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Abstract
Background: Discerning the similarity between molecules is a challenging problem in drug
discovery as well as in molecular biology. The importance of this problem is due to the fact that
the biochemical characteristics of a molecule are closely related to its structure. Therefore
molecular similarity is a key notion in investigations targeting exploration of molecular structural
space, query-retrieval in molecular databases, and structure-activity modelling. Determining
molecular similarity is related to the choice of molecular representation. Currently,
representations with high descriptive power and physical relevance like 3D surface-based
descriptors are available. Information from such representations is both surface-based and
volumetric. However, most techniques for determining molecular similarity tend to focus on
idealized 2D graph-based descriptors due to the complexity that accompanies reasoning with more
elaborate representations.

Results: This paper addresses the problem of determining similarity when molecules are described
using complex surface-based representations. It proposes an intrinsic, spherical representation that
systematically maps points on a molecular surface to points on a standard coordinate system (a
sphere). Molecular surface properties such as shape, field strengths, and effects due to field super-
positioningcan then be captured as distributions on the surface of the sphere. Surface-based
molecular similarity is subsequently determined by computing the similarity of the surface-property
distributions using a novel formulation of histogram-intersection. The similarity formulation is not
only sensitive to the 3D distribution of the surface properties, but is also highly efficient to
compute.

Conclusion: The proposed method obviates the computationally expensive step of molecular
pose-optimisation, can incorporate conformational variations, and facilitates highly efficient
determination of similarity by directly comparing molecular surfaces and surface-based properties.
Retrieval performance, applications in structure-activity modeling of complex biological properties,
and comparisons with existing research and commercial methods demonstrate the validity and
effectiveness of the approach.
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Background
Across all biological and pharmaceutical investigations,
the discovery (or development) of molecules with desired
biological activity is an important goal. Efforts to attain
this goal are strongly driven by the notion of molecular
similarity because in general similar molecules tend to
behave similarly [1,2]. Effective determination of molecu-
lar similarity requires accounting for both structural and
physicochemical characteristics of molecules [3]. It is
therefore closely related to the notions of molecular rep-
resentation and molecular descriptors. We begin this sec-
tion with a review of techniques for molecular
representation and molecular descriptors. Next, we out-
line and discuss different formulations of the molecular
query-retrieval problem. This is followed by a review of
the prior research in this area. The last subsection intro-
duces the problems associated with determining molecu-
lar similarity using complex 3D surface-based descriptors

Introduction to molecular representations and descriptors
In their simplest form, molecules can be represented using
chemical formulae. However, different structures may
yield the same formula even though they possess dissimi-
lar physical or biochemical properties (e.g. in the case of
isomers). Therefore, commonly employed representation
frameworks tend to emphasize a more explicit characteri-
zation of the molecular structure and include (see Figure
1): (1) one-dimensional string-based descriptors, such as
SMILES obtained by ordered traversal of the molecular
graph, (2) vector-space representation of (typically struc-
tural) attributes of a molecule called structure keys that
encode presence/absence of predefined sub-structural
motifs in the molecule in a binary string, (3) two-dimen-
sional and three-dimensional graphscharacterizing
molecular connectivity and inter-atomic distances, and
(4) three-dimensional surface based representations, such
as the Connolly surface. The Connolly surface is obtained
by rolling a probe-atom over the molecule and is defined
as the set of points where the surface of the probe atom
touches the van der Walls surfaces of the atoms in the mol-
ecule. It may be noted that the complexity of representa-
tions is directly correlated with their fidelity in describing
biochemical characteristics of molecules. For example,
simple characteristics of molecules such as their atomic
weight or connectivity can be derived from SMILE strings.
However, more complex biochemical properties like mol-
ecule-molecule interactions or permeation through mem-
branes are more accurately modelled using surface-based
representations [4-8].

Molecular descriptors are computationally determinable
characteristics of a molecule that describe specific molec-
ular properties. Examples include physical-chemical
descriptors such as the number of rotatable bonds, polar
surface area, electronegativity, descriptors of molecular

connectivity such as the Wiener number [9], the Randic
index [10], structure keys and molecular fingerprints,
eigenvalue-based descriptors [11], molecular moment-
based descriptors such as CoMMA [12], and surface and
field-based descriptors [4]. Other descriptors include
donor-acceptor atoms [13] and those based on the molec-
ular wave/density functions [14]. Modern approaches to
correlating molecular structure with biological activity
emphasize the use of molecular fields (see for instance
[15] and references therein); given any molecular property
P that can be calculated at an arbitrary point around a
molecule, a field can be created by integrating P with
respect to volume. Field-based descriptors typically are
superposition-based, in that their value at any particular
point, takes into account the influence of multiple atoms
of the molecule at that point. It is also straightforward to
define field-based descriptors at the molecular surface,
thereby incorporating both physicochemical and physi-
cally-relevant structural attributes in a single framework.

