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Abstract: We present a general description of the formalism of symmetry-adapted rotator
functions (SARFs) for molecules in cylindrical confinement. Molecules are considered as
clusters of interaction centers (ICs), can have any symmetry, and can display different types
of ICs. Cylindrical confinement can be realized by encapsulation in a carbon nanotube
(CNT). The potential energy of a molecule surrounded by a CNT can be calculated by
evaluating a limited number of terms of an expansion into SARFs, which offers a significant
reduction of the computation time. Optimal molecular orientations can be deduced from the
resulting potential energy landscape. Examples, including the case of a molecule with cubic
symmetry inside a CNT, are discussed.
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1. Introduction

Symmetry plays an extremely important role in nature. Accordingly, the mathematics of symmetry is
embedded in many aspects of theoretical physics. In particular, many concepts from group theory have
been applied to describe the crystal structure of solids.

Molecular crystals combine the symmetry of a crystal lattice with molecular symmetries (for a review,
see Ref. [1]). Various physical properties of molecular crystals can be described in terms of functions
adapted to the molecules’ symmetry and the symmetry of the sites they occupy in the crystal lattice:
symmetry-adapted rotator functions (SARFs). They were first introduced by James and Keenan for the
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description of solid heavy methane, CD4 [2]. General descriptions have been elaborated by Yvinec and
Pick [3] and Michel and Parlinski [4].

Traditionally, SARFs have been used to describe three-dimensional lattices. However, in recent
years, molecules have been successfully inserted into carbon nanotubes (CNTs), the internal hollow
space of which provides cylindrical confinement. The first reported synthesis of such a system (called
“nanopeapod”) featured C60 molecules encapsulated in a CNT [5]. The SARFs for a C60 molecule in
cylindrical confinement were developed afterwards [6,7]. By now, SARFs for cylindrical site symmetry
have been developed for C60, C70 and C80 peapods, each featuring different molecular symmetries (Ih

[8], D5h [9] and D5d [10], respectively).
The purpose of the present paper is to provide a general description of the construction of SARFs

for molecules of any symmetry in cylindrical confinement. First, we present a pedestrian approach to
the example of a C60 peapod: we show how the potential energy of the C60 molecule, positioned on the
long axis of a CNT, can be expanded into a series of SARFs. We then discuss the resulting formulas,
and extend the potential model used for calculating the interaction energy of a C60 molecule and the
surrounding CNT. This is followed by the general construction of SARFs. While the main goal is to
focus on the mathematical formalism behind SARFs, we will also show potential energy landscapes for
various tube radii (“nanotube fields”) and point to the associated optimal molecular orientations. The
practical advantage of SARFs expansions is discussed. In addition, we provide an original example with
cubic molecular symmetry.

2. Theoretical Formalism

2.1. Example #1

It is instructive to introduce the formalism of SARFs for cylindrical confinement by elaborating a
concrete example. We consider a C60 molecule encapsulated in a CNT with its center of mass on
the tube’s long axis (Figure 1). We treat the molecule as a rigid cluster of 60 carbon atoms, labeled
Λa = 1, . . . , 60, and the nanotube as a homogeneous cylindrical density distribution n(~r) of carbon
atoms (the subscript a stands for atom). The interaction energy then reads

V =
60∑

Λa=1

∫
d~r n(~r)v

(
|~r − ~rΛa|

)
(1)

where ~rΛa = (xΛa , yΛa , zΛa) is the position vector of atom Λa of the C60 molecule. The function v(d) is
the pair potential function giving the energy of two interacting centers (a carbon atom of the molecule
and a carbon atom of the tube) at a distance d apart. Its precise form is not essential at this moment. For
a tube of radius R, n(~r)d~r = σδ(ρ − R)ρdρdΦdZ, and V becomes

V = σ

60∑
Λa=1

∫ ∞

0

ρdρ

∫ 2π

0

dφ

∫ +∞

−∞
dZ δ(ρ − R)v

(
|~r − ~rΛa|

)
= σR

60∑
Λa=1

∫ 2π

0

dΦ

∫ +∞

−∞
dZ v

(
|~rR − ~rΛa|

)
(2)
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Here, cylindrical coordinates (ρ, Φ, Z) have been introduced so that ~r = (ρ cos Φ, ρ sin Φ, Z), and
~rR = (R cos Φ, R sin Φ, Z). The quantity σ is the tube’s surface density, the value for rolled-up graphene
sheets (CNTs) is 0.372 Å−2.

