe-
sus macaques and humans. Phenotyping of rhesus immune 
cells by flow cytometric analysis is highly feasible due to 
overlap of surface molecules and cross-reactivity of most 
anti-human antibodies [62]. The NHP Reagent Resource 
website (http://www.nhpre​agent​s.org) is a useful tool to 
search for reported cross-reactive human antibody clones. 
However, some myeloid cell subsets like MDSC have only 
just started to be defined in rhesus macaques.

To purify MDSC from rhesus blood, commercially avail-
able gradient solutions (1.077 g/L) are suitable to isolate 
rhesus PBMC by standard gradient centrifugation. M-MDSC 
accumulates in the interphase after centrifugation. As in 
human blood, the population of neutrophils that also appears 
within the interphase is referred to as LDN [46]. Like in 
humans, NDN sediment to the bottom together with eryth-
rocytes after the separation procedure and can be purified 
using a 3% dextran sedimentation assay [63]. This procedure 
works well for both human and rhesus samples.

Recent studies by one of the Mye-EUNITER consortium 
members tested an array of antibodies to identify rhesus 
MDSC, along with confirmation for cross-reactivity of dif-
ferent clones (Table 2) [64]. Due to differences in the phe-
notypes of myeloid cell subsets from humans and rhesus 
macaques plus the lack of a few cross-reactive antibodies, 
the marker sets that are used to identify human MDSC do 
not work properly to define the rhesus counterparts. Differ-
ences in the phenotype of immune cells between human and 
rhesus macaques include CD56, a unique lineage-specific 
antigen of human NK cells that is also present on a subset 
of monocytes in rhesus macaques. As CD8 is expressed on 

rhesus NK cells, however, it can be used together with CD3 
and CD20 to exclude lymphoid cells in the gating strategy 
to identify rhesus MDSC. Likewise, NKG2A or NKp46 are 
suitable markers of NK cells in rhesus macaques. CD14 
works well for identification of monocytes and M-MDSC in 
both rhesus and humans [64, 65]. Although CD66abce and 
CD15 identify the same neutrophil population in humans 
[65], the anti-CD66abce antibody (clone: TET2) is most 
commonly used to stain rhesus neutrophils. CD33 is one of 
the key markers used to identify human MDSC as it is highly 
expressed on human M-MDSC and intermediately expressed 
on PMN-MDSC. However, most commercial anti-CD33 
antibodies are not cross-reactive with rhesus macaques, and 
the only clone able to recognize CD33 on rhesus cells only 
stains rhesus granulocytes and not monocytes or myeloid 
dendritic cells [64]. Gene expression analysis of purified 
rhesus cells is essential to determine CD33 mRNA expres-
sion in these cells. Currently, the best way to discriminate 
M-MDSC and monocytes is, therefore, based on the absence 
of expression of HLA-DR on the M-MDSC. For detection 
of rhesus PMN-MDSC, CD33 can be used as a marker. Of 
note, in the total rhesus LDN population both CD33− and 
CD33+ cells are present, of which only the CD33+ cells 
show inhibition of T cell responses and thus represent the 
PMN-MDSC [64]. Like in humans, the rhesus CD33− LDN 
is still a heterogeneous population composed of immature 
neutrophil precursors. The phenotypic and functional het-
erogeneity within the LDN population in rhesus macaques 
suggest that also here the definition of PMN-MDSC has yet 
to be optimally defined and is in need for additional func-
tional markers.

MDSC identity requires functional assays 
and surrogate markers

Myeloid cells can be called MDSC only if they show T 
cells suppressive functions; for a detailed critical review on 
MDSC functional assays and suppressive pathways active 
in M-MDSC and PMN-MDSC we refer the reader to the 
companion review by Bruger et al. in this symposium-in-
writing series [12].