Formulations for molecular query-retrieval and analysis of 
prior research
The problem of molecular query-retrieval can be
approached from two primary and interrelated perspec-
tives:

• Query formulation
Two main forms of formulating the query can be distin-
guished: (1) Sub-structure-based query, where the query-
structure is constrained to be a proper subset of each of the
retrieved structures. (2) Whole-molecule query, where mol-
ecules are retrieved in terms of their overall similarity, as
defined using appropriate similarity functions, to the
query molecule. It is important to note that sub-structure
searching requires the user to have a clear picture of the
structures which are to be retrieved prior to issuing the
query [16]. Typically such detailed knowledge is available
only when the mechanism of action of the molecule is
established in terms of its activity as determined by spe-
cific structural fragments. In contrast, "whole molecule"
similarity is suitable for exploring structural space [16],
generating hypotheses, or querying chemical databases
when detailed structure-activity information, at the level
necessary for sub-structure querying is unavailable.

• Molecular representation
Molecular representations have varying capabilities in
terms of modelling biochemical characteristics of mole-
cules. As noted earlier, surface-based representations/
descriptors are more faithful to the actual physics of mol-
ecules than molecular graphs-based approaches
[4,5,7,8,17]. At the same time, graph-based representa-
tions, owing to their graphical similarity to chemical nota-
tions, tend to be highly intuitive and are also
computationally easier to characterize.
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Early attempts at determining molecular similarity, like
[9,10], used variations on the sum of inter-atomic dis-
tances. Later approaches have looked at schemes for atom
re-labelling to minimize a difference-distance matrix or
decomposing the molecular distance and connectivity
graphs into sub-graphs which are numerically character-
ized and compared [18]. Other efforts have tried to char-
acterize similarity of molecular graphs, using edit
distances, frequent sub-graphs [19], or maximal common
sub-graphs [20]. These techniques either focus on build-
ing structure-property models (and are inapplicable to
query-retrieval formulations) or do not efficaciously scale
up with repository size. With our research goals in mind,
at the state-of-the-art, two classes of techniques merit dis-
cussion:

1. Matching techniques using fixed-size representation vectors:
have been amongst the most efficient and are employed
almost in all small molecule repositories of significant
size. In this approach a molecule is represented using a
fixed size vector. Each element of the vector encodes for
the presence (or frequency) of a predefined attribute, for
example, specific structural motifs [21] or the unique
labelled paths obtained during a traversal [22]. The vec-
tors are then compared using well established dissimilar-
ity measures such as the Hamming, Euclidean, and
Tanimoto measures.

2. Matching techniques using 3D molecular graphs: depend
on super-positioning the 3D graphs of the molecules
being compared. Significant research in this context has
been done of aligning structures of large (protein) mole-
cules leading to techniques such as DALI [23], SSM [24],
SSAP [25], STRUCTAL [26], CE [27], LOCK [28], and LSQ-

MAN [29]. Other efforts include the application of geomet-
ric hashing and its variations [8]. In [4,7,17], molecular
similarity is defined using surface and field characteristics:
First, the field-effects around a molecule are estimated.
Then, the orientation of the query/model molecule (a 3D
graph), is varied to minimize an RMS error between the
field values.

The use of fixed-size representation vectors has lead to
practical solutions for querying large molecular repositor-
ies. However, such approaches have several severe draw-
backs: (1) They are limited to 2D information and
incapable of being used for complex bio-chemically rele-
vant representations/descriptors. (2) They are incapable
of representing bioisosteres (structurally different mole-
cules exhibiting the same biological effect). (3) Such rep-
resentations are predefined rather than being data-driven.
Therefore, they are incapable of capturing specificities of
molecules which were not preconceived. On the other
hand current approaches to 3D matching simply don't
scale with respect to repository size and time constraints
typical to modern query-retrieval formulations. Moreover,
such approaches, even when they seek to compare surface-
based descriptors, do so indirectly. That is, the 3D graphs
are superimposed and only then are the respective sur-
faces compared. Such an approach can miss molecules
which have similar surface/field-based properties, but
whose 3D structures do not necessarily superimpose well.

Problem characteristics and challenges
The problem of determining the similarity of molecules
when they are represented using complex 3D surface-
based descriptors presents some unique challenges which
include:

Molecular RepresentationsFigure 1
Molecular Representations. Different molecular representations shown with the Benzene molecule as an example: (a): 
chemical (graphical) representation, (b) 2D graph and graph-traversal based string representations, (c) 3D graph-based repre-
sentation, (d) surface-based representation. The molecular surface is obtained by rolling a probe-atom over a molecule as 
shown in (e). The complexity of surface-based representations can be discerned from (f) where the molecule Asprin in shown 
on the left and the molecule Capceisin on the right.
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1. Definition of a standard coordinate system for surface-based
molecular representations: To compare molecules using
their surface-based descriptions, it is necessary to have a
way of representing the shape of their surfaces. The com-
plexity lies in defining an intrinsic (view independent)
coordinate system over the curved molecular surface that
maps a point on the curved surface to a point on a stand-
ard coordinate system. Additionally, such a mapping
should be one-to-one between points on the molecular
surface and the standard coordinate system.

