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ABSTRACT
BACKGROUND: Major depressive disorder (MDD) in late life is a risk factor for mild cognitive impairment (MCI) and
Alzheimer’s disease. However, studies of gray matter changes have produced varied estimates of which structures
are implicated in MDD and dementia. Changes in gray matter volume and cortical thickness are macrostructural
measures for the microstructural processes of free water accumulation and dendritic spine loss.
METHODS: We conducted multishell diffusion imaging to assess gray matter microstructure in 244 older adults with
remitted MDD (n = 44), MCI (n = 115), remitted MDD1MCI (n = 61), or without psychiatric disorders or cognitive
impairment (healthy control participants; n = 24). We estimated measures related to neurite density, orientation
dispersion, and free water (isotropic volume fraction) using a biophysically plausible model (neurite orientation
dispersion and density imaging).
RESULTS: Results showed that increasing age was correlated with an increase in isotropic volume fraction and a
decrease in orientation dispersion index, which is consistent with neuropathology dendritic loss. In addition, this
relationship between age and increased isotropic volume fraction was more disrupted in the MCI group than in the
remitted MDD or healthy control groups. However, the association between age and orientation dispersion index was
similar for all 3 groups.
CONCLUSIONS: The findings suggest that the neurite orientation dispersion and density imaging measures could be
used to identify biological risk factors for Alzheimer’s disease, signifying both conventional neurodegeneration
observed with MCI and dendritic loss seen in MDD.

https://doi.org/10.1016/j.bpsgos.2023.08.018
Major depressive disorder (MDD) increases the risk of mild
cognitive impairment (MCI), a precursor to Alzheimer’s disease
(AD) (1,2). This risk remains even when MDD is in remission
(3–6). The neural markers of AD risk in individuals with remitted
MDD (rMDD) remain unclear (7–10). Cortical thickness and
volume are lagging indicators of neuronal disruption, and
microstructural changes to neurons and neurites, such as age-
related decreases in dendritic arborization and spine density,
precede macrostructural changes (11–16). Advances in
acquisition and modeling of diffusion-weighted imaging (DWI)
have allowed insight into the microstructure of gray and white
matter in vivo. More sensitive measures of cortical micro-
structure may serve to uncover proxies for dementia risk.

Despite mixed findings on gray matter changes in MDD
across age groups (17,18), a recent comprehensive meta-
analysis pointed out changes in frontoparietal and cortico-
limbic regions in patients with MDD (19). Our research found
no alterations in cortical macrostructure or standard white
matter DWI measures in individuals with rMDD compared with
ª 2023 THE AUTHORS. Published by Elsevier Inc on behalf of the
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individuals without MDD (10,20). However, neurite measures
could offer a better indicator of postmortem neuritic changes
(21–23). While gray matter neurite changes have been inves-
tigated in dementia and MCI (21,24), we are unaware of such
studies involving patients with MDD.

Neurite orientation dispersion and density imaging (NODDI)
(25) mathematically describes neurites as water diffusing along
with bundles of sticks varying by density (neurite density index
[NDI]) and degree of dispersion (orientation dispersion index
[ODI]). In gray matter, high ODI suggests greater dendritic
complexity, while in white matter, it implies disorganized fiber
bundles and cellular debris accumulation (26,27). NODDI and
similar models account for isotropic diffusion (isotropic volume
fraction [fISO]), which is free water, in each voxel. We have
found that fISO microstructural changes are strongly corre-
lated with cortical tau as measured by positron emission to-
mography (28) in older individuals who are healthy, have MCI,
or have AD. Moreover, increased tau and fISO were associated
with cognitive decline, with fISO being more linked to tau
Society of Biological Psychiatry. This is an
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presence than cortical thickness, which is typically considered
the prime indicator of cortical atrophy and tau-related neuro-
degeneration (29). These findings suggest that microstructural
properties such as fISO may be more reflective of AD pathol-
ogy and could help detect early subtle changes that are pre-
dictive of AD.