As an additive strategy to functional MDSC analysis, 
flow cytometry analysis of functional markers on the cells 
directly ex-vivo, so without in vitro manipulation, may pro-
vide insight into their functional potential. As reviewed by 
Bruger et al. [12], MDSC suppression is mediated by various 
distinct mechanisms but so far the immunosuppressive mol-
ecules involved are largely overlapping between mouse and 
human MDSC while being less well defined in non-human 
primates. Analysis of the following suppressive molecules/
pathways may turn out to be rewarding: (i) upregulation 
of Arg1 expression, leading to the deprivation of arginine, 

Table 2   Minimal marker panel for the identification of non-human 
primates’ M-MDSC and PMN-MDSC in blood

Surface marker Antibody clone Additional 
cross-reactive 
clones

HLA-DR Tü36 L243, G46-6
CD3 SP34-2 SK7, FN18
CD20 L27 2H7
CD8 RPA-T8 SK1
CD33 AC104.3E3
CD11b ICRF44
CD66abce TET2
CD14 M5E2 MoP9

http://www.nhpreagents.org
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which is critical for the proper expression of the TCR zeta-
chain and coupling of TCR-mediated antigen recognition to 
diverse signal transduction pathways [6, 7, 11]; (ii) produc-
tion of nitric oxide (NO) via activation of inducible NO syn-
thase (iNOS) causing the nitration of T-cell receptors (TCR) 
and chemokines important for T-cell migration or induction 
of T-cell apoptosis [66, 67]; (iii) synthesis of reactive oxygen 
species (ROS) [6, 9]; (iv) production of IL-10 and trans-
forming growth factor (TGF-β) inhibiting immune effec-
tor cell functions [7, 68]; (v) upregulation of programmed 
death-ligand 1 (PD-L1) [69], which inhibits T cell-mediated 
reactivity via interaction with PD-1 receptor expressed on T 
cells [70]; (vi) upregulation of ectonucleotidases CD39 and 
CD73 [71] resulting in increased production of adenosine 
that suppresses effector T cell functions [72]; (vii) increased 
expression of Fas ligand, mediating T-cell apoptosis [73]; 
(viii) expression of elevated levels of indoleamine 2,3-dioxy-
genase (IDO) that degrade L-tryptophan, causing cell cycle 
arrest and anergy in T cells or skewing T-cell differentiation 
towards regulatory T cells (Treg) [74–76].

Finally, LOX-1 has been proposed as a candidate marker 
to distinguish human immunosuppressive PMN-MDSC 
from normal neutrophils in blood and tissues from cancer 
patients [53, 77] and in blood from infants [78]. These stud-
ies demonstrated that only the LOX-1+, but not LOX-1−, 
neutrophils displayed the characteristic gene signature and 
immune suppressive activity typical of PMN-MDSC [53, 77, 
78]. Although very intriguing, these observations need to be 
further validated in independent patient cohorts. However, as 
much as surrogate markers simplify analysis of challenging 
samples they should ideally be performed in parallel with 
standardized functional assays. If impossible they should 
preferentially be controlled using marker expression on other 
myeloid cells in the same donor in the same assay.

In summary, identification of specific markers or combi-
nations that are able to unequivocally define MDSC popula-
tions with an immunosuppressive phenotype in blood and 
tissues remains one of the major challenges in the MDSC 
field.

Challenges for the characterization 
and localization of MDSC in tissues

The introduction of therapies targeting the immune system 
to fight diseases, like immune checkpoint inhibitors to treat 
cancer, shows that a deep understanding of the immune cell 
composition in human blood and disease tissue is essential 
for guiding the development of immunotherapy. Moreover, 
knowledge of the immune cells that encompass and invade 
tumors could predict the success or failure of therapy. 
However, establishing robust disaggregation protocols that 
are reproducible among laboratories is challenging, since 