2. Multi-modal nature of molecular properties: Molecular
properties like geometry and donor/acceptor fields have
entirely different characteristics. For example, while the
geometric representation of a molecule is unique, donor/
acceptor fields are superposition-based. Representation
frameworks need to account for such issues.

3. Query efficiency: It is typical to conduct molecular simi-
larity queries over large sets ranging from thousands to
millions of molecules. The latter order of magnitude is
especially common in pharmaceutical settings. It is there-
fore imperative for similarity determination approaches
to be computationally efficient.

Results
Three different types of experiments were conducted to
study the efficacy of the proposed method: (1) Investiga-
tion of the method's accuracy in query-retrieval settings,
(2) Evaluation of its performance (speed), and (3) Valida-
tion through applications in structure-activity modelling
problems. Each experiment incorporated two stages: The
first stage involved a direct application of the method on
a data set with subsequent analysis of the results. In the
second stage, a comparative study was performed by
applying a state-of-the-art research or commercial tech-
nique on the same data set. Subsequently the results were
analysed to evaluate the proposed approach.

Accuracy in query-retrieval settings
The method was tested in a query-retrieval setting on a
subset of 5000 molecules randomly selected from the
MDDR collection [21]. The MDDR collection consists of
molecules that are either marketed drugs or have reached
advanced stages in a drug discovery process. Each of the
5000 molecules was successively used as a query against
the rest of the molecules. The query and model molecules

were each represented by 20 conformers, i.e. 400 distinct
molecular conformers were used per similarity computa-
tion. Since the proposed method does not require super-
positioning of the underlying structures, to distinguish its
performance from approaches that do so, a variation of
the experiment was performed where the query was repre-
sented by 20 novel (distinct from the model) conformers.
It may be noted, that for some molecules, 20 novel ener-
getically stable conformers could not be obtained. In such
cases, as many novel conformers as could be derived for
each specific structure were used. In the second stage of
this experiment, for purposes of comparison, the query-
retrieval experiments were performed using ISIS [21], a
widely used commercial 2D chemical database. ISIS uses
structure-keys in conjunction with indexing for answering
queries. However, molecular similarity using ISIS is
strictly 2D-substructure-based and can not incorporate
issues like conformations. The consolidated results from
these two stages are presented in Table 1. The first row of
the table shows results obtained with ISIS. The second row
presents the results obtained with 20 conformers for each
of the query and model molecules. The final row shows
the accuracy of the retrieval process when distinct con-
formers (between the query and the model) were
employed. Here, the asterisk denotes the aforementioned
fact that for some molecules 20 distinct stable conformers
were not obtained. In this setting, of the 5000 molecules,
4910 were correctly identified. An analysis of the results
obtained in this step indicates that the accuracy of the pro-
posed approach during query-retrieval is comparable to
that of ISIS, even though the proposed method addresses
the query-retrieval problem in a setting that involves
molecular conformations, surface-properties, and super-
position-based effects and is therefore much more com-
plex than the 2D structural motif-based search used in
ISIS.

Performance evaluation
The computational performance of the proposed
approach was tested with respect to the Molecular
Hashkeys algorithm [4], which builds on the Compass
algorithm [17,30]. This selection was based on the fact
that both the proposed approach and Molecular Hashkeys
(along with its predecessor Compass) seek to define the
surface-based similarity between molecules. The distinc-
tions of our approach from these methods lie in how the
modelling of molecular shape and field-effects are accom-

Table 1: Summary of results from the query-retrieval experiment.

Method Data Size Number of Conformations Accuracy

ISIS 5000 none 100%
Proposed 5000 20/20 100%
Proposed 5000 20/20* 98.2%
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plished as well as in how the similarity is computed. Fur-
thermore, our selection was also motivated by the fact that
Compass along with its derivatives have been extensively
applied in pharmaceutical research settings and the pub-
lished results [4,17,30] as well as our own investigations
show it to be amongst the most efficient approaches cur-
rently available for determining surface-based molecular
similarity.

