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A kind of neutral-type Cohen-Grossberg shunting inhibitory cellular neural networks with distributed delays and impulses is
considered. Firstly, by using the theory of impulsive differential equations and the contracting mapping principle, the existence
and uniqueness of the almost periodic solution for the above system are obtained. Secondly, by constructing a suitable Lyapunov
functional, the global exponential stability of the unique almost periodic solution is also investigated. The work in this paper
improves and extends some results in recent years. As an application, an example and numerical simulations are presented to
demonstrate the feasibility and effectiveness of the main results.

1. Introduction

It is well known that shunting inhibitory cellular neural net-
works (SICNNs) [1] havemany applications in psychophysics,
speech, perception, robotics, adaptive pattern recognition,
vision, and image processing.Therefore, the stability problem
for SICNNs has been one of the most active areas of research
and there exist some results on the existence and stability of
periodic and almost periodic solutions for the SICNNs with
delays [2–11]. In applications, almost periodic oscillation is
more accordant with fact [12–14]. Therefore, there are some
good results on the existence and global exponential stability
of almost periodic solutions for SICNNs [3–9].

The Cohen-Grossberg neural network (CGNN) [15] is a
kind of important neural network described as follows:
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where 𝑛 ≥ 2 is the number of neurons in the network,
𝑥

𝑖
= 𝑥
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(𝑡) denotes the state variable associated with the

𝑖th neuron, 𝑎
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represents an amplification function, and 𝑏
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an appropriately behaved function such that the solution of
the above model remains bounded. The 𝑛 × 𝑛 connection
matrix 𝐴 = (𝑐
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) tells how the neurons connected in the

network, and the activation function 𝑓

𝑗
shows how the 𝑗th

neuron reacts to the input; 𝐼
𝑖
represents external input at

the time 𝑡. Cohen-Grossberg neural networks have been
extensively studied because of their immense potentials of
application perspective in different areas such as pattern
recognition, optimization, signal, and image processing. In
addition, experiments show that time delays can affect the
stability of neural networks and lead to some other dynamical
behaviors, such as periodic or almost periodic oscillation,
bifurcation, and chaos. Hence, they have been the object
of intensive analysis by numerous authors and some good
results on the existence and global exponential stability of
periodic and almost periodic solutions for Cohen-Grossberg
neural networks with delays have been obtained [16–28].

On the other hand, the states of many processes and
phenomena studied in optimal control, biology, mechanics,
biotechnologies, medicine, electronics, economics, and so
forth are often subject to instantaneous perturbations and
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experience abrupt changes at certain moments of time. The
duration of these changes is very short and negligible in
comparison with the duration of the process considered and
can be thought of as “momentary” changes or as impulses.
Systems with short-term perturbations are often naturally
described by impulsive differential equations. Owing to its
theoretical and practical significance, the theory of impulsive
differential equations has undergone a rapid development in
the last couple of decades [29–33].

Stimulated by the above reasons, Yang [26] considered
the following Cohen-Grossberg SICNNs with distributed
delays, which has a more general and complicated dynamics
than SICNNs. By using Schaeffer’s theorem and constructing
suitable Lyapunov functional, he obtained the existence
and global exponential stability of periodic solution of the
following impulsive Cohen-Grossberg SICNNs with delays:
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1, 2, . . . , 𝑛.
In addition, owing to the complicated dynamic properties

of the neural cells in the real world, the existing neural
network models in many cases cannot characterize the prop-
erties of a neural reaction process precisely. It is natural that
systems will contain some information about the derivative
of the past state to further describe and model the dynamics
for such complex neural reactions. This new type of neural
networks is called neutral neural networks or neural networks
of neutral type. The motivation for us to study neural
networks of neutral type comes from three aspects. First,
based on biochemistry experiments, neural information may
transfer across chemical reactivity, which results in a neutral-
type process. Second, in view of electronics, it has been

shown that neutral phenomena exist in large-scale integrated
(LSI) circuits. Last, the key point is that cerebra can be
considered as a super LSI circuit with chemical reactivity,
which reasonably implies that the neutral dynamic behaviors
should be included in neural dynamic systems [34–37].

In the literatures, although there are numerous results on
the existence and stability of neural networks with delays,
the problem of global exponential stability of almost periodic
solution for neutral-type Cohen-Grossberg SICNNs has not
been fully investigated. And, in most situations, delays are in
fact unbounded and a neural network usually has a spatial
nature due to the presence of various parallel pathways. That
is, the entire history affects the present, so distributed delays
are more suitable to practical neural networks (see [9, 10, 17,
18, 23–25]).

Therefore, in this paper, we consider the following
neutral-type Cohen-Grossberg SICNNs with distributed
delays:
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The state of electronic networks is often subject to

instantaneous perturbations and experiences abrupt changes
at certain instants, which may be caused by switching
phenomenon, frequency change, or other sudden noise that
exhibit impulsive effects [30, 38]. For example, according
to Arbib [39] and Haykin [40], when a stimulus from the
body or the external environment is received by receptors
the electrical impulses will be conveyed to the neural net
and impulsive effects arise naturally in the net. An artificial
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electronic system, such as neural network, is often subject
to impulsive perturbation; the abrupt changes in the voltages
produced by faulty circuit elements are exemplary of impulse
phenomena, which can affect the dynamical behaviors of
the system. Besides, in contrast to the retarded differential
systems, the neutral differential systems in which time delays
appear explicitly in the state velocity vector can be applied
to describe more complicated nonlinear engineering and
bioscience models, for example, population ecology [41], the
distributed networks with lossless transmission lines [42,
43], chemical reactors [44], and partial element equivalent
circuits in very large-scale integration (VLSI) system [45].
Therefore, neutral delays and impulses can heavily affect the
dynamical behaviors of the networks, and thus it is necessary
to investigate both effects of neutral delays and impulses on
the dynamics of neural networks.

The main purpose of this paper is to establish some
new sufficient conditions on the existence, uniqueness, and
global exponential stability of almost periodic solution of
neutral-type Cohen-Grossberg SICNNs (4). First, by using
the almost periodic theory of impulsive differential equations
[31] and the contracting mapping principle, the existence
and uniqueness of almost periodic solution of system (4)
are considered. Further, by constructing a suitable Lyapunov
functional, the global exponential stability of system (4) is
also investigated. The main results in this paper compensate
for the deficiency in papers [21–25] and extend the main
results in [3–8, 26] (see Remarks 9, 10, 12, and 13).

The organization of this paper is as follows. In Section 2,
we give some basic definitions and necessary lemmas which
will be used in later sections. In Sections 3 and 4, by using
the contracting mapping principle and constructing suitable
Lyapunov functional, we obtain some sufficient conditions
ensuring existence, uniqueness, and global exponential sta-
bility of almost periodic solution of system (4). Finally, an
example and numerical simulations are given to illustrate that
our results are feasible.

2. Preliminaries

Now, let us state the following definitions and lemmas, which
will be useful in proving our main result.
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We list some assumptionswhichwill be used in this paper.
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𝑔

𝑖𝑗 (
𝑢) − 𝑔

𝑖𝑗 (
V)










≤ 𝐿

𝑔

𝑖𝑗
|𝑢 − V| ,











𝑎

𝑖𝑗 (
𝑢) − 𝑎

𝑖𝑗 (
V)










≤ 𝐿

𝑎

𝑖𝑗
|𝑢 − V| ,

(12)

∀𝑢, V ∈ R, where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.

(𝐻
5
) There exist positive constants𝑀𝑓

𝑖𝑗
and𝑀

𝑔

𝑖𝑗
such that











𝑓

𝑖𝑗 (
𝑢)











≤ 𝑀

𝑓

𝑖𝑗
,











𝑔

𝑖𝑗 (
𝑢)











≤ 𝑀

𝑔

𝑖𝑗
,

(13)

∀𝑢 ∈ R, where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.

(𝐻
6
) The set of sequences {𝑡𝑗

𝑘
}, 𝑡𝑗
𝑘
= 𝑡

𝑘+𝑗
− 𝑡

𝑘
, where 𝑘 ∈ Z,

𝑗 ∈ Z, and {𝑡

𝑘
} ∈ I, is uniformly almost periodic and

there exists 𝜃 > 0 such that inf
𝑘∈Z𝑡
1

𝑘
= 𝜃 > 0.

(𝐻
7
) The sequence {𝛼

𝑖𝑗𝑘
} is almost periodic.

Remark 5. By (𝐻

4
) and (𝐻

5
) and Theorem 1.4 in [31] and

Theorem 6.1.1 in [46], we can easily obtain that system (4)
has a unique solution on R.