different tissue samples require variably aggressive treat-
ments, which have to be established empirically. However, 
some aspects of tissue dissociation are amenable to standard-
ization, most notably those related to enzyme types, blends 
and activity. Most protocols depend on the use of colla-
genase, which is available in many different formats exhibit-
ing highly variable substrate activities. Some products, how-
ever, offer standardized blends of purified collagenases with 
little lot variation and reduced levels of endotoxins [79]. 
Application of such collagenase blends is a prerequisite for 
attempts towards consistent flow cytometric assessment of 
tissue cells, most notably by enhancing reproducible release 
of cellular subsets and allowing confident analysis of cellular 
markers, as variability of enzymatic epitope cleavage (or 
generation of neo-epitopes) is strongly reduced. However, 
these issues should still be considered with the introduc-
tion of new lots, with parallel digestion treatment of control 
cells prior to antibody staining. Furthermore, the addition 
of DNAse is critical, as dying cells will release DNA that 
may trap viable cells, and greatly reduce cellular yields. It 
should be pointed out that neutrophils/TAN are more sensi-
tive to enzymatic exposures and isolation procedures than 
other myeloid subsets. Immunosuppressive “neutrophil-like 
cells” have been identified in human tissues, such as in the 
spleen [80–82], in the placenta [83] and in tumor tissue (the 
latter neutrophil population are generally defined as “tumor 
infiltrating/associated neutrophils, TAN) [53, 84]. As previ-
ously suggested by Quatromoni et al. [85], the application of 
optimized disaggregation method and enzymatic cocktails 
may, therefore, be necessary to maximally preserve the vital-
ity, effector functions and cell-surface marker expression of 
neutrophil/TAN population recovered from tissues. Finally, 
application of density gradient fractionation to increase 
the frequency of myeloid cells following digestion should 
be performed with caution. The density and buoyancy of 
myeloid tissue cells may be significantly different to their 
blood counterparts, for which most gradient centrifugation 
protocols are developed, and artifacts related to cell recovery 
are easily introduced. Instead, combinations of antibodies to 
lineage-restricted or stroma-associated antigens in a “dump-
mix” for negative gating could be considered.

Moreover many studies have shown that not only the 
composition of immune cell subsets in tissues, but also 
their spatial distribution, is crucial for their function. Such 
information is lost when samples are analyzed by cytomet-
ric techniques, and systematic assessments of MDSC in situ 
are needed to fully understand their biology. Indeed, pio-
neering work by Galon and colleagues showed the impact 
and predictive value of immune cell localization inside or 
at the tumor margins for the prognosis of cancer patients 
[86]. However, standardized histological characterization 
of cells is challenging due to the highly diverse tissue pro-
cessing protocols employed by different research labs, and 
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the comparatively low number of parameters that may be 
simultaneously analyzed (4–5 markers). Yet, several of the 
marker combinations proposed for flow cytometric analy-
sis may be employed on cryopreserved or formalin-fixed 
specimens, following proper antigen retrieval treatment. In 
addition, emerging methods and technologies for highly 
multiplexed immunohistochemical analysis, like consecu-
tive immunostaining and destaining of single histological 
slides [87] or application of spectral unmixing of fluores-
cent signal emission to accommodate separation of a large 
array of fluorophores on a single specimen [88], combined 
with biologically interpretable machine learning algorithms 
that enable unbiased image analysis [87] will tremendously 
increase the number of parameters for analysis.

Conclusions and future perspectives

Myeloid cells show high plasticity and readily adapt to 
changing conditions such as those present in cancer, infec-
tion and inflammation. As a consequence many myeloid 
cells can acquire (immune) regulatory activity. A prototypic 
example among those “myeloid regulatory cells” are MDSC, 
which are characterized by their profound immunosuppres-
sive activity and key pathophysiological importance. One 
of the aims of the Mye-EUNITER COST consortium is to 
standardize markers and protocols to study these differ-
ent MDSC to provide the scientific community with better 
tools to analyze these cells, distinguish functional subsets 
and ultimately decipher their important role in health and 
disease. Recent data using high-end approaches such as mass 
cytometry have confirmed the crucial role of MDSC and 
other myeloid cells with regulatory activity in disease and 
their potential as targets for therapy as well as biomarkers 
for therapy response prediction. Antibody based imaging of 
key functional molecules (e.g., Arg1, NOX2, iNOS, PD-L1, 
IL-10, TGF-β, CD124) and the post-translational protein 
modifications like the phosphorylation of transcription fac-
tors (e.g., phospho-STATs and cEBPβ) as present in myeloid 
cells will further complement these data sets. Such high-res-
olution imaging data can then be used for 3D reconstruction 
of intact tissue [89] and for studying cell–cell interactions, 
phenotypes, and microenvironments [90]. These approaches 
are expected to be particularly valuable to uncover the com-
plexity of myeloid cell biology, especially when combined 
with (single-cell) transcriptomic- and epigenetic analysis. 
Ultimately, these investments should yield a comprehensive 
atlas of the complex functional relationships between mul-
tiple immune-cell subsets in a pathological tissue context 
[43].

Understanding immune regulation at this integrative level 
will be key in the development of personalized approaches 
for immunotherapy of cancer.
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