In our experiment, 30 molecules from the MDDR collec-
tion were compared against each other, with 20 conform-
ers for the model and one for the query. Both the systems
reported a 100% recognition rate on this subset of mole-
cules. However, the time requirements were significantly
different. A graph plotting the time required for the simi-
larity computation with the proposed technique is shown
in Figure 2 (left plot with the data points shown as
squares). Figure 2 (right plot) shows a comparison of the
performance with the Molecular Hashkeys method (data
points corresponding to the Molecular Hashkeys algo-
rithm are shown as circles). On an average, with the pro-
posed technique 120 conformers were processed
(histogram generation and matching) every second, while
with Molecular Hashkeys, one conformer was matched
every two seconds. Both results were obtained on an SGI
Indigo2 machine. Another recent commercially available
method [7] reports matching speed of 2 minutes per mol-
ecule (on a SUN Ultra-30). It should be noted that
descriptor generation (estimating the molecular shape
and computing the donor/acceptor fields strengths) in
both the methods took similar time, averaging around 5
seconds per conformer and was done offline. However, in
the current implementation of our approach, histogram
generation is done online. Therefore, further speedups are
possible by making histogram generation part of the one-
time off-line computation.

For a given molecular property and its corresponding
property-histogram having n bins, computing the similar-
ity of a pair of conformers using the proposed technique
(see the Methods section) involves determining the histo-
gram intersection scores for matching the spatial distribu-
tion of points corresponding to the each of the
aforementioned n bins. For each bin, this score is then
used to weight the intersection score of the property-his-
togram. For an encapsulating sphere of circumference C,
characterizing the spatial distribution requires O(C) bins.
Since histogram intersection is linear in the number of
bins, the matching complexity is therefore O(Cn).

Given the size of molecular repositories, a key technical
problem is the design of indexing techniques. This is due
to the fact that even highly efficient matching techniques,
such as the one presented, require distance comparisons
which grow linearly with the number of molecules in the

database. Indexing techniques can be broadly classified as
(1) spatial access methods, such as Quadtree [31], R-Tree
[32], and KD-Tree [33], which are applicable when items
in the repository are represented by a finite set of
attributes or features and Euclidean distance between a
pair of features/attributes can be defined. Such methods
function by using the Euclidean structure of the embed-
ding space to divide repository entities into clusters and
avoiding the search of some clusters during retrieval. (2)
distance-based indexing methods, such as GNAT-Tree [34]
and VP-Tree [35], which rely only on pair-wise distances
for data retrieval and employ the triangle-inequality for
pruning the search space. While a detailed analysis of
indexing techniques is beyond the scope of this paper, it
is important to note that the performance of spatial access
methods is very good for small number of attributes and
rapidly degrades as the number of features increase. On
the other hand, the efficiency of distance-based indexing
is not good for large data collections. This underlines the
necessity for developing indexing techniques, such as
[36], which utilize specificities of structural data in the
design of the indexing strategy.

Validation through application in structure-activity models
A structure-property model captures the relationship
between the bio-chemical properties of a molecule and its
physicochemical description [37] by envisaging the bio-
chemical property Φ of a molecule Mi as the function of its
"chemical constitution":

Φ = f(Mi) (1)

The basic elements needed for the development of a struc-
ture-property model are: (1) Assay results describing the
bio-chemical property of interest, (2) a set of parameters
describing the molecular structure and its physicochemi-
cal attributes, and (3) the learning formulation along with
a statistical or machine learning technique.

As part of the validation experiments, similarity informa-
tion derived using the proposed technique was used to
model absorption through an in-vitro cell line. The data
set consisted of 30 compounds that were tested using the
Caco-2 assay. The Caco-2 (human colon adenocarcinoma
cell line) provides a close approximation of in vivo absorp-
tion and can be used to model the epithelial cell layer bar-
rier and absorption from the intestinal lumen to the
blood stream. The assay protocol used in this experiment
was designed to measure uni-directional flux and all com-
pounds were analysed at identical initial concentrations.
The range of measured values was between 0.0% (no per-
meation) to 2.8% (maximum permeation) flux units. The
set of parameters describing the molecular structure con-
sisted of a 31-dimensional descriptor vector. The first ele-
ment of this vector was the computed octanol-water
Page 5 of 12
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partition coefficient (clogP). The remaining thirty ele-
ments of the vector were obtained by computing the sim-
ilarity (using the proposed method) of the molecules
tested in the assay to a predefined set of thirty molecules
that represented a maximally diverse set of the MDDR col-
lection. The central idea behind such form of molecular
description relates to the concept of vector quantization
[38] and implicit dimensionality reduction [4]. A back-
propagation-based neural network with one hidden layer
was then used to estimate the unknown continuous rela-
tionship between the molecules and Caco-2 permeation.