Let

X = {𝑢 ∈ 𝑃𝐶 (R,R
𝑚×𝑛

) : 𝑢 is differential on R \ {𝑡

𝑘
} ,

𝑢 and �̇� are almost periodic}
(14)

with the norm ‖𝑢‖X = max{‖𝑢(𝑠)‖, ‖�̇�(𝑠)‖}. Then X is a
Banach space with the norm ‖ ⋅ ‖X.

∀𝜑 ∈ X, consider the following auxiliary systems:

�̇�

𝑖𝑗 (
𝑡) = −

𝑎

𝑖𝑗
(𝜑

𝑖𝑗 (
𝑡)) 𝑏𝑖𝑗

(𝑡, 𝜑

𝑖𝑗 (
𝑡))

𝜑

𝑖𝑗 (
𝑡)

𝑢

𝑖𝑗 (
𝑡) − 𝑎

𝑖𝑗
(𝜑

𝑖𝑗 (
𝑡))

⋅

[

[

∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵

𝑘𝑙

𝑖𝑗
(𝑡) ∫

+∞

0

𝑤

𝑖𝑗 (
𝑠) 𝑓𝑖𝑗

(𝜑

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡) ∫

+∞

0

V
𝑖𝑗 (

𝑠) 𝑔𝑖𝑗
(𝜑

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠

⋅ ∫

+∞

0

𝜒

𝑖𝑗 (
𝑠) �̇�

𝑖𝑗
(𝑡 − 𝑠) d𝑠 − 𝐼

𝑖𝑗 (
𝑡)

]

]

,

Δ𝑢

𝑖𝑗
(𝑡

𝑘
) = 𝛼

𝑖𝑗𝑘
𝑢

𝑖𝑗
(𝑡

𝑘
) ,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 ∈ Z.

(15)

Obviously, system (15) is equivalent to system (4). So, we
investigate the existence, uniqueness, and global exponential
stability of almost periodic solution for system (15).

Together with system (15) we consider the linear system

�̇�

𝑖𝑗 (
𝑡) = −𝑑

𝜑

𝑖𝑗
(𝑡) 𝑢𝑖𝑗 (

𝑡) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑢

𝑖𝑗
(𝑡

𝑘
) = 𝛼

𝑖𝑗𝑘
𝑢

𝑖𝑗
(𝑡

𝑘
) , 𝑘 ∈ Z,

(16)

where 𝑑

𝜑

𝑖𝑗
(𝑡) fl 𝑎

𝑖𝑗
(𝜑

𝑖𝑗
(𝑡))𝑏

𝑖𝑗
(𝑡, 𝜑

𝑖𝑗
(𝑡))/𝜑

𝑖𝑗
(𝑡) ∈ [𝜃

𝑖𝑗
, 𝜃

𝑖𝑗
], 𝑡 ∈ R,

where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.
Now let us consider the equations

�̇�

𝑖𝑗 (
𝑡) = −𝑑

𝜑

𝑖𝑗
(𝑡) 𝑢𝑖𝑗 (

𝑡) , 𝑡

𝑘−1
< 𝑡 ≤ 𝑡

𝑘
, (17)

and their solutions

𝑢

𝑖𝑗 (
𝑡) = 𝑢

𝑖𝑗 (
𝑠) 𝑒

−∫
𝑡

𝑠
𝑑
𝜑

𝑖𝑗
(𝑙)d𝑙 (18)

for 𝑡
𝑘−1

< 𝑠 < 𝑡 ≤ 𝑡

𝑘
, where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.

Then [31], the solutions of system (16) are in the form

𝑢

𝑖𝑗
(𝑡; 𝑡

0
; 𝑢

𝑖𝑗
(𝑡

0
)) = 𝑊

𝑖𝑗
(𝑡, 𝑡

0
) 𝑢

𝑖𝑗
(𝑡

0
) ,

𝑡

0
∈ R, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛,

(19)

where

𝑊

𝜑

𝑖𝑗
(𝑡, 𝑠)

=

{

{

{

{

{

{

{

𝑒

−∫
𝑡

𝑠
𝑑
𝜑

𝑖𝑗
(𝑙)d𝑙

, 𝑡

𝑘−1
< 𝑠 < 𝑡 < 𝑡

𝑘
;

𝑘+1

∏

𝑙=𝑚

(1 + 𝛼

𝑖𝑗𝑙
) 𝑒

−∫
𝑡

𝑠
𝑑
𝜑

𝑖𝑗
(𝑙)d𝑙

, 𝑡

𝑚−1
< 𝑠 ≤ 𝑡

𝑚
< 𝑡

𝑘
< 𝑡 ≤ 𝑡

𝑘+1
.

(20)
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Lemma 6 (see [6]). If the conditions (𝐻
3
) and (𝐻

6
)-(𝐻
7
) and

the following condition hold:

(𝐻
8
) 𝜆
𝑖𝑗
fl 𝜃

𝑖𝑗
− 𝑁 ln(1 + sup

𝑘∈Z|𝛼𝑖𝑗𝑘|) > 0, where constant
𝑁 is determined in Lemma 3, where 𝑖 = 1, 2, . . . , 𝑚 and
𝑗 = 1, 2, . . . , 𝑛,

then










𝑊

𝜑

𝑖𝑗
(𝑡, 𝑠)











≤ 𝜉

𝑖𝑗
𝑒

−𝜆𝑖𝑗(𝑡−𝑠)
, (21)

where 𝜑 ∈ X and 𝜉

𝑖𝑗
fl exp{𝑁 ln(1 + sup

𝑘∈Z|𝛼𝑖𝑗𝑘|)}, where
𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.

Lemma 7. If the conditions (𝐻
3
) and (𝐻

6
)–(𝐻
8
) hold, then











𝑊

𝜑

𝑖𝑗
(𝑡, 𝑠) − 𝑊

𝜙

𝑖𝑗
(𝑡, 𝑠)











≤ 𝜎

𝑖𝑗
𝜉

𝑖𝑗









𝜑 − 𝜙







X
𝑒

−𝜆𝑖𝑗(𝑡−𝑠)
, (22)

where 𝜑, 𝜙 ∈ X, where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.

Proof. By (𝐻

3
), we have















𝑒

−∫
𝑡

𝑠
𝑑
𝜑

𝑖𝑗
(𝑙)d𝑙

− 𝑒

−∫
𝑡

𝑠
𝑑
𝜙

𝑖𝑗
(𝑙)d𝑙











=















𝑒

−∫
𝑡

𝑠
𝑑
𝜁

𝑖𝑗
(𝑙)d𝑙

[𝑑

𝜑

𝑖𝑗
(𝑡) − 𝑑

𝜙

𝑖𝑗
(𝑡)]















= 𝑒

−∫
𝑡

𝑠
𝑑
𝜁

𝑖𝑗
(𝑙)d𝑙























𝑎

𝑖𝑗
(𝜑

𝑖𝑗 (
𝑡)) 𝑏𝑖𝑗

(𝑡, 𝜑

𝑖𝑗 (
𝑡))

𝜑

𝑖𝑗 (
𝑡)

−

𝑎

𝑖𝑗
(𝜙

𝑖𝑗 (
𝑡)) 𝑏𝑖𝑗

(𝑡, 𝜙

𝑖𝑗 (
𝑡))

𝜙

𝑖𝑗 (
𝑡)























≤ 𝑒

−∫
𝑡

𝑠
𝑑
𝜁

𝑖𝑗
(𝑙)d𝑙

𝜎

𝑖𝑗









𝜑

− 𝜙







X
,

(23)

where 𝑑

𝜁

𝑖𝑗
is between 𝑑

𝜑

𝑖𝑗
and 𝑑

𝜙

𝑖𝑗
, where 𝑖 = 1, 2, . . . , 𝑚 and

𝑗 = 1, 2, . . . , 𝑛.
By (20) and (23), we have











𝑊

𝜑

𝑖𝑗
(𝑡, 𝑠) − 𝑊

𝜙

𝑖𝑗
(𝑡, 𝑠)











≤

{

{

{

{

{

{

{















𝑒

−∫
𝑡

𝑠
𝑑
𝜑

𝑖𝑗
(𝑙)d𝑙

− 𝑒

−∫
𝑡

𝑠
𝑑
𝜙

𝑖𝑗
(𝑙)d𝑙











, 𝑡

𝑘−1
< 𝑠 < 𝑡 < 𝑡

𝑘
;

𝑘+1

∏

𝑙=𝑚











1 + 𝛼

𝑖𝑗𝑙

























𝑒

−∫
𝑡

𝑠
𝑑
𝜑

𝑖𝑗
(𝑙)d𝑙

− 𝑒

−∫
𝑡

𝑠
𝑑
𝜙

𝑖𝑗
(𝑙)d𝑙











, 𝑡

𝑚−1
< 𝑠 ≤ 𝑡

𝑚
< 𝑡

𝑘
< 𝑡 ≤ 𝑡

𝑘+1
,

≤ 𝜎

𝑖𝑗









𝜑 − 𝜙







X

{

{

{

{

{

{

{

𝑒

−∫
𝑡

𝑠
𝑑
𝜁

𝑖𝑗
(𝑙)d𝑙

, 𝑡

𝑘−1
< 𝑠 < 𝑡 < 𝑡

𝑘
;

𝑘+1

∏

𝑙=𝑚











1 + 𝛼

𝑖𝑗𝑙











𝑒

−∫
𝑡

𝑠
𝑑
𝜁

𝑖𝑗
(𝑙)d𝑙

, 𝑡

𝑚−1
< 𝑠 ≤ 𝑡

𝑚
< 𝑡

𝑘
< 𝑡 ≤ 𝑡

𝑘+1
.