In this context, we conducted a NODDI analysis in a large
sample of older adults with rMDD, MCI (our sample included
both amnestic MCI [aMCI] and nonamnestic MCI [naMCI]), or
rMDD1MCI, and nonpsychiatric healthy control (HC) partici-
pants. The rationale for testing at-risk groups, including rMDD
(vs. active MDD), has been published recently (30). First, we
examined the relationship between age and the NODDI mea-
sures ODI, NDI, and fISO in the total sample to estimate an
overall age effect. Then we examined how this relationship was
maintained or disrupted in the various diagnostic groups. Given
our recent findings of a relationship between tau and fISO, we
hypothesized that age-related associations with NODDI mea-
sures would be somewhat disrupted in people with rMDD or
MCI and most disrupted in people with rMDD and MCI.

METHODS AND MATERIALS

Participants

Magnetic resonance imaging (MRI) data were acquired in the
context of an ongoing clinical trial called PACt-MD (Prevention
of Alzheimer’s Dementia With Cognitive Remediation Plus
Transcranial Direct Current Stimulation in Mild Cognitive
Impairment and Depression), which was approved by the
Centre for Addiction and Mental Health Research Ethics Board
(ClinicalTrials.gov Identifier: NCT02386670) (30). Of 387 par-
ticipants, 321 completed an MRI, and 244 were included in this
analysis (Figure 1). The methods and sample of PACt-MD have
been described in detail previously (10,30). Briefly, all partici-
pants provided written informed consent and underwent a
comprehensive baseline assessment, including cognitive
testing. All data presented here, including the MRI data, are
from the baseline assessments at the start of the clinical trial
and thus represent cross-sectional comparisons among
groups.

The cognitive battery included the tests that are described
herein. To assess working memory, an inverse efficiency
measure (reaction time/accuracy) was derived from 2- and 3-
back versions of the n-back task (31). Sustained attention
was assessed with d prime scores from the continuous per-
formance task (32). In addition, z scores were calculated from
the total number of correct items on the Paced Auditory Serial
Addition Test, which captures participants’ speed, ability to
process auditory information, and capacity for calculation (33).
The number of errors subtracted from the total number of
completed items on the Digit Symbol Substitution Test (cod-
ing) was used to measure participants’ associative learning
(34). Attention and task switching were measured by the Trail
Making Test, where the ratio of Trails B/A scores was taken
into account (35). The color/word switching task (Stroop)
produced corrected accuracy, which was then z scored to
assess selective attention, processing speed, and inhibitory
control (36). The Performance Assessment of Self-Care Skills
was used to measure overall functional status as indicated
by the total number of correct items from the shopping task
Biological Psychiatry: Global O
(37). The semantic, or category, test (fluency) used the total
number of correct items to indicate vocabulary size, lexical
access, and speed of processing (38). Performance on the
Brief Visuospatial Memory Test, which assessed visuospatial
learning and memory, was judged by summing raw scores
from trials 1 to 3 (39). Similarly, for the California Verbal
Learning Test, raw free recall scores across trials 1 to 5 were
summed for an assessment of verbal learning and memory
(40). Lexical retrieval abilities were measured using the total
number of correct items on the Boston Naming Test (41).
Finally, overall executive and visuospatial functioning was
evaluated using the total score on the clock task (42). Baseline
diagnoses were established in a clinical consensus conference
in which the results of the cognitive testing and all other
available information were considered (30,43).

The participants who were included in this analysis con-
sisted of 44 participants 65 years and older with rMDD, 61
participants 65 years and older with rMDD1MCI, and 115
participants 60 years and older with MCI. In this analysis, we
further divided the MCI group into aMCI and naMCI groups
(44), defining aMCI as MCI with impairment in memory on the
Brief Visuospatial Memory Test or California Verbal Learning
Test. In addition, PACt-MD recruited an HC comparator group
of older adults without a history of psychiatric disorders or
cognitive impairment; 24 control participants with usable MRI
data were included in this analysis. Characteristics of the 244
participants included in the analysis are presented in Table 1.