Two measures were used for evaluation of the results. The
first is a ratio-scale measure called cross-validated r2 and
shows how well the model predicts data that was not used
during model construction. This measure is defined as
(Eq. (2)):

Here, Vi is the experimentally determined property of the

molecule Mi, Pi is its predicted property, and  is the

mean experimental property value. The second measure is

an ordinal measure called Kendall's τ, which shows how
well the ordering of the data is preserved during prediction
by the model. This measure, computed for n molecules, is
defined as:

Kendall's τ is determined by considering all pairs of pre-
dicted absorption values and the corresponding actual
absorption values (as determined experimentally). A pair
of predicted values is deemed to be correctly ordered if the
ordering coincides with that of the experimentally derived
values. The numerator in Eq. 3 is the difference between
the numbers of correctly and incorrectly ordered pairs.
The denominator denotes the number of all possible
pairs. Thus, if all pairs are correctly ordered, the maximum
value of τ = 1 is obtained. On the other hand, the mini-
mum value of τ = -1 is obtained if none of the pairs of pre-
dicted values retain the experimentally derived ordering.
An ordinal measure, such as Kendall's τ, reflects how well
the model can predict the ordering (or prioritisation) of
the molecules. This provides an alternate way to assess the
model as compared to measuring the numeric predictive
accuracy. Therefore, using a combination of the above
measures allows a multifaceted approach to model evalu-
ation.

The assay values for twenty of the thirty compounds were
made available for model construction and constituted
the learning phase for the neural network. As part of the
model construction step, the complete cross-correlation
matrix of the descriptors was computed and the top eight
least correlated descriptors used to learn the (empirical)
mapping between the molecules and their permeability
values. Learning was stopped when the cross-validated
error became lower than a predefined threshold.
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We begin by presenting the analysis of the method's per-
formance in a leave-one-out cross-validated setting on the
training set. In this setting, one compound was randomly
excluded from the training set and the remaining com-
pounds used to learn a model that predicted the permea-
bility for the excluded compound. The results are shown
in Figures 3(a) and 3(b). The numbers on the X-axis iden-
tify each of the molecules in the test set and the Y-axis
shows the permeation values in terms of flux-units. Figure
3(a) shows the predictive performance of the model con-
structed with the proposed similarity measure. In this case
the cross-validated r2 equalled 0.97 and the value for Ken-
dall's τ was 0.65. In Figure 3(b), results are shown for the
identical problem setting, where the only exception was
the use of the Molecular Hashkeys algorithm for comput-
ing the similarity of the molecules. For the best model
learnt based on descriptors generated using Molecular
Hashkeys, the value for cross-validated r2 equalled 0.64
and Kendall's τ equalled 0.29. It should be emphasized
that in both experiments an identical learning algorithm
(single hidden layer neural network with back-propaga-
tion) was used and the only distinction was in the similar-
ity values (due to the different algorithms used for
determining them). We also note that the relatively low
value for Kendall's τ (as compared to the cross-validated
r2) occurred because the original data had compounds
showing no absorption. The models that were derived
typically assigned very low (albeit non-zero) absorption
values to these molecules, thus leading to lower values for
Kendall's τ . The model based on similarity values derived
using Molecular Hashkeys also exhibited ordering incon-
sistencies across the entire range of absorption values.
Finally, Figure 3(c) shows the performance of the struc-
ture-activity model obtained using the proposed method,
on the test set of 10 molecules. Here, the X-axis identifies
each of the ten molecules in the test set, while the Y-axis
corresponds to the permeation values.

In Figure 3(d) – (e), we present an analysis of the
method's performance in a leave-n-out cross-validated
setting. The goal of this experiment was to examine the
robustness of the model under conditions where a signif-
icant number of samples get left out during the model
construction stage. During each iteration of the experi-
ment, 7 of the 20 molecules were randomly excluded. The
remaining 13 molecules were then used for model con-
struction and for predicting the absorption values of the 7
excluded molecules. The results are based on the perform-
ance of the model in 25 iterations of the leave-n-out
experiment. The number of iterations is arbitrarily
selected. To help visualize the results, the absorption val-
ues and predictions are grouped into three bins: Bin 1 cor-
responds to molecules exhibiting poor absorption
(defined to be less than 0.5% flux units), Bin 2 corre-
sponds to molecules that exhibited medium absorption

(between 0.5% and 1.0% flux), and Bin 3 corresponds to
molecules that showed high permeation (greater than
1.0% flux). The bar-chart in Figure 3(d) shows the
number of incorrect bin assignments that were made:
Over the 25 iterations, 85% of the overall bin assignments
were correct and in 15% of the assignments, an error of
one adjacent bin was observed (i.e. a compound with low
absorption got assigned to the medium absorption bin or
vice-versa, or a medium absorption compound was
assigned to the high absorption bin). However, in none of
the iterations, was a poorly absorbed compound pre-
dicted to be a highly absorbed one or a highly absorbed
compound predicted to be a poorly absorbed one. Figure
3(e), presents the distribution of the prediction results
across the 25 iterations of the leave-n-out cross-validation
experiment: 11 of the 25 iterations resulted in perfect bin
assignments and 7 of the 25 iterations had 83% correct
bin assignments. Further, 6 of the iterations had 67%
accurate assignments and only one of the 25 iterations
had 50% accuracy in bin assignments. These statistics
indicate the high consistency in the prediction perform-
ance of the model across variations in the training set.