(24)

Similar to the proof in Lemma 6, we obtain that











𝑊

𝜑

𝑖𝑗
(𝑡, 𝑠) − 𝑊

𝜙

𝑖𝑗
(𝑡, 𝑠)











≤ 𝜎

𝑖𝑗
𝜉

𝑖𝑗









𝜑 − 𝜙







X
𝑒

−𝜆𝑖𝑗(𝑡−𝑠)
, (25)

where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛. This completes the
proof.

3. Almost Periodic Solution

In this section, the existence and uniqueness of almost
periodic solution of system (4) will be studied.

For any bounded function 𝑓 ∈ 𝐶(R), 𝑓+ = sup
𝑠∈R|𝑓(𝑠)|;

𝑓

−
= inf
𝑠∈R|𝑓(𝑠)|.

Let

𝐾

1
fl max
(𝑖,𝑗)

{

𝜉

𝑖𝑗
𝑎

𝑖𝑗
𝐼

+

𝑖𝑗

𝜆

𝑖𝑗
− 𝜉

𝑖𝑗
𝜔

𝑖𝑗

} ,

𝐾

2
fl max
(𝑖,𝑗)

{

{

{

𝑎

𝑖𝑗
𝐼

+

𝑖𝑗
(𝜆

𝑖𝑗
+ 𝜉

𝑖𝑗
𝜃

𝑖𝑗
)

𝜆

𝑖𝑗
− (𝜆

𝑖𝑗
+ 𝜉

𝑖𝑗
𝜃

𝑖𝑗
) 𝜔

𝑖𝑗

}

}

}

,

𝜔

𝑖𝑗
fl 𝑎

𝑖𝑗
∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗
+ 𝑎

𝑖𝑗
∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
,

𝜇

𝑖𝑗
fl ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗
𝐾 + ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
𝐾 + 𝐼

+

𝑖𝑗
,

]
𝑖𝑗
fl ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗
+ 2 ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙+

𝑖𝑗
𝐿

𝑔

𝑖𝑗
𝐾,

(26)

where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.

Theorem 8. Assume that (𝐻

1
)–(𝐻
8
) hold; suppose further

that
(𝐻
9
) 𝜂 fl max

(𝑖,𝑗)
{𝜉

𝑖𝑗
𝜔

𝑖𝑗
/𝜆

𝑖𝑗
, [1 + 𝜉

𝑖𝑗
𝜃

𝑖𝑗
/𝜆

𝑖𝑗
]𝜔

𝑖𝑗
} < 1;

(𝐻
10
) 𝛿 fl max

(𝑖,𝑗)
{𝜎

𝑖𝑗
𝐾+(𝜉

𝑖𝑗
𝜃

𝑖𝑗
/𝜆

𝑖𝑗
)[(𝐿

𝑎

𝑖𝑗
+𝜎

𝑖𝑗
𝑎

𝑖𝑗
)𝜇

𝑖𝑗
+𝑎

𝑖𝑗
]
𝑖𝑗
]+

(𝐿

𝑎

𝑖𝑗
𝜇

𝑖𝑗
+ 𝑎

𝑖𝑗
]
𝑖𝑗
)} < 1.

Then system (4) has a unique almost periodic solution.

Proof. Define a map Φ onX by

(Φ𝜑) (𝑡)

= ((Φ

11
𝜑) (𝑡) , . . . , (Φ𝑖𝑗

𝜑) (𝑡) , . . . , (Φ𝑚𝑛
𝜑) (𝑡))

𝑇

,

(27)

where

(Φ

𝑖𝑗
𝜑) (𝑡) = ∫

𝑡

−∞

𝑊

𝜑

𝑖𝑗
(𝑡, 𝑠) 𝐹

𝜑

𝑖𝑗
(𝑠) d𝑠, (28)
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in which

𝐹

𝜑

𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗
(𝜑

𝑖𝑗 (
𝑡))

[

[

∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵

𝑘𝑙

𝑖𝑗
(𝑡)

⋅ ∫

+∞

0

𝑤

𝑖𝑗 (
𝑠) 𝑓𝑖𝑗

(𝜑

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠 + ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡)

⋅ ∫

+∞

0

V
𝑖𝑗 (

𝑠) 𝑔𝑖𝑗
(𝜑

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠

⋅ ∫

+∞

0

𝜒

𝑖𝑗 (
𝑠) �̇�

𝑖𝑗
(𝑡 − 𝑠) d𝑠 − 𝐼

𝑖𝑗 (
𝑡)

]

]

,

(29)

for 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, and 𝑘 ∈ Z, ∀𝑡 ∈ R.
LetX∗ be a subset ofX defined by

X
∗
= {𝜑 ∈ X :









𝜑







X
≤ 𝐾} ,

𝐾 fl max {𝐾
1
, 𝐾

2
} .

(30)

Firstly, we prove that Φ is self-mapping fromX∗ toX∗.
Similar to the argument as that in Theorem 4.1 of [31], it

is easy to prove that Φ𝜑 is almost periodic. For 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ Z,

we obtain that

(

̇

Φ

𝑖𝑗
𝜑) (𝑡) =

d
d𝑡

(Φ

𝑖𝑗
𝜑) (𝑡)

= −𝑑

𝜑

𝑖𝑗
(𝑡) (Φ𝑖𝑗

𝜑) (𝑡) + 𝐹

𝜑

𝑖𝑗
(𝑡) ,

(31)

together with the almost periodicity of Φ

𝑖𝑗
𝜑; ̇

Φ

𝑖𝑗
𝜑 is also

almost periodic, where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.
So Φ𝜑 ∈ X.

For arbitrary 𝜑 ∈ X∗ it follows from (𝐻

2
)–(𝐻
4
),

Lemma 6, and (𝐻

9
) that









Φ𝜑









= max
(𝑖,𝑗)

sup
𝑡∈R

















∫

𝑡

−∞

𝑊

𝜑

𝑖𝑗
(𝑡, 𝑠) 𝐹

𝜑

𝑖𝑗
(𝑠) d𝑠

















= max
(𝑖,𝑗)

sup
𝑡∈R

























∫

𝑡

−∞

𝑊

𝜑

𝑖𝑗
(𝑡, 𝑠) 𝑎𝑖𝑗

(𝜑

𝑖𝑗 (
𝑠))

[

[

∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵

𝑘𝑙

𝑖𝑗
(𝑠)

⋅ ∫

+∞

0

𝑤

𝑖𝑗 (
V) 𝑓𝑖𝑗 (𝜑𝑘𝑙 (𝑠 − V)) dV + ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑠)

⋅ ∫

+∞

0

V
𝑖𝑗 (

V) 𝑔𝑖𝑗 (𝜑𝑘𝑙 (𝑠 − V)) dV

⋅ ∫

+∞

0

𝜒

𝑖𝑗 (
V) �̇�
𝑖𝑗
(𝑠 − V) dV − 𝐼

𝑖𝑗 (
𝑠)

]

]

d𝑠
























≤ max
(𝑖,𝑗)

sup
𝑡∈R

∫

𝑡

−∞

𝜉

𝑖𝑗
𝑒

−𝜆𝑖𝑗(𝑡−𝑠)
𝑎

𝑖𝑗
[

[

∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗









𝜑







X

+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗









𝜑







X
+ 𝐼

+

𝑖𝑗
]

]

d𝑠

≤ max
(𝑖,𝑗)

𝜉

𝑖𝑗

𝜆

𝑖𝑗

[𝜔

𝑖𝑗









𝜑







X
+ 𝑎

𝑖𝑗
𝐼

+

𝑖𝑗
] ≤ 𝐾,











̇

Φ𝜑











= max
(𝑖,𝑗)

sup
𝑡∈R











−𝑑

𝜑

𝑖𝑗
(𝑡) (Φ𝑖𝑗

𝜑) (𝑡) + 𝐹

𝜑

𝑖𝑗
(𝑡)











≤ max
(𝑖,𝑗)

[1

+

𝜉

𝑖𝑗
𝜃

𝑖𝑗

𝜆

𝑖𝑗

] [𝜔

𝑖𝑗









𝜑







X
+ 𝑎

𝑖𝑗
𝐼

+

𝑖𝑗
] ≤ 𝐾.