MRI Acquisition

As described previously (10,20), participants from the PACt-
MD study were all scanned on the same 3T GE Echospeed
(General Electric) research-dedicated scanner at the Centre for
Addiction and Mental Health. Whole-brain DWI including 30
gradient directions with b = 1000 s/mm2, 33 gradient directions
with b = 3000 s/mm2, and 5 baseline scans with b = 0 s/mm2

was performed using an echo-planar imaging sequence with a
dual spin-echo option to reduce eddy current–related distor-
tions (echo time [TEb1000/b3000] = 110 ms, repetition time
[TRb1000] = 1100 ms, [TRb3000] = 1200 ms; field of view = 25.6
cm; 128 3 128 matrix; 2.0 mm isotropic voxels; no gap; 81
slices). Axial slices were acquired parallel to the anterior
commissure–posterior commissure line covering the whole
brain. T1-weighted MRIs were acquired as sagittal 3-
dimensional fast spoiled gradient-echo images (TE = 3 ms;
TR = 6.7 ms; inversion time = 650 ms; flip angle 8�, field of
view = 24 cm; number of excitations = 1, with 0.9 mm isotropic
voxels, no gap, 81 slices). To correct for susceptibility-induced
distortions, we also acquired 2 magnitude images with TE =
6.5 ms and TE = 8.5 ms, TR = 1000 ms, and field of view = 22
cm using an interleaved slice order, 64 3 64 matrix from which
we estimated participant-specific field maps.

Image Preprocessing and Analysis

Diffusion-weighted b1000 and b3000 runs, along with the b0
runs, were concatenated and denoised with the MRtrix3 dwi-
denoise command (see Figure 2 for an overview of pre-
processing steps). b0 images were used for brain extraction
using the brain extraction toolbox from the FMRIB Software
Library (FSL version 5.0.10) (45,46).
pen Science January 2024; 4:374–384 www.sobp.org/GOS 375
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Figure 1. CONSORT (Consolidated Standards of
Reporting Trials) diagram. aMCI, amnestic MCI;
DWI, diffusion-weighted imaging; FOV, field of view;
HC, healthy control; MCI, mild cognitive impairment;
MDD, major depressive disorder; MRI, magnetic
resonance imaging; naMCI, nonamnestic MCI.
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Next, we corrected the DWI data for motion, eddy current–
induced and susceptibility-induced distortions, and artifacts
using an acquired field map in a single step using EDDY (FSL
version 5.0.10) (45,46). NODDI measures were estimated using
the microstructure diffusion toolbox (47,48). The measures of
interest were the NDI, ODI, and fISO. We also used FSL’s dtifit
algorithm to estimate fractional anisotropy to estimate the
pseudo-T1 images.
Gray Matter–Based Spatial Statistics

We used the gray matter–based spatial statistics (49–51) to
estimate gray matter cortical skeletons minimizing partial
376 Biological Psychiatry: Global Open Science January 2024; 4:374–
voluming from white matter and extraparenchymal cerebro-
spinal fluid into core gray matter. This approach also avoids
applying a Gaussian blur across anatomical boundaries.
Pseudo-T1 images were estimated in a 3-step process out-
lined in Nazeri et al. (50,51). Briefly, we derived a gray matter
probability map for each participant by generating a binary
whole-brain mask and subtracting regions of likely cerebro-
spinal fluid (derived from the NODDI fISO map) and white
matter (derived from a 2-tissue class segmentation of frac-
tional anisotropy using Atropos). Tissue contrasts were
enhanced by multiplying fISO maps by 0, gray matter by 1, and
white matter by 2. These images were summed and used to
generate a study-specific template using the
384 www.sobp.org/GOS
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Figure 2. Methods overview. Panel (A) describes the neurite orientation dispersion and density imaging (NODDI) model and derived measures (neurite
density index [NDI], orientation dispersion index [ODI], and isotropic volume fraction [fISO]). Panel (B) provides a brief visual overview of the preprocessing
steps and gray matter–based spatial statistics and shows (i) raw diffusion-weighted imaging data, (ii) denoised EDDY/motion/susceptibility-corrected data, (iii)
NODDI model fISO estimate, and (iv) pseudo-T1 image estimated via the gray matter–based spatial statistics algorithm. Panel (C) shows the group-derived
gray matter skeleton used to constrain all analyses. CSF, cerebrospinal fluid.