Conclusion
In this paper, we considered the problem of defining sim-
ilarity between molecules based on complex surface-
based representations. Such representations capture the
physics of the molecules better than commonly used
molecular-graph-based approaches and can therefore
have significant relevance in molecular query-retrieval,
similarity-based exploration of structural space, and struc-
ture-activity modelling. We have presented a novel
approach for defining a standard coordinate system for
describing complex surface-based molecular descriptions.
For computing the similarity of molecules, we propose a
novel formulation of histogram intersection which can
take into account the distribution of surface properties in
3D space. Experimental results indicate that the similarity
formulation can be used for highly-accurate query-
retrieval and outperforms, in terms of computational
speed, both existing research and commercially available
solutions. The proposed approach was also validated by
applying it in building structure-activity models for com-
plex bio-chemical properties. The efficacy and computa-
tional efficiency of the proposed approach underline the
important role it can play in querying and exploration of
large molecular repositories.

Methods
We begin this section by describing how the molecular
surfaces are derived and how at each point of the surface,
donor and acceptor fields are defined. Next, the concept of
a standard coordinate system for describing molecular
surfaces is introduced. In this subsection we discuss the
Gauss map and its derivatives: the Extended Gaussian
Page 7 of 12
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Image and the Spherical Attribute Image. We subse-
quently describe how a sphere encapsulating the molecule
is deformed to map the molecular surface to a standard
spherical coordinate system. In the final sub-section, the
histogram-intersection based surface matching algorithm
is described and illustrated using a simple example.

Computing the molecular surface and surface properties
Starting from the atomic coordinates, the molecular sur-
face (Connolly surface) is obtained by using the program
MSRoll [39]. The geometric information provided by the
molecular surface is complemented by calculating the
donor field and acceptor field (due to H-bond donor and
H-bond acceptor atoms) of the molecule at each surface
point. The choice of these descriptors is due to their
importance in various molecular interactions and their
correlation with other surface-based properties such as
polar surface area [40].

The measurement of the donor field is done using the fol-
lowing three step procedure:

Step 1
The Hydrogen-bond donor atoms in the molecule are
identified. Typically these are Nitrogen or Oxygen atoms
with hydrogen on them. Other ways of identification like
the PATTY-rule [13] can also be used in this stage.

Step 2
The donor field is defined as an isotropic Gaussian distri-
bution and the field at point Pj due to an atom at position
Xi having van der Walls radii ri is defined as [7]:

f P X
a

r

a

r
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i i
i j( , ) exp | |=
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Performance in structure-property modellingFigure 3
Performance in structure-property modelling. Performance, comparison, and analysis of the proposed method in struc-
ture-property modelling. In (a) – (c), permeation of each compound is depicted by two adjacent bars with predicted values rep-
resented by light-blue bars on the left and measured values represented by the dark maroon bars on the right. The numbers on 
the X-axis identify each molecule used in the experiment and the Y-axis corresponds to the permeation values, measured in 
terms of flux-units. (a) Prediction results on the training set in a leave-one-out setting with the proposed method, (b) Predic-
tion results on the training set in a leave-one-out setting with the similarity algorithm [13], (c) Performance of the proposed 
method on the test set. Figures 3(d) and 3(e) present leave-n-out cross-validated results demonstrating the robustness of the 
predictive model obtained using the proposed method. The correctness of the assignment of the molecules to the three 
classes "low permeability", "medium permeability", and "high permeability" is shown in (d), while the distribution of the predic-
tion results in shown in (e).
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In Eq. (4) a is a scale factor for the radii. The value of a =
2, for which 90% of the electron density lies inside the
van-der walls radius of the atom, is used in all the experi-
ments.

Step 3
At a given surface point Pj, first, the field strength for each
donor atom is computed. The direction of each field is
given by a unit vector obtained by joining the correspond-
ing atom to Pj. The resultant donor field at Pj is subse-
quently defined as the vector sum of all donor field
vectors at this point.

The acceptor field is analogously determined. Typically
Nitrogen or Oxygen atoms with a lone pair of electrons
are considered as acceptors.

A standard coordinate system for surface-based molecular 
representations
A pre-requisite for comparing molecules described using
surface-based representations is the capability to map
points on the curved molecular surface to points on a
standard coordinate system. Such a mapping was derived
by Gauss [41], by using surface orientations to map points
on an arbitrary curved surface to a standard coordinate
system defined on a unit sphere. This mapping is formally
referred to as the Gauss map and can be defined as fol-
lows:

Definition 1
Let G ⊂ R3 be an oriented surface in Euclidean space. Fur-
ther, let S be a unit sphere, called the Gaussian sphere. The
Gauss map M is the mapping M : G → S, where the surface
normal for each point on the surface G is translated to the
origin of the sphere S and the end points of each normal
lie on the surface of the Gaussian sphere S (see Figure 4(a)
for an illustration).