(32)

From (32), ‖Φ𝜑‖X ≤ 𝐾, which implies that Φ𝜑 ∈ X∗.
Secondly, we will prove that the mapping Φ is a contrac-

tion mapping of X∗. ∀𝜑 = {𝜑

𝑖𝑗
}, 𝜙 = {𝜙

𝑖𝑗
} ∈ X∗, it follows

from (𝐻

2
)–(𝐻
4
), Lemmas 6 and 7, and (𝐻

10
) that









Φ (𝜑 (𝑡)) − Φ (𝜙 (𝑡))









= max
(𝑖,𝑗)

sup
𝑡∈R

















∫

𝑡

−∞

𝑊

𝜑

𝑖𝑗
(𝑡, 𝑠) [𝐹

𝜑

𝑖𝑗
(𝑠) − 𝐹

𝜙

𝑖𝑗
(𝑠)] d𝑠

















+max
(𝑖,𝑗)

sup
𝑡∈R

















∫

𝑡

−∞

[𝑊

𝜑

𝑖𝑗
(𝑡, 𝑠) − 𝑊

𝜙

𝑖𝑗
(𝑡, 𝑠)] 𝐹

𝜙

𝑖𝑗
(𝑠) d𝑠

















≤ max
(𝑖,𝑗)

sup
𝑡∈R

























∫

𝑡

−∞

𝑊

𝜑

𝑖𝑗
(𝑡, 𝑠)

{

{

{

− ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
(𝜑

𝑖𝑗 (
𝑠)) 𝐵

𝑘𝑙

𝑖𝑗
(𝑠)

⋅ ∫

∞

0

𝑤

𝑖𝑗 (
𝜄) 𝑓𝑖𝑗

(𝜑

𝑘𝑙 (
𝑠 − 𝜄)) d𝜄

+ ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
(𝜙

𝑖𝑗 (
𝑠)) 𝐵

𝑘𝑙

𝑖𝑗
(𝑠)

⋅ ∫

∞

0

𝑤

𝑖𝑗 (
𝜄) 𝑓𝑖𝑗

(𝜙

𝑘𝑙 (
𝑠 − 𝜄)) d𝜄

− ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
(𝜑

𝑖𝑗 (
𝑠)) 𝐶

𝑘𝑙

𝑖𝑗
(𝑠)

⋅ ∫

∞

0

V
𝑖𝑗 (

𝜄) 𝑔𝑖𝑗
(𝜑

𝑘𝑙 (
𝑠 − 𝜄)) d𝜄

⋅ ∫

∞

0

𝜒

𝑖𝑗 (
𝜄) �̇�

𝑖𝑗
(𝑠 − 𝜄) d𝜄

+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
(𝜙

𝑖𝑗 (
𝑠)) 𝐶

𝑘𝑙

𝑖𝑗
(𝑠)

⋅ ∫

∞

0

V
𝑖𝑗 (

𝜄) 𝑔𝑖𝑗
(𝜙

𝑘𝑙 (
𝑠 − 𝜄)) d𝜄

⋅ ∫

∞

0

𝜒

𝑖𝑗 (
𝜄)

̇

𝜙

𝑖𝑗
(𝑠 − 𝜄) d𝜄

+ [𝑎

𝑖𝑗
(𝜑

𝑖𝑗 (
𝑠)) − 𝑎

𝑖𝑗
(𝜙

𝑖𝑗 (
𝑠))] 𝐼𝑖𝑗 (

𝑠)

}

}

}

d𝑠
























+max
(𝑖,𝑗)

sup
𝑡∈R

















∫

𝑡

−∞

𝜎

𝑖𝑗
𝜉

𝑖𝑗
𝑒

−𝜆𝑖𝑗(𝑡−𝑠)d𝑠
















𝑎

𝑖𝑗
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⋅

[

[

∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗
𝐾 + ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
𝐾 + 𝐼

+

𝑖𝑗
]

]

⋅









𝜑 − 𝜙







X

≤ max
(𝑖,𝑗)

sup
𝑡∈R

∫

𝑡

−∞

𝜉

𝑖𝑗
𝑒

−𝜆𝑖𝑗(𝑡−𝑠)

⋅

[

[

∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

(𝐿

𝑎

𝑖𝑗
𝐾 + 𝑎

𝑖𝑗
) 𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗

+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

(𝐿

𝑎

𝑖𝑗
𝑀

𝑔

𝑖𝑗
𝐾 + 2𝑎

𝑖𝑗
𝐿

𝑔

𝑖𝑗
𝐾)𝐶

𝑘𝑙+

𝑖𝑗
+ 𝐿

𝑎

𝑖𝑗
𝐼

+

𝑖𝑗
]

]

d𝑠

⋅









𝜑 − 𝜙







X

+max
(𝑖,𝑗)

𝜎

𝑖𝑗
𝑎

𝑖𝑗
𝜉

𝑖𝑗

𝜆

𝑖𝑗

⋅

[

[

∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗
𝐾 + ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
𝐾 + 𝐼

+

𝑖𝑗
]

]

⋅









𝜑 − 𝜙







X

≤ max
(𝑖,𝑗)

𝜉

𝑖𝑗

𝜆

𝑖𝑗

[𝐿

𝑎

𝑖𝑗
𝜇

𝑖𝑗
+ 𝑎

𝑖𝑗
]
𝑖𝑗
]









𝜑 − 𝜙







X

+max
(𝑖,𝑗)

𝜎

𝑖𝑗
𝑎

𝑖𝑗
𝜉

𝑖𝑗

𝜆

𝑖𝑗

𝜇

𝑖𝑗









𝜑 − 𝜙







X

≤ max
(𝑖,𝑗)

𝜉

𝑖𝑗

𝜆

𝑖𝑗

[(𝐿

𝑎

𝑖𝑗
+ 𝜎

𝑖𝑗
𝑎

𝑖𝑗
) 𝜇

𝑖𝑗
+ 𝑎

𝑖𝑗
]
𝑖𝑗
]









𝜑 − 𝜙







X

≤ 𝛿









𝜑 − 𝜙







X
,











̇

Φ (𝜑 (𝑡)) −

̇

Φ (𝜙 (𝑡))











= max
(𝑖,𝑗)

sup
𝑡∈R











𝑑

𝜙

𝑖𝑗
(𝑡) (Φ𝑖𝑗

𝜙) (𝑡)

−𝑑

𝜑

𝑖𝑗
(𝑡) (Φ𝑖𝑗

𝜑) (𝑡) + [𝐹

𝜑

𝑖𝑗
(𝑡) − 𝐹

𝜙

𝑖𝑗
(𝑡)]











≤ max
(𝑖,𝑗)

sup
𝑡∈R

{











𝑑

𝜑

𝑖𝑗
(𝑡) − 𝑑

𝜙

𝑖𝑗
(𝑡)





















Φ

𝑖𝑗
𝜙











+











𝑑

𝜑

𝑖𝑗
(𝑡)





















(Φ

𝑖𝑗
𝜑) (𝑡) − (Φ

𝑖𝑗
𝜙) (𝑡)











+











𝐹

𝜑

𝑖𝑗
(𝑡) − 𝐹

𝜙

𝑖𝑗
(𝑡)











}

≤ max
(𝑖,𝑗)

{𝜎

𝑖𝑗
𝐾 +

𝜉

𝑖𝑗
𝜃

𝑖𝑗

𝜆

𝑖𝑗

[(𝐿

𝑎

𝑖𝑗
+ 𝜎

𝑖𝑗
𝑎

𝑖𝑗
) 𝜇

𝑖𝑗
+ 𝑎

𝑖𝑗
]
𝑖𝑗
]

+ (𝐿

𝑎

𝑖𝑗
𝜇

𝑖𝑗
+ 𝑎

𝑖𝑗
]
𝑖𝑗
)}









𝜑 − 𝜙







X

≤ 𝛿









𝜑 − 𝜙







X
.

(33)

By (33), one has








Φ (𝜑) − Φ (𝜙)







X
≤ 𝛿









𝜑 − 𝜙







X
, (34)

where 𝛿 ∈ (0, 1). By the contracting mapping principle, there
exists a unique fixed point 𝜑∗ ∈ Ω satisfying Φ(𝜑

∗
) = 𝜑

∗,
which implies that system (15) has a unique almost periodic
solution 𝜑

∗ with ‖𝜑

∗
‖X ≤ 𝐾. That is, system (4) has a unique

almost periodic solution. This completes the proof.