Table 1. Characteristics of the 244 Participants

Variable

Amnestic Nonamnestic

aMCI, n = 84 aMCI1MDD, n = 37 HC, n = 24 naMCI, n = 31 naMCI1MDD, n = 24 MDD, n = 44

Sex at Birth

Female 46 (55%) 24 (65%) 15 (62%) 18 (58%) 19 (79%) 31 (70%)

Male 38 (45%) 13 (35%) 9 (38%) 13 (42%) 5 (21%) 13 (30%)

Age, Years 73 (67.6) 72 (64.5) 70 (66.1) 72 (66.8) 71 (64.4) 71 (65.1)

Education, Yearsa 5.6 (61.3) 5.5 (61.2) 6.2 (60.88) 5.9 (61.0) 6.0 (60.86) 6.0 (61.2)

MMSE Score 27 (63.4) 28 (61.8) 28 (66.0) 28 (61.5) 29 (61.2) 29 (64.5)

MoCA Score 23 (63.4) 24 (62.6) 28 (61.4) 25 (62.0) 26 (62.8) 28 (62.0)

MADRS Score 3.6 (62.9) 4.5 (63.1) 1.0 (61.5) 3.8 (62.7) 5.0 (63.8) 4.6 (63.1)

WRAT Reading Score 62 (65.2) 63 (65.0) 66 (63.7) 64 (64.1)b 66 (63.9) 66 (63.6)

Values are presented as mean (6SD) or n (%).
aMCI, amnestic mild cognitive impairment; HC, healthy control; MADRS, Montgomery–Åsberg Depression Rating Scale; MDD, major depressive disorder; MMSE, Mini-

Mental State Examination; MoCA, Montreal Cognitive Assessment; naMCI, nonamnestic MCI; WRAT, Wide Range Achievement Test.
aEducation was measured as follows: 1, less than 7th grade; 2, junior high (9th grade); 3, partial high school (10th or 11th); 4, high school graduate; 5, partial college (at

least one year); 6, college education; 7, graduate degree.
bWRAT Reading score data are missing for one (3.2%) naMCI participant.
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buildtemplateparallel.sh script from the Advanced Normaliza-
tion Tools toolbox. Nonlinear transforms from the previous
step moved participant-specific estimates of gray matter and
NODDI derivatives into template space. We used a skeletoni-
zation algorithm on the averaged gray matter map from all
participants to achieve a consistent gray matter representa-
tion. This algorithm preserves only the local maxima perpen-
dicular to the white matter tracts. Each participant-specific
diffusion measure was projected onto this skeleton following
tract-based spatial statistics (52). The procedure and scripts
used can be found at https://github.com/arash-n/GBSS.

We visually checked the corrected 4-dimensional diffusion
volume and verified the success of the brain extraction. We
also examined the color-encoded maps of the primary eigen-
vector (V1) and, finally, residuals from the tensor fit (i.e., sum-
of-squared-error maps) to ensure that no imaging artifacts
remained following correction.
Statistical Analysis

Data were analyzed with behavioral partial least squares (PLS)
using the MATLAB (version 2021b; The MathWorks, Inc.)
implementation distributed by the Rotman Research Institute
(53). PLS is a multivariate approach similar to principal
component analysis (PCA) (54). Whereas PCA is an unsuper-
vised method that decomposes variables into a set of com-
ponents ranked from the highest to the least amount of
explained variance, behavioral PLS attempts to maximize the
explained variance in the Y matrix (behavior) in relation to the X
matrix (brain data). Here, age was the behavioral variable [see,
e.g., Figure 4 in (54)]. See the Supplement for additional details
on the PLS method.

Before entering NODDI maps into PLS, each was resi-
dualized using the fsl_glm command (FSL version 5.0.10)
(45,46). Nuisance variables included sex, number of years of
education, and the first principal component of a PCA using
quality control estimates (e.g., residual noise, average contrast-
to-noise ratio, average signal-to-noise ratio, percent outliers,
relative motion, and absolute motion) from eddyqc Quality
Assessment for DMRI (55) and MRtrix (56). Residual noise,
motion, and percent outliers loaded positively on the compo-
nent score, while average signal-to-noise ratio and contrast-to-
noise ratio loaded negatively, suggesting that the component
tracked overall scan quality. Age was a covariate of interest and
was entered directly into the behavioral PLS model.

To analyze differences among our groups (HC, MDD, aMCI,
naMCI, MDD1aMCI, MDD1naMCI) in behavioral PLS results, we
used bootstrap replicates for brain-behavior correlations, sub-
tracted them for each pairwise comparison, and fit a 95% CI to
the resulting distribution. Groups with 95% confidence bounds
excluding 0 were deemed significantly different (see embedded
tables in Figures 4 and 5). We also included Cohen’s d estimates,
computed from the bootstrap replicates, in the figures for easier
interpretation of the importance of group differences.