The Extended Gaussian Image (EGI), is a derivative of the
Gauss Map and is obtained from it by assuming that the
surface G is evenly sampled into patches and that each
surface normal is associated with a single unit of mass
which it votes to the corresponding point on the Gaussian
sphere. The distribution of the mass on the surface of the
Gaussian sphere, obtained in this fashion, depends on the
shape of the underlying surface and constitutes the EGI.
The EGI possesses certain important characteristics that
include: (i) If two convex objects have the same EGI, they
are provably congruent (the Minkowski theorem [42]),
(ii) As an object rotates, its EGI rotates in the same man-
ner, (iii) The EGI mass on the Gaussian sphere is inverse
of the Gaussian curvature of the underlying object surface,
and (iv) The centre of mass of the EGI lies at the origin of
the Gaussian sphere.

The properties of the EGI, especially the Minkowski theo-
rem provide the foundations for representing and com-
paring surface-based description of objects. However, an
inherent problem of EGI-type mappings is their depend-
ence on the Gauss map which is non-unique for non-con-
vex shapes. Because of this, more than two points on an
object surface may be mapped on the same point on the
Gaussian sphere. Unfortunately, many molecules in their
stable conformations induce surfaces that are non-convex
and therefore the direct application of techniques from
the EGI family is precluded for their representation and
matching. To address this problem, we utilize the idea of
the Spherical Attribute Image (SAI) [43], where a geodesic
surface is iteratively defined to fit the underlying surface.
We begin by placing the molecule inside a semi-regularly
tessellated sphere (Figure 4(c)), which is obtained by sub-
divisions of the triangular sides of a 20-side icosahedron
into sub-triangles. The placement of the molecule is done
such that its centre of mass coincides with the centre of the
sphere. The spherical surface is then modelled as a
mechanical system and iteratively deformed to fit the
molecular surface. The deformations are subject to a local
regularity constraint [44] that ensures uniformity in meas-
urement of the molecular surface and invariance to rota-
tion of the molecule. The convergence of the
deformations yield a fit of the deformable surface to the
molecular surface and thus provide a one-to-one mapping
between points on the molecular surface and points on
the encapsulating sphere. The distance of a point on the
sphere to its corresponding position on the molecular sur-
face is then used to estimate the surface shape. Further, the
donor and acceptor field values at a specific point on the
molecular surface are mapped to its corresponding point
on the sphere. At the conclusion of this step, each point
on the sphere contains three values, characterizing respec-
tively (1) the shape of the underlying surface, (2) the
donor field strength, and (3) the acceptor field strength, of
the underlying surface point.

Comparing surface-based molecular representations
We seek to define the similarity of two molecules in terms
of the similarity of their surface-property distributions,
described using histograms. The technique of histogram
intersection [45] can be used to rapidly compare the empir-
ical similarity of these distributions. Given the data points
corresponding to two distributions, the basic idea consists
of quantizing the range of values in fixed size bins. Subse-
quently, the common number of data points across all the
bins is determined and normalized by the size of the dis-
tribution. Histogram intersection is computationally effi-
cient since its complexity is linear in the number of bins.
Furthermore, the method is robust to noise and invariant
to translation and rotation of the distributions being com-
pared.
Page 9 of 12
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In the case of molecules, it is critical not just to account for
the similarity of property distributions, but also the simi-
larity of the spatial distribution of these properties on the
molecular surface. Hence, a direct application of histo-
gram intersection to compare the property distributions is
by itself, insufficient. This issue is illustrated in Figure 4(c)
where three distributions of four black and two grey
squares are shown. Our goal is to devise a technique that
can distinguish the first and second distributions (which
are identical and related by a planar rotation), from the
third. Clearly using the histogram of greyscale value of the
squares is insufficient, since all the three distributions pro-
duce identical greyscale histograms. Intuitively, we would
like two distributions to be considered similar when they
have both similar distribution of values and are similarly
distributed spatially.

Our approach uses the distribution of the pair-wise dis-
tances between points having similar property values to
characterize the spatial distribution of the corresponding
molecular property. Furthermore, we use histogram inter-
section to compute the similarity of the property distribu-
tions as well as the similarity of the spatial distributions.
In addition to efficient computability and invariance to
translations and rotations of the molecule, a significant
advantage of this approach is its ability to characterize
(and compare) the relative spatial distribution of surface
properties, which act as pharmacophores. The main steps
of the method are:

Step 1
For each specific property of the molecule, such as shape,
donor field, or acceptor field, the property values across

all the points on the surface of the tessellated sphere are
determined. The range of values is then uniformly divided
into a predefined number N of bins (we use N = 100 in all
our experiments). Next, the frequency of points lying in
each bin is computed. This defines the histogram of the
corresponding property distribution. We term such histo-
grams as property-histograms. In general, let P1...PK
denote the K properties being used to characterize a mol-
ecule. In the following, we shall denote by HL, the prop-
erty-histogram corresponding to the property PL, L ∈ [1,...,
K]. For each property-bin m of HLsteps 2–4 are repeated.