Remark 9. In recent years, there aremany scholars concerned
with the almost periodic solution of Cohen-Grossberg neural
networks. The main method is the antiderivative method.
We consider the following simple Cohen-Grossberg neural
networks:

�̇�

𝑖 (
𝑡) = −𝑎

𝑖
(𝑢

𝑖
)

[

[

𝑏

𝑖
(𝑢

𝑖
) −

𝑛

∑

𝑗=1

𝑐

𝑖𝑗 (
𝑡) 𝑓𝑗

(𝑢

𝑗
) − 𝐼

𝑖 (
𝑡)

]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(35)

Similar to the arguments as that in [21–25], system (35) can
be written as the following system:

�̇�

𝑖 (
𝑡) = −𝑑

𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) +

𝑛

∑

𝑗=1

𝑐

𝑖𝑗 (
𝑡) 𝑓𝑗

(ℎ

−1

𝑖
(𝑥

𝑗 (
𝑡)))

+ 𝐼

𝑖 (
𝑡) ,

(36)

where 𝑥

𝑖
= ℎ

𝑖
(𝑢

𝑖
) and ℎ

𝑖
(𝑢

𝑖
) is an antiderivative of 1/𝑎

𝑖
(𝑢

𝑖
)

with ℎ

𝑖
(0) = 0, where 𝑖 = 1, 2, . . . , 𝑛. In order to construct

a contraction mapping, the authors [21–25] considered the
following auxiliary system associated with system (36):

�̇�

𝑖 (
𝑡) = −𝑑

𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) +

𝑛

∑

𝑗=1

𝑐

𝑖𝑗 (
𝑡) 𝑓𝑗

(ℎ

−1

𝑖
(𝜑

𝑗 (
𝑡)))

+ 𝐼

𝑖 (
𝑡) , 𝑖 = 1, 2, . . . , 𝑛,

(37)

where 𝜑 = (𝜑

1
, 𝜑

2
, . . . , 𝜑

𝑛
)

𝑇 is an arbitrary almost periodic
function. Based on system (37) and by using the exponential
dichotomy of linear system, the following mapping was
established:

𝑇𝑥

𝑖 (
𝑡) = ∫

𝑡

−∞

𝑒

∫
𝑡

𝑠
𝑑𝑖(𝑥
𝜑

𝑖
(𝑟))d𝑟

[

[

𝑛

∑

𝑗=1

𝑐

𝑖𝑗 (
𝑠) 𝑓𝑗

(ℎ

−1

𝑖
(𝜑

𝑗 (
𝑠)))

+ 𝐼

𝑖 (
𝑠)

]

]

d𝑠, 𝑖 = 1, 2, . . . , 𝑛.

(38)

It is worthwhile to note that system (37) is not a linear
auxiliary system. The right side of system (37) is nonlinear
about 𝑥

𝑖
(i.e., 𝑑

𝑖
(𝑥

𝑖
)𝑥

𝑖
); then there is nonlinear term about

𝑥

𝑖
in auxiliary system (37), so the exponential dichotomy

of linear system cannot be used. In this paper, we consider
system (15) as an equivalent form of system (4). On the
right side of system (15), the first term keeps unchangeable;
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then linear auxiliary system (15) associated with system (4)
is obtained. Further, owing to the advent of 𝑑

𝑖
(𝑥

𝑖
), mapping

(38) is not the same as ever. When we verify that 𝑇 is a
contraction mapping, the term 𝑒

∫
𝑡

𝑠
𝑑𝑖(𝑥
𝜑

𝑖
(𝑟))d𝑟 of (38) must be

considered since it depends on 𝜑 (see (33)). However, the
authors in [21–25] ignored this point. Therefore, our work in
this paper compensates for the deficiency in papers [21–25].
Clearly, as 𝑎

𝑖𝑗
(𝑢

𝑖𝑗
) = 𝑎

𝑖𝑗
and 𝑏

𝑖𝑗
(𝑡, 𝑢

𝑖𝑗
) = 𝑢

𝑖𝑗
, where 𝑎

𝑖𝑗
> 0 is a

constant, then the auxiliary system (15) will be changed into
the corresponding form in the literature [3–8].

Remark 10. In view of Theorem 8, we can easily see that
the neutral term and impulsive effects bring great difficulty
to the proof. And (𝐻

8
)–(𝐻
10
) in Theorem 8 indicate that

the impulsive effect and neutral term have negative effect on
the existence and uniqueness of almost periodic solution of
system (4).The work of this paper extends themain results in
[3–8].

4. Global Exponential Stability of Almost
Periodic Solution

In this section, we study global exponential stability of almost
periodic solution of system (4) by constructing a suitable
Lyapunov functional.

For convenience, let

𝜏

𝑖𝑗
fl ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙+

𝑖𝑗
𝑀

𝑓

𝑖𝑗
𝐿

𝑎

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

2𝐾𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
𝐿

𝑎

𝑖𝑗

+ 𝐿

𝑎

𝑖𝑗
𝐼

+

𝑖𝑗
,

𝜌

𝑖𝑗
fl ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

2𝐾𝑎

𝑖𝑗
𝐶

𝑘𝑙+

𝑖𝑗
𝐿

𝑔

𝑖𝑗
,

𝜎

𝑖𝑗
fl ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
,

(39)

where𝐾 is defined as that inTheorem 8, where 𝑖 = 1, 2, . . . , 𝑚

and 𝑗 = 1, 2, . . . , 𝑛.

Theorem 11. Assume that (𝐻
1
)–(𝐻
10
) hold; suppose further

that

(𝐻
11
) sup
(𝑖,𝑗,𝑘)

|1 + 𝛼

𝑖𝑗𝑘
| ≤ 1;

(𝐻
12
) (1 −𝜎

𝑖𝑗
)𝜃

𝑖𝑗
> 𝜎

𝑖𝑗
𝜃

𝑖𝑗
+𝜏

𝑖𝑗
+𝜌

𝑖𝑗
, where 𝑖 = 1, 2, . . . , 𝑚 and

𝑗 = 1, 2, . . . , 𝑛.

Then system (4) has a unique almost periodic solution, which
is globally exponentially stable.

Proof. It follows fromTheorem 8 that system (4) has a unique
almost periodic solution 𝑦 = {𝑦

𝑖𝑗
} with initial value 𝜙 = {𝜙

𝑖𝑗
}.

We next show that the almost periodic solution 𝑦 is globally
exponentially stable.

Make a transformation for system (4):𝑥
𝑖𝑗
= 𝑧

𝑖𝑗
−𝑦

𝑖𝑗
, where

𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛, where 𝑧 = {𝑧

𝑖𝑗
} is arbitrary

solution of system (4) with initial value 𝜓 = {𝜓

𝑖𝑗
}.

By (5) and (𝐻

11
), there exist small enough positive

constants 𝜔 and 𝜖 such that

∫

∞

0

𝑤

𝑖𝑗 (
𝑠) 𝑒

𝜔𝑠d𝑠 ≤ 1 + 𝜖,

∫

∞

0

V
𝑖𝑗 (

𝑠) 𝑒

𝜔𝑠d𝑠 ≤ 1 + 𝜖,

∫

∞

0

𝜒

𝑖𝑗 (
𝑠) 𝑒

𝜔𝑠d𝑠 ≤ 1 + 𝜖,

𝜔 −

𝜃

𝑖𝑗
− (1 − 𝜖) (𝜃𝑖𝑗

+ 𝜃

𝑖𝑗
) 𝜎

𝑖𝑗
− 𝜏

𝑖𝑗
− (1 − 𝜖) 𝜌𝑖𝑗

1 − (1 − 𝜖) 𝜎𝑖𝑗

< 0,

(40)

where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.
Define

𝑉

𝑖𝑗 (
𝑡) = 𝑒

𝜔𝑡 








𝑥

𝑖𝑗 (
𝑡)











, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛. (41)

In view of system (4), for 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ Z, we have

𝐷

+
𝑉

𝑖𝑗 (
𝑡) ≤ 𝜔𝑒

𝜔𝑡 








𝑥

𝑖𝑗 (
𝑡)











+ 𝑒

𝜔𝑡 sgn (𝑥

𝑖𝑗 (
𝑡)) �̇�𝑖𝑗 (

𝑡)

≤ 𝜔𝑒

𝜔𝑡 








𝑥

𝑖𝑗 (
𝑡)











+ 𝑒

𝜔𝑡
{

{

{

−[𝑎

𝑖𝑗
(𝑧

𝑖𝑗 (
𝑡)) 𝑏𝑖𝑗

(𝑡, 𝑧

𝑖𝑗 (
𝑡))