Three behavioral PLS analyses were run with age as a
predictor. The first analysis incorporated all 3 modalities (NDI,
fISO, and ODI) to see how they varied by age. The second
analysis explored whether the relationship between fISO and
age differed by diagnosis. The third analysis replicated this
approach of exploring the relationship between a brain
378 Biological Psychiatry: Global Open Science January 2024; 4:374–
measure and age by diagnosis, but with ODI as the outcome
measure for the brain. The first analysis showed that NDI did
not vary with age, and therefore, we did not do a separate
analysis for this modality.

To mitigate effects of multicollinearity and multiple com-
parisons, we applied PCA to reduce dimensions of 12 cogni-
tive scores. We used the MICE package in R (https://cran.r-
project.org) for estimating missing behavioral data with
chained equations before dimension reduction. The Paced
Auditory Serial Addition Test had the highest missingness, at
17%, followed by the 3-back at 14%. Results remained
consistent when these variables were excluded; therefore, we
have presented the complete set of results. All other variables
had ,10% missing values across participants.

RESULTS

Results from the PLS analyses are presented in Figures 3–6
and Tables S1–S3.

Global Age Effects on NODDI Measures

We ran an initial behavioral PLS model across all groups to
observe overall age-related changes in NODDI measures
(Figure 3 and Table S1 for clusters) and replicate Nazeri et al.
(50). A single latent variable was significant (p , .001) and
explained 63.2% of the cross-block covariance.

As can be seen in Figure 3, age-related changes in NODDI
measures were broadly distributed throughout the cortical and
subcortical gray matter, with the strongest expression in the
caudate nuclei. These changes can broadly be described as a
steep increase in fISO (r = 0.63, 95% CI [0.54–0.71]) and a
decline in ODI (r = 20.60, 95% CI [20.68 to 20.52]). NDI was
comparatively stable across the age range, and the correlation
with age did not reliably differ from 0 (r = 0.14, 95% CI [20.04
to 0.28]). For this reason, the rest of the analyses focused on
group differences in ODI and fISO.

Group Differences in ODI-Age Relationships

Our first analysis examined how ODI changed with age in each
diagnostic group.

Figure 4 shows that the relationship between ODI and age
differs by diagnostic group (Table S2 for clusters). A single latent
variable was significant (p , .001) and explained 28.6% of the
cross-block covariance. The negative spatial pattern, indicating
regions in which ODI decreased with increasing age, is con-
strained to the bilateral caudate nuclei, posterior visual cortex,
and posterior cingulate cortex. Opposite results were observed
in the cerebellum (i.e., ODI increases with age). Overall, Figure 4
shows a graduated change in ODI with age across groups, from
the HC group, which shows the largest age-related changes, to
the rMDD group, which shows the least. This pattern is broadly
consistent, with individuals with naMCI being most sensitive to
age-related changes, while changes in individuals with amnestic
impairments seem less tightly coupled to age. Interestingly, the
rMDD group was similar to the aMCI group in terms of this
measure. The HC group (r = 0.93, 95% CI [0.87–0.96]) showed
stronger age-related changes in ODI than the rMDD (r = 0.60,
95% CI [0.26–0.79]), aMCI (r = 0.69, 95% CI [0.56–0.80]), and
rMDD1aMCI (r = 0.58, 95% CI [0.34–0.74]) groups. The 2
groups that showed the fewest age-related changes in ODI, the
384 www.sobp.org/GOS
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Figure 3. Neurite orientation dispersion and
density imaging gray matter measures by age. Panel
(A) is a bootstrap ratio image that represents the
loadings of each voxel on the latent partial least
squares variable. Bootstrap ratios are thresholded at
62, showing regions where voxels are reliably
different from 0 (roughly equivalent to p , .05). The
spatial map should be interpreted alongside the
correlations with age represented in (B) and (C).
Panel (B) shows the correlations between age (x-
axis) and brain scores (y-axis). Brain scores repre-
sent the extent to which all participants within each
condition load onto the brain map. Panel (C) pre-
sents the correlations shown in panel (B) as boot-
strapped distributions with 95% CIs to accentuate
the differences in correlations with age. Thus, panel
(A) voxels with higher intensity showed a strong
positive relationship with isotropic volume fraction
(fISO), a negative relationship with the orientation
dispersion index (ODI), and no clear relationship with
neurite density index (NDI). L, left; LV, latent variable;
R, right.
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rMDD and rMDD1aMCI groups, were also each reliably
different from the naMCI group (r = 0.89, 95% CI [0.80–0.95]).