Step 2
The points contained in property-bin m are clustered in
terms of their adjacency on the surface of the encapsulat-
ing sphere and the centroid of each cluster is determined.

Step 3
The geodesic distance between all pairs of centroids is
computed. We note that Steps 2–3 constitute a computa-
tionally cheaper alternative to computing the distances
between all pairs of points in property-bin m.

Step 4
These distances are quantized in distance-bins which are
defined in increments of one Angstrom in the range [0, C/
2], where C denotes the circumference of the encapsulat-
ing sphere (measured in Angstroms). Next, the frequency
in each distance-bin is computed to come up with the dis-
tance-histogram. Thus, there is a distance-histogram cor-
responding to every bin m of a property-histogram HL.
The content of a distance-bin denotes the number of
points on the surface of the sphere that lie within a spe-

Illustration of the principle concepts in the proposed molecular representation and matchingFigure 4
Illustration of the principle concepts in the proposed molecular representation and matching. (a) The Gauss Map, 
(b) Embedding of a molecule in the tessellated sphere, (c) Intuition behind the surface matching approach: The three distribu-
tions contain an identical number of black and grey squares and can not be disambiguated by a property (colour)-based histo-
gram. However, a histogram of pair-wise distances between similar colored squares, which captures their spatial distribution, 
can distinguish the third distribution from the first two. Such a characterization has the added advantage of being invariant to 
Euclidean transformations of the distribution.
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cific distance (equal to the range of the distance-bin) of
each other and have values for the property PL that fall
within the range of property-bin m in HL.

Step 5

Consider two molecules M1 and M2, a property PL along

with the corresponding property histograms  and ,

and a bin m of the property-histograms. Let  and 

denote the distance-histograms of property-bin m for

molecules M1 and M2 respectively. The similarity γm, of the

spatial distribution of points lying in property-bin m, for

M1 and M2 is defined as the histogram intersection of 

and :

In Eq. (5), the average of the two histogram intersections
is taken to ensure symmetry. Further (denoting the index-
ing of the distance-bins by j):

Step 6

The similarity of two molecules M1 and M2, in context of

the property PL is denoted by SimL(M1, M2) and is defined

as the histogram intersection of the corresponding prop-

erty-histograms  and , where the intersection score

for each property-bin m is weighted by γm. Formally:

Where (indexing the bins of the property-histogram HL by
the variable m), the intersection of the property-histo-
grams of two arbitrary molecules Ma and Mb is defined as:

Step 7
The similarity between two molecules M1 and M2 given K
properties P1...PK is defined as the average similarity com-

puted over all the K properties and is denoted as Sim-

full(M1, M2).

Step 8
The overall similarity between the molecules is computed
by taking into account molecular conformations; it is
defined as the maximum value of Simfull(M1, M2) over the
set of conformations each of the molecules can attain (see
Eq. (9)). The conformations can be generated using a
package such as CONCORD [46].

Where Ci and Cj denote specific conformers of the mole-

cules M1 and M2 respectively. Further, the sets

 respectively

denote all the conformations attainable by the molecules
M1 and M2.

Illustrative example

We use the point distributions shown in Figure 4(c) to
illustrate, in a highly simplified setting, the working of the
method. To facilitate the example, we assume that the
coordinates of the squares in the left distribution are:
X1(0, 0); X2(0, 2); X3(1, 2); X4(1, 0); Y1(0, 1); and Y2(1,
1). Similarly, the coordinates of the squares in the right
distribution are: X1(0, 0); X2(0, 1); X3(1, 2); X4(1, 1);
Y1(0, 2); and Y2(1, 0). We also note that the middle dis-
tribution is identical to the left one and related to it by a
rotation. Let L, the property of interest be the grey-scale
values of the squares. We shall assume that all the dark-
coloured squares have a greyscale value of 0, while all the
light-coloured squares have a greyscale value of 200. For
the sake of simplicity, we also assume that the number of
bins N equals 2. The property histograms for the three dis-
tributions computed in Step-1 are:

. For Steps 2–3 which are

repeated for each property-bin of each property-histo-
gram, we simplify by computing all the pair-wise dis-
tances between the squares. In Step-4, we find that for
each of the three distributions, the smallest (largest) pair-
wise distances are: 1 (2.23). Constructing bins of unit size
across this range, we obtain the following distance-histo-
grams:.

In Step-5, consequently, the similarity scores γm of the spa-

tial distribution of points lying in each of the bins of 
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and  are: γ1 = 0.5; γ2 = 0. In Step-6, the similarity of the

first and third distributions is therefore: SimL(M1, M3) = (4

× 0.5 + 2 × 0)/6 = 0.33. The reader may trivially verify that
SimL(M1, M3) = 1.0.
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