− 𝑎

𝑖𝑗
(𝑦

𝑖𝑗 (
𝑡)) 𝑏𝑖𝑗

(𝑡, 𝑦

𝑖𝑗 (
𝑡))] sgn (𝑧

𝑖𝑗 (
𝑡) − 𝑦

𝑖𝑗 (
𝑡))

+

























𝑎

𝑖𝑗
(𝑧

𝑖𝑗 (
𝑡)) ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙

𝑖𝑗
(𝑡)

⋅ ∫

∞

0

𝑤

𝑖𝑗 (
𝑠) 𝑓𝑖𝑗

(𝑧

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠 − 𝑎

𝑖𝑗
(𝑦

𝑖𝑗 (
𝑡))

⋅ ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

𝑤

𝑖𝑗 (
𝑠) 𝑓𝑖𝑗

(𝑦

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠

























+

























𝑎

𝑖𝑗
(𝑧

𝑖𝑗 (
𝑡)) ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡)

⋅ ∫

∞

0

V
𝑖𝑗 (

𝑠) 𝑔𝑖𝑗
(𝑧

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠

⋅ ∫

∞

0

𝜒

𝑖𝑗 (
𝑠) �̇�𝑖𝑗 (

𝑡 − 𝑠) d𝑠 − 𝑎

𝑖𝑗
(𝑦

𝑖𝑗 (
𝑡))

⋅ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

V
𝑖𝑗 (

𝑠) 𝑔𝑖𝑗
(𝑦

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠

⋅ ∫

∞

0

𝜒

𝑖𝑗 (
𝑠) �̇�

𝑖𝑗
(𝑡 − 𝑠) d𝑠

























+











[𝑎

𝑖𝑗
(𝑧

𝑖𝑗 (
𝑡)) − 𝑎

𝑖𝑗
(𝑦

𝑖𝑗 (
𝑡))] 𝐼𝑖𝑗 (

𝑡)











}

}

}
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≤ 𝜔𝑒

𝜔𝑡 








𝑥

𝑖𝑗 (
𝑡)











−

[

[

𝜃

𝑖𝑗
− ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙+

𝑖𝑗
𝑀

𝑓

𝑖𝑗
𝐿

𝑎

𝑖𝑗

− ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

2𝐾𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
𝐿

𝑎

𝑖𝑗
− 𝐿

𝑎

𝑖𝑗
𝐼

+

𝑖𝑗
]

]

𝑒

𝜔𝑡 








𝑥

𝑖𝑗 (
𝑡)











+ ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗
∫

∞

0

𝑒

𝜔𝑠
𝑤

𝑖𝑗 (
𝑠)

⋅ 𝑒

𝜔(𝑡−𝑠) 






𝑥

𝑘𝑙 (
𝑡 − 𝑠)









d𝑠 + ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗

⋅ ∫

∞

0

𝑒

𝜔𝑠
𝜒

𝑖𝑗 (
𝑠) 𝑒

𝜔(𝑡−𝑠) 








�̇�

𝑖𝑗 (
𝑡 − 𝑠)











d𝑠

+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

2𝐾𝑎

𝑖𝑗
𝐶

𝑘𝑙+

𝑖𝑗
𝐿

𝑔

𝑖𝑗
∫

∞

0

𝑒

𝜔𝑠V
𝑖𝑗 (

𝑠)

⋅ 𝑒

𝜔(𝑡−𝑠) 






𝑥

𝑘𝑙 (
𝑡 − 𝑠)









d𝑠 ≤

[

[

𝜔 − 𝜃

𝑖𝑗

+ ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙+

𝑖𝑗
𝑀

𝑓

𝑖𝑗
𝐿

𝑎

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

2𝐾𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
𝐿

𝑎

𝑖𝑗

+ 𝐿

𝑎

𝑖𝑗
𝐼

+

𝑖𝑗
]

]

𝑉

𝑖𝑗 (
𝑡) + (1 − 𝜖)

[

[

∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗

+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

2𝐾𝑎

𝑖𝑗
𝐶

𝑘𝑙+

𝑖𝑗
𝐿

𝑔

𝑖𝑗
]

]

sup
𝑠∈(−∞,𝑡]

𝑉

𝑘𝑙 (
𝑠) + (1 − 𝜖)

⋅ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
sup
𝑠∈(−∞,𝑡]

𝑒

𝜔𝑠 








�̇�

𝑖𝑗 (
𝑠)











≤ [𝜔 − 𝜃

𝑖𝑗

+ 𝜏

𝑖𝑗
]𝑉

𝑖𝑗 (
𝑡) + (1 − 𝜖) 𝜌𝑖𝑗

sup
𝑠∈(−∞,𝑡]

𝑉

𝑘𝑙 (
𝑠) + (1 − 𝜖) 𝜎𝑖𝑗

⋅ sup
𝑠∈(−∞,𝑡]

𝑒

𝜔𝑠 








�̇�

𝑖𝑗 (
𝑠)











,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛.

(42)

Further, for 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ Z, we obtain from system (4) that

𝑒

𝜔𝑡 








�̇�

𝑖𝑗 (
𝑡)











= 𝑒

𝜔𝑡 








�̇�

𝑖𝑗 (
𝑡) − �̇�

𝑖𝑗
(𝑡)











≤ 𝑒

𝜔𝑡























𝑎

𝑖𝑗
(𝑧

𝑖𝑗 (
𝑡)) 𝑏𝑖𝑗

(𝑡, 𝑧

𝑖𝑗 (
𝑡)) − 𝑎

𝑖𝑗
(𝑦

𝑖𝑗 (
𝑡)) 𝑏𝑖𝑗

(𝑡, 𝑦

𝑖𝑗 (
𝑡))

𝑧

𝑖𝑗 (
𝑡) − 𝑦

𝑖𝑗 (
𝑡)























⋅











𝑥

𝑖𝑗 (
𝑡)











+ 𝑒

𝜔𝑡

























𝑎

𝑖𝑗
(𝑧

𝑖𝑗 (
𝑡)) ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙

𝑖𝑗
(𝑡)

⋅ ∫

∞

0

𝑤

𝑖𝑗 (
𝑠) 𝑓𝑖𝑗

(𝑧

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠 − 𝑎

𝑖𝑗
(𝑦

𝑖𝑗 (
𝑡)) ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙

𝑖𝑗
(𝑡)

⋅ ∫

∞

0

𝑤

𝑖𝑗 (
𝑠) 𝑓𝑖𝑗

(𝑦

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠

























+ 𝑒

𝜔𝑡

























𝑎

𝑖𝑗
(𝑧

𝑖𝑗 (
𝑡))

⋅ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

V
𝑖𝑗 (

𝑠) 𝑔𝑖𝑗
(𝑧

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠

⋅ ∫

∞

0

𝜒

𝑖𝑗 (
𝑠) �̇�𝑖𝑗 (

𝑡 − 𝑠) d𝑠 − 𝑎

𝑖𝑗
(𝑦

𝑖𝑗 (
𝑡)) ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡)

⋅ ∫

∞

0

V
𝑖𝑗 (

𝑠) 𝑔𝑖𝑗
(𝑦

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠 ∫

∞

0

𝜒

𝑖𝑗 (
𝑠) �̇�

𝑖𝑗
(𝑡 − 𝑠) d𝑠

























+ 𝑒

𝜔𝑡 








[𝑎

𝑖𝑗
(𝑧

𝑖𝑗 (
𝑡)) − 𝑎

𝑖𝑗
(𝑦

𝑖𝑗 (
𝑡))] 𝐼𝑖𝑗 (

𝑡)











≤

[

[

𝜃

𝑖𝑗

+ ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙+

𝑖𝑗
𝑀

𝑓

𝑖𝑗
𝐿

𝑎

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

2𝐾𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
𝐿

𝑎

𝑖𝑗
+ 𝐿

𝑎

𝑖𝑗
𝐼

+

𝑖𝑗
]

]

⋅ 𝑒

𝜔𝑡 








𝑥

𝑖𝑗 (
𝑡)











+ ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗
∫

∞

0

𝑒

𝜔𝑠
𝑤

𝑖𝑗 (
𝑠)

⋅ 𝑒

𝜔(𝑡−𝑠) 






𝑥

𝑘𝑙 (
𝑡 − 𝑠)









d𝑠 + ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗

⋅ ∫

∞

0

𝑒

𝜔𝑡
𝜒

𝑖𝑗 (
𝑠)











�̇�

𝑖𝑗 (
𝑡 − 𝑠)











d𝑠 + ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

2𝐾𝑎

𝑖𝑗
𝐶

𝑘𝑙+

𝑖𝑗
𝐿

𝑔

𝑖𝑗

⋅ ∫

∞

0

𝑒

𝜔𝑠V
𝑖𝑗 (

𝑠) 𝑒

𝜔(𝑡−𝑠) 