Group Differences in fISO-Age Relationships

Figure 5 reveals that the impact of age on fISO produces a
sharper divide between the HC group, the rMDD group, and
Figure 4. Relationship between orientation dispersion index (ODI) and age by d
values (thresholded at 62). Panels (B) and (C) show the correlation results. Panel (B)
panel (C) shows the bootstrapped median correlation with a 95% confidence estim
replicates with 95% confidence bounds and a Cohen’s d estimate. Thus, in panel (B
blue in panel (A)make the most robust contributions. Older age was associated with
amnestic MCI; CoV, covariance; HC, healthy control; L, left; MCI, mild cognitive imp

Biological Psychiatry: Global O
the aMCI and naMCI groups (see Table S3 for clusters). A
single latent variable was significant (p , .001) and explained
30.5% of the cross-block covariance. The spatial pattern
associated with age-related changes in fISO localized to the
bilateral frontal cortices, right caudate nucleus, right hippo-
campus, posterior cingulate cortex, and cerebellum. As with the
iagnostic group. Panel (A) shows the spatial map with reliable bootstrap ratio
shows the raw correlations between age and brain scores for each group, and
ate. Panel (D) presents a table of group differences derived from the bootstrap
), latent variable 1 (LV1) summarizes the ODI data, to which the voxels shown in
lower ODI in the bilateral caudate nuclei and higher ODI in the cerebellum. aMCI,
airment; MDD, major depressive disorder; naMCI, nonamnestic MCI; R, right.
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Figure 5. Relationship between isotropic volume fraction (fISO) and age by diagnostic group. Panel (A) shows the spatial map with reliable bootstrap ratio
values (thresholded at 62). Panels (B) and (C) show the correlation results. Panel (B) shows the raw correlations between age and brain scores summarizing
fISO in the regions highlighted in panel (A) for each group, and panel (C) shows the bootstrapped median correlation with a 95% confidence estimate. Panel
(D) presents a table of group differences derived from the bootstrap replicates with 95% confidence bounds and a Cohen’s d estimate. Thus, in panel (B),
latent variable 1 (LV1) summarizes the fISO data, to which the voxels shown in blue in panel (A)make the most robust contributions. aMCI, amnestic MCI; CoV,
covariance; HC, healthy control; L, left; MCI, mild cognitive impairment; MDD, major depressive disorder; naMCI, nonamnestic MCI; R, right.
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analysis of ODI, the relationship between flSO and age was
strongest in the HC group (r =20.93, 95% CI [20.96 to20.87]).
This relationship was present but attenuated in the rMDD group
(r = 20.59, 95% CI [20.79 to 20.27]). Thus, there was an in-
crease in fISO with age in both these groups. In contrast, all MCI
groups (with or without rMDD) showed a much weaker asso-
ciation between age and fISO, with an overall correlation of r =
0.27, 95% CI (20.08 to 0.68), suggesting that the relationship
between age and neurodegeneration/atrophy was disrupted.
The age-fISO relationship was stronger in the HC group than in
the rMDD group. Furthermore, the age-fISO relationship was
stronger in the HC and rMDD groups than in any of the MCI
groups and did not differ in any of the MCI groups, suggesting
that age had a similarly weak influence in these groups.

Brain-Behavior Relationships

The first principal component for cognitive performance
explained 35.6% of the variance and captured general cogni-
tive performance across a range of memory and executive
function tasks (Figure 6 A, B). This first principal component
was negatively predicted by fISO (F1,243 = 44.9, p = 1.454 3

10210, adjusted r2 = 0.15) and positively predicted by ODI
(F1,243 = 29, p = 1.743 3 1027, adjusted r2 = 0.10).