𝑥

𝑘𝑙 (
𝑡 − 𝑠)









d𝑠 ≤

[

[

𝜃

𝑖𝑗

+ ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝐵

𝑘𝑙+

𝑖𝑗
𝑀

𝑓

𝑖𝑗
𝐿

𝑎

𝑖𝑗
+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

2𝐾𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
𝐿

𝑎

𝑖𝑗
+ 𝐿

𝑎

𝑖𝑗
𝐼

+

𝑖𝑗
]

]

⋅ 𝑉

𝑖𝑗 (
𝑡) + ∑

𝐵
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
𝐵

𝑘𝑙+

𝑖𝑗
𝐿

𝑓

𝑖𝑗
∫

∞

0

𝑒

𝜔𝑠
𝑤

𝑖𝑗 (
𝑠) 𝑉𝑘𝑙 (

𝑡 − 𝑠) d𝑠

+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

𝑎

𝑖𝑗
𝐶

𝑘𝑙+

𝑖𝑗
𝑀

𝑔

𝑖𝑗
∫

∞

0

𝑒

𝜔𝑠
𝜒

𝑖𝑗 (
𝑠) 𝑒

𝜔(𝑡−𝑠) 








�̇�

𝑖𝑗 (
𝑡 − 𝑠)











d𝑠

+ ∑

𝐶
𝑘𝑙
∈𝑁𝑟(𝑖,𝑗)

2𝐾𝑎

𝑖𝑗
𝐶

𝑘𝑙+

𝑖𝑗
𝐿

𝑔

𝑖𝑗
∫

∞

0

𝑒

𝜔𝑠V
𝑖𝑗 (

𝑠) 𝑉𝑘𝑙 (
𝑡 − 𝑠) d𝑠 ≤ (𝜃

𝑖𝑗

+ 𝜏

𝑖𝑗
) sup
𝑠∈(−∞,𝑡]

𝑉

𝑖𝑗 (
𝑠) + (1 − 𝜖) 𝜌𝑖𝑗

sup
𝑠∈(−∞,𝑡]

𝑉

𝑘𝑙 (
𝑠) + (1 − 𝜖) 𝜎𝑖𝑗

⋅ sup
𝑠∈(−∞,𝑡]

𝑒

𝜔𝑠 








�̇�

𝑖𝑗 (
𝑠)











,

(43)
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which implies that

sup
𝑠∈(−∞,𝑡]

𝑒

𝜔𝑠 








�̇�

𝑖𝑗 (
𝑠)











≤

𝜃

𝑖𝑗
+ 𝜏

𝑖𝑗

1 − (1 − 𝜖) 𝜎𝑖𝑗

sup
𝑠∈(−∞,𝑡]

𝑉

𝑖𝑗 (
𝑠)

+

(1 − 𝜖) 𝜌𝑖𝑗

1 − (1 − 𝜖) 𝜎𝑖𝑗

sup
𝑠∈(−∞,𝑡]

𝑉

𝑘𝑙 (
𝑠) ,

(44)

where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛. Substituting (44)
into (42) leads to

𝐷

+
𝑉

𝑖𝑗 (
𝑡) ≤ [𝜔 − 𝜃

𝑖𝑗
+ 𝜏

𝑖𝑗
]𝑉

𝑖𝑗 (
𝑡)

+ (1 − 𝜖) 𝜌𝑖𝑗
sup
𝑠∈(−∞,𝑡]

𝑉

𝑘𝑙 (
𝑠)

+

(1 − 𝜖)

2
𝜌

𝑖𝑗
𝜎

𝑖𝑗

1 − (1 − 𝜖) 𝜎𝑖𝑗

sup
𝑠∈(−∞,𝑡]

𝑉

𝑘𝑙 (
𝑠)

+

(1 − 𝜖) (𝜃𝑖𝑗
+ 𝜏

𝑖𝑗
) 𝜎

𝑖𝑗

1 − (1 − 𝜖) 𝜎𝑖𝑗

sup
𝑠∈(−∞,𝑡]

𝑉

𝑖𝑗 (
𝑠) ,

𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ Z,

(45)

where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.
For 𝑡 ≤ 0, note that

𝑉

𝑖𝑗 (
𝑡) = 𝑒

𝜔𝑡 








𝑥

𝑖𝑗 (
𝑡)











≤ 𝑃









𝜓 − 𝜙







∞
,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛,

(46)

where 𝑃 > 1. Next, we claim that

𝑉

𝑖𝑗 (
𝑡) ≤ 𝑃









𝜓 − 𝜙







∞
,

∀𝑡 ∈ [0, +∞) , 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛.

(47)

From (𝐻

7
), we observe that











𝑥

𝑖𝑗
(𝑡

+

𝑘
)











=











(1 + 𝛼

𝑖𝑗𝑘
) [𝑧

𝑖𝑗
(𝑡

𝑘
) − 𝑦

𝑖𝑗
(𝑡

𝑘
)]











≤











𝑥

𝑖𝑗
(𝑡

𝑘
) (𝑡

𝑘
)











, 𝑘 ∈ Z,

(48)

where 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛. By way of
contradiction, assume that (47) does not hold. Then, there
must exist 𝑖

0
∈ {1, 2, . . . , 𝑚}, 𝑗

0
∈ {1, 2, . . . , 𝑛}, and 𝑡

0
∈

[0, +∞) \ {𝑡

𝑘
} such that

𝑉

𝑖0𝑗0
(𝑡

0
) = 𝑃









𝜓 − 𝜙







∞
,

𝐷

+
𝑉

𝑖0𝑗0
(𝑡

0
) > 0,

𝑉

𝑖𝑗 (
𝑡) ≤ 𝑃









𝜓 − 𝜙







∞
,

∀𝑡 ∈ (−∞, 𝑡

0
] , 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛.

(49)

By (45), we have from (40) that

0 < 𝐷

+
𝑉

𝑖0𝑗0
(𝑡

0
) ≤ [𝜔 − 𝜃

𝑖0𝑗0
+ 𝜏

𝑖0𝑗0
]𝑉

𝑖0𝑗0
(𝑡

0
) + (1 − 𝜖)

⋅ 𝜌

𝑖0𝑗0
sup
𝑠∈(−∞,𝑡0]

𝑉

𝑘

𝑙
 (𝑠) +

(1 − 𝜖)

2
𝜌

𝑖0𝑗0
𝜎

𝑖0𝑗0

1 − (1 − 𝜖) 𝜎𝑖0𝑗0

sup
𝑠∈(−∞,𝑡0]

𝑉

𝑘

𝑙
 (𝑠)

+

(1 − 𝜖) (𝜃𝑖0𝑗0
+ 𝜏

𝑖0𝑗0
) 𝜎

𝑖0𝑗0

1 − (1 − 𝜖) 𝜎𝑖0𝑗0

sup
𝑠∈(−∞,𝑡0]

𝑉

𝑖0𝑗0
(𝑠) ≤ {𝜔 − 𝜃

𝑖0𝑗0

+ 𝜏

𝑖0𝑗0
+ (1 − 𝜖) 𝜌𝑖0𝑗0

+

(1 − 𝜖)

2
𝜌

𝑖0𝑗0
𝜎

𝑖0𝑗0

1 − (1 − 𝜖) 𝜎𝑖0𝑗0

+

(1 − 𝜖) (𝜃𝑖0𝑗0
+ 𝜏

𝑖0𝑗0
) 𝜎

𝑖0𝑗0

1 − (1 − 𝜖) 𝜎𝑖0𝑗0

}𝑃









𝜓 − 𝜙







∞
=

{

{

{

𝜔

−

𝜃

𝑖0𝑗0
− (1 − 𝜖) (𝜃𝑖0𝑗0

+ 𝜃

𝑖0𝑗0
) 𝜎

𝑖0𝑗0
− 𝜏

𝑖0𝑗0
− (1 − 𝜖) 𝜌𝑖0𝑗0

1 − (1 − 𝜖) 𝜎𝑖0𝑗0

}

}

}

⋅ 𝑃









𝜓 − 𝜙







∞
< 0.

(50)

This is a contradiction. So our claim is valid. Therefore,

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1











𝑥

𝑖𝑗 (
𝑡)











≤ 𝑚𝑛𝑃









𝜓 − 𝜙







∞
𝑒

−𝜔𝑡
, ∀𝑡 > 0. (51)

Thus, the almost periodic solution of system (4) is globally
exponentially stable. This completes the proof.

Remark 12. If system (4) satisfies (𝐻

7
), the proof of Theo-

rem 11 indicates that the impulses have no effect on the global
exponential stability of the system. From condition (𝐻

11
) in

Theorem 11, we can easily see that the neutral terms have
negative effect on the global exponential stability of almost
periodic solution of system (4). InTheorem 11, (44) is crucial.
If there is no neutral term �̇�

𝑖𝑗
in the right side of system (4),

(44) is not needed (see papers [3–8, 21–24]). Because of the
presence of the neutral term �̇�

𝑖𝑗
, we have to get (44).The effect

of (44) is to eliminate �̇�
𝑖𝑗
in𝐷

+
𝑉

𝑖𝑗
(see (45)). In [3–8, 26], the

(almost) periodic dynamics of many special cases of system
(4) has been considered. We also generalize the main results
of [3–8, 26].

Remark 13. In [47, 48], the authors studied the global
exponential stability of (pseudo) almost periodic solutions
for CNNs with leakage delays, which can be transformed
into the neutral systems. Theorem 11 gives a possible method
to study the global exponential stability of almost periodic
solutions of the neutral systems and the method differs from
that in [47, 48]. By using the method in this paper, we could
obtain new criteria for the global exponential stability of
almost periodic solutions of CNNswith leakage delays, which
supplements the corresponding result in [47, 48].
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5. An Example and Numerical Simulations

Example 1. Consider the following neutral-type Cohen-
Grossberg SICNNs with distributed delays:

�̇�

𝑖𝑗 (
𝑡) = − [3.1 + 0.1 sin (

√

2𝑢

𝑖𝑗 (
𝑡))]

[

[

𝑢

𝑖𝑗 (
𝑡)

+ ∑

𝐵
𝑘𝑙
∈𝑁1(𝑖,𝑗)

𝐵

𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

0.1

𝑒

𝑠
sin (𝑢

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠𝑢𝑖𝑗 (𝑡)

+ ∑

𝐶
𝑘𝑙
∈𝑁1(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

0.1

𝑒

𝑠
sin (𝑢

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠

⋅ ∫

∞

0

𝑒

−𝑠
�̇�

𝑖𝑗 (
𝑡 − 𝑠) d𝑠 − 0.01 sin (𝑡)

]

]

,

(52)

where 𝑖, 𝑗 = 1, 2,

(

𝐵

11 (
𝑠) 𝐵

12 (
𝑠)

𝐵

21 (
𝑠) 𝐵

22 (
𝑠)

) = (

𝐶

11 (
𝑠) 𝐶

12 (
𝑠)

𝐶

21 (
𝑠) 𝐶

22 (
𝑠)

)

= (

0.1











sin (
√
3𝑠)











0.3











cos (√3𝑠)











0.2











sin (
√
3𝑠)











0.1











cos (√3𝑠)











) , ∀𝑠 ∈ R.

(53)

By using the MATLAB dde23, Figures 1 and 2 depict the time
responses of state variables (𝑢

11
, 𝑢

22
)

𝑇 in system (52)with step
0.01, respectively. It is easy to see that system (52) is not stable.

Consider system (52) with impulses:

�̇�

𝑖𝑗 (
𝑡) = − [3.1 + 0.1 sin (

√

2𝑢

𝑖𝑗 (
𝑡))]

[

[

𝑢

𝑖𝑗 (
𝑡)

+ ∑

𝐵
𝑘𝑙
∈𝑁1(𝑖,𝑗)

𝐵

𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

0.1

𝑒

𝑠
sin (𝑢

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠𝑢𝑖𝑗 (𝑡)

+ ∑

𝐶
𝑘𝑙
∈𝑁1(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

0.1

𝑒

𝑠
sin (𝑢

𝑘𝑙 (
𝑡 − 𝑠)) d𝑠

⋅ ∫

∞

0

𝑒

−𝑠
�̇�

𝑖𝑗 (
𝑡 − 𝑠) d𝑠 − 0.01 sin (𝑡)

]

]

,

Δ𝑢

1𝑗
(𝑡

𝑘
) = −0.8𝑢

1𝑗
(𝑡

𝑘
) ,

Δ𝑢

2𝑗
(𝑡

𝑘
) = −0.9𝑢

2𝑗
(𝑡

𝑘
) ,

{𝑡

𝑘
: 𝑘 ∈ Z} ⊂ {5𝑘 : 𝑘 ∈ Z} ,

(54)

where 𝑖, 𝑗 = 1, 2.
Corresponding to system (4), 𝑎

𝑖𝑗
= 3, 𝑎

𝑖𝑗
= 3.2, 𝑏

𝑖𝑗
= 𝑏

𝑖𝑗
=

1, 𝑤
𝑖𝑗
(𝑠) = V

𝑖𝑗
(𝑠) = 𝜒

𝑖𝑗
(𝑠) = 𝑒

−𝑠, 𝑓
𝑖𝑗
(𝑠) = 𝑔

𝑖𝑗
(𝑠) = 0.1 sin(𝑠),
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Figure 1: Unstability of state variables 𝑢
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of system (52).
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Figure 2: Unstability of state variables 𝑢
22
of system (52).

and 𝐼

𝑖𝑗
(𝑠) = 0.01 sin(𝑠), where 𝑖, 𝑗 = 1, 2 and 𝑠 ∈ R. Clearly,

we have𝑁 = 1,

∑

𝐵
𝑘𝑙
∈𝑁1(1,1)

𝐵

𝑘𝑙+

11
= ∑

𝐶
𝑘𝑙
∈𝑁1(1,1)

𝐶

𝑘𝑙+

11
= 0.7,

∑

𝐵
𝑘𝑙
∈𝑁1(1,2)

𝐵

𝑘𝑙+

12
= ∑

𝐶
𝑘𝑙
∈𝑁1(1,2)

𝐶

𝑘𝑙+

12
= 1.4,

∑

𝐵
𝑘𝑙
∈𝑁1(2,1)

𝐵

𝑘𝑙+

21
= ∑

𝐶
𝑘𝑙
∈𝑁1(2,1)

𝐶

𝑘𝑙+

21
= 1,

∑

𝐵
𝑘𝑙
∈𝑁1(2,2)

𝐵

𝑘𝑙+

22
= ∑

𝐶
𝑘𝑙
∈𝑁1(2,2)

𝐶

𝑘𝑙+

22
= 1.8.

(55)

By an easy calculation, we obtain 𝜃

𝑖𝑗
= 3.2, 𝜎

𝑖𝑗
= 0.1, 𝜃

𝑖𝑗
= 3,

𝜆

1𝑗
= 2.4, 𝜆

2𝑗
= 2.32, 𝜉

1𝑗
= 1.66, 𝜉

2𝑗
= 1.87, 𝑖, 𝑗 = 1, 2, and

𝜂 ≈ 0.22,

𝛿 ≈ 0.35.

(56)

Further, we also have that

(1 − 𝜎

𝑖𝑗
) 𝜃

𝑖𝑗
− 𝜎

𝑖𝑗
𝜃

𝑖𝑗
+ 𝜏

𝑖𝑗
+ 𝜌

𝑖𝑗
> 0.02, 𝑖, 𝑗 = 1, 2. (57)

It is easy to verify that all the conditions of Theorem 11
are satisfied and system (54) has a unique almost periodic
solution, which is globally exponentially stable.
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Figure 3: Almost periodicity of state variables of system (52).
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Figure 4: Exponential stability of state variables 𝑢
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of system (52).
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Figure 5: Exponential stability of state variables 𝑢
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of system (52).

Also, by utilizing theMATLAB dde23, Figures 3–7 depict
the time responses of state variables (𝑢

11
, 𝑢

12
, 𝑢

21
, 𝑢

22
)

𝑇 in
system (54) with step 0.01, respectively. It confirms that
the proposed condition in Theorem 11 leads to globally
exponentially stable almost periodic solution for system (54).

Remark 14. Example 1 shows that themodelwithout impulses
is not stable, but it will be stable in the case with impulses.

6. Discussion

In this paper, the neutral Cohen-Grossberg shunting
inhibitory cellular neural networks with distributed delays
and impulses are considered. By employing fixed point

Time t
0 5 10 15 20 25 30 35 40 45 50
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1

Figure 6: Exponential stability of state variables 𝑢
21
of system (52).
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Figure 7: Exponential stability of state variables 𝑢
22
of system (52).

theory and constructing suitable Lyapunov functional, some
new sufficient conditions are obtained for the existence and
global exponential stability of almost periodic solution of
the system. Conditions (𝐻

8
)–(𝐻
11
) in Theorems 8 and 11

indicate that the neutral terms and impulsive effects have
negative effect on the existence, uniqueness, and global
exponential stability of almost periodic solution of the
neutral-type system. However, if system (4) satisfies (𝐻

7
),

Theorem 11 indicates that the impulses have no effect on
the global exponential stability of the system. The method
used in this paper provides a possible method to study the
existence, uniqueness, and global exponential stability of
almost periodic solution of other neutral neural networks
with impulsive effects.
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