DISCUSSION

Overview of Findings

We investigated the associations among gray matter ODI, NDI,
fISO, age, diagnostic group, and cognitive performance. As
hypothesized, rMDD and MCI disrupted the relationship be-
tween age and gray matter microstructure, although
380 Biological Psychiatry: Global Open Science January 2024; 4:374–
rMDD1MCI did not show more microstructural disruption than
pure MCI. Age was positively correlated with cortical fISO
(indicating atrophy) and negatively correlated with ODI (indi-
cating neurite complexity) in the total sample (N = 244). The
strongest age-ODI link was seen in the HC group, and the
weakest link was seen in the rMDD and aMCI groups,
consistent with frontal-executive and frontostriatal aging
models. In contrast, a stepwise relationship was observed
between age and fISO: the association was strongest in the
HC group, followed by the rMDD group, and then the MCI
group. This pattern positions the rMDD group between the HC
and MCI groups, suggesting that it is a potential cognitive
decline precursor. These results suggest that age-related
changes in ODI and fISO could track rMDD progression to
dementia. Finally, lower gray matter ODI and higher fISO were
correlated with lower cognitive scores across all groups, vali-
dating NODDI metrics as neurobiological proxies for cognitive
impairment.

NODDI Changes With Age Irrespective of Diagnosis

Our findings are consistent with previous research that has
shown age-related increases in fISO and decreases in ODI.
Prior studies have shown widespread age-related cortical ODI
decreases (24,50), suggesting a decrease in dendritic arbori-
zation, and are backed by results of monkey histological
studies (13,57) and postmortem human studies (58). Consis-
tent with Nazeri et al. (50), we found no evidence of age-related
cortical NDI changes. While some studies have reported age-
related NDI declines, they usually considered gray and white
matter together (59). Others have linked cortical NDI decreases
384 www.sobp.org/GOS
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Figure 6. Principal component analysis (PCA) of behavioral variables. Panel (A) shows the biplot results of the PCA on cognitive variables. Panel (B) shows
the 10 cognitive tests that contributed most to the first PCA dimension. The dashed red line indicates the expected average contribution for the variables under
a uniform distribution (in this case, 1/12, or 8.3%). Variables exceeding this cutoff can be considered important for contributing to this component. Panel (C)
shows how average orientation dispersion index (ODI) and isotropic volume fraction (fISO) correlated with the first latent variable (higher PCA scores indicate
higher global cognitive performance). Labels on the x-axis are multiplied by 1000. Coding refers to digit symbol substitution, and fluency refers to semantic
fluency. aMCI, amnestic MCI; BNT, Boston Naming Test; BVMT, Brief Visuospatial Memory Test; CPT, Continuous Performance Test – Identical Pairs version;
CVLT, California Verbal Learning Test; EF, executive function; HC, healthy control; MCI, mild cognitive impairment; naMCI, nonamnestic MCI; PASAT, Paced
Auditory Serial Addition Test; PASS, Performance Assessment of Self-Care Skills; rMDD, remitted major depressive disorder; TMT, Trail Making Test.
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to advanced age (24) or significant cognitive decline and de-
mentia [e.g., (21,60)]. Generally, NODDI measures, especially
ODI, seem to be more sensitive to age-related decline than
cortical thickness (50), potentially aiding in detecting early age-
related decline (11).

Group-by-Age Effects on ODI

Our second analysis showed that ODI differentiated the HC
and naMCI groups from the rMDD group (with or without
aMCI). Contrary to our prediction and unlike our fISO results,
there was no clear separation of diagnostic groups by micro-
structure status. Our strongest results were in the bilateral
caudate nuclei, where increased age corresponded with a
decrease in ODI. This age-related caudate ODI decrease was
most evident in the HC and naMCI groups and seemed dis-
rupted in the aMCI and rMDD groups, suggesting abnormal
aging. The caudate nucleus, known for its role in motor pro-
cesses and its disruption in Parkinson’s disease, has also been
linked to memory (61,62), including procedural and associative
memory (63). The age-related decreases in caudate nucleus
ODI that we observed may directly affect working memory and
cognitive control. We also noted an age-related increase in
cerebellum ODI, especially in bilateral crus I, consistent with
Nazeri et al. (50).

Group-by-Age Effects on fISO

Age-related fISO changes distinguished the HC group from the
rMDD group and both of these groups from all MCI groups.
While fISO increased with age across the cortex, hippocam-
pus, and caudate nucleus for the entire sample (Figure 3), this
link seemed locally disrupted in the MCI groups, primarily in
the right caudate nucleus and hippocampus. fISO is associ-
ated with neuroinflammation and gliosis presence (64).

In healthy older adults, age-related fISO increases have
been reported in various hippocampal subfields such as the
dentate gyrus/CA3, CA1, fornix, perirhinal cortex, para-
hippocampal cortex, and subiculum (65). These fISO effects
were attributed to global age-related fISO increases due to
Biological Psychiatry: Global O
ventricular cerebrospinal fluid infiltrating subcortical structures,
cell necrosis increases, and general inflammation growth (58).
These age-related hippocampal fISO increases were also
negatively correlated with delayed recall (58). Because memory
impairments typify aMCI, we observed a disruption in the age-
fISO relationship in this group, consistent with a prior
study (65).

Relationship of NODDI Measures to Global
Cognition

Similar to past research on the impact of NODDI measures in
aging, we found that global increases in ODI were positively
correlated with cognitive performance as represented by the
composite PCA score, while the opposite was true for fISO.
Importantly, our finding of a negative relationship between
global cognition and fISO is consistent with the discovery of a
similar relationship between memory measures and hippo-
campal fISO values by Radhakrishnan et al. (65). Collectively,
these findings suggest that higher cortical ODI may indicate
gray matter health and potentially dendritic arborization, while
higher cortical fISO values suggest neuropathology. These
results also highlight the utility of using plausible microstruc-
tural models in exploring normal and abnormal aging.

Limitations

While an episode of MDD in an older adult increases their risk
of MCI and subsequently AD, it is less clear what the risk is for
older adults with rMDD. In previous analyses of the same
sample of PACt-MD participants, we did not find macro-
structural differences in the rMDD and HC groups (10),
underscoring the subtlety of the differences between normal
aging, rMDD, and MCI. While this new NODDI analysis shows
that normal age-related changes in microstructure are dis-
rupted in older people with rMDD or MCI, there are a few
limitations to our findings. First, our results are cross-sectional,
and thus, we cannot determine causality. Second, in this
article, we relied on diagnoses that were established during a
research consensus conference by a team of geriatric
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psychiatrists and a neuropsychologist using validated diag-
nostic criteria for MDD and MCI (7,43). However, recent evi-
dence highlights the limitations of these diagnostic labels
based on symptoms (i.e., they may not capture underlying
biological variability) (66–68). Multivariate machine learning
approaches could address this issue by uncovering latent di-
mensions that link brain and behavior simultaneously. MDD is
likely to have multiple etiologies and trajectories. For example,
in a recent meta-analysis, we showed that late-onset MDD was
associated with more widespread structural abnormalities in
regions including visual and attention networks than early-
onset MDD (19). Finally, most participants with rMDD were
receiving long-term maintenance antidepressants, particularly
selective serotonin reuptake inhibitors. The known impact of
selective serotonin reuptake inhibitors on BDNF (brain-derived
neurotrophic factor) and dendritic complexity could influence
measures such as ODI, which is considered a surrogate for
dendritic complexity (69). We acknowledge the possible
drawbacks of using the NODDI model, which was primarily
created for white matter structures rather than for gray matter
structures. The small number of HC participants and large
number of individuals with naMCI in our study may have
skewed the results; future studies should balance sample
sizes. Questions exist about the optimal default parallel diffu-
sivity used in the NODDI model, especially for gray matter (70).
While some have debated its suitability (71), it is argued that
the 1.7 mm2/ms level may be apt for gray matter due to its
lower default parallel diffusivity compared with white matter,
but this requires further research. Moreover, the Watson dis-
tribution may not be best suited for modeling gray matter.
Using NODDI for areas such as the cerebellar cortex, hippo-
campus, and deep gray matter nuclei, which have unique mi-
crostructures, may call for different axial diffusivities. Future
work should consider models that are adaptable to various
brain area specifics and capable of measuring axial diffusivity
directly.

Conclusions

In summary, we showed that age-related changes in gray
matter NODDI microstructure measures were associated with
diagnoses of rMDD or MCI and with cognitive performance.
Moreover, the age-ODI relationship was disrupted in patients
with rMDD as it was in those with aMCI, suggesting a potential
shared mechanism of risk for dementia related to dendritic
complexity. In contrast, the age-fISO relationship was sub-
stantially disrupted only in those with MCI, suggesting that
atrophy/neurodegeneration is not characteristic of rMDD in late
life.
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