Figure 1. A C60 molecule in a CNT with radius R; the molecule is positioned on the tube’s
long axis (z-axis). Double bonds are shown thicker than single bonds; the depicted molecular
orientation is the so-called standard orientation.

We have not yet specified the molecule’s orientation. Let us introduce a reference orientation for
the C60 molecule, we choose it to be the orientation where two-fold symmetry axes coincide with the
coordinate axes — the so-called standard orientation (Figure 1). The molecule’s center of mass coincides
with the origin and the z-axis is chosen to coincide with the tube’s long axis. Molecular rotations can now
be specified with respect to this standard orientation. Using the Euler angle convention of Ref. [11], any
rotation can be described as the succession of three Euler rotations: (i) a rotation Rz(α) over 0 ≤ α < 2π

about the z-axis, followed by (ii) a rotation Ry(β) over 0 ≤ β ≤ π about the y-axis, and finally (iii)
a rotation Rz(γ) over 0 ≤ γ < 2π about the z-axis again. The x-, y- and z-axes are kept fixed. Note
that α = β = γ = 0 then corresponds to the standard (reference) orientation. With the convention of
Ref. [11], any coordinate function f(~r) is transformed as R(α, β, γ)f(~r ) = f

(
R−1(α, β, γ)~r

)
, where

R(α, β, γ) = Rz(γ)Ry(β)Rz(α). Applying this to the pair potentials v, essentially functions of the
atomic positions ~rΛa , results in the following explicit expression for the molecule-tube interaction energy
V (α, β, γ) for a rotated molecule:

V (α, β, γ) ≡ R(α, β, γ)V = σR

60∑
Λa=1

∫ 2π

0

dΦ

∫ +∞

−∞
dZ v

(
|~rR − R−1(α, β, γ)~rΛa|

)
(3)

Expression (3) does not make use of the molecule’s symmetry; its numerical implementation requires
the use of explicit Euler rotation matrices and is computationally heavy. To exploit the symmetries
of both the molecule and the surrounding tube, we proceed as follows. First, we introduce spherical



Int. J. Mol. Sci. 2011, 12 320

coordinates for the atoms of the molecule, ~rΛa = (rΛa sin θΛa cos φΛa , rΛa sin θΛa sin φΛa , rΛa cos θΛa), and
rewrite the interaction energy for a molecule in the standard orientation as

V = σR

60∑
Λa=1

w(R; rΛa , θΛa , φΛa) (4)

with

w(R; rΛa , θΛa , φΛa) =

∫ 2π

0

dΦ

∫ ∞

−∞
dZ v

(
|~rR − ~rΛa|

)
(5)

The distance |~rR − ~rΛa| reads

|~rR − ~rΛa| =
√

R2 + Z2 + r2
Λa

− 2RrΛa cos(Φ − φΛa) sin θΛa − 2ZrΛa cos θΛa (6)

Only the difference of Φ and φΛa enters expression (6), as the argument of the function cos. Therefore,
the quantity w is independent of φΛa , since a change of variables Φ′ = Φ − φΛa eliminates φΛa from the
expression for |~rR − ~rΛa| and since

∫ 2π+φΛa
φΛa

dΦ′f(Φ′) =
∫ 2π

0
dΦ′f(Φ′) for a function f with periodicity

2π. For a C60 molecule, all C atoms have the same radial coordinate rΛa ≡ ra, which can therefore be
considered a constant rather than a variable in expressions (4) – (6). Hence, we end up with the equations

V = σR

60∑
Λa=1

w(R; θΛa) (7)

w(R; θΛa) =

∫ 2π

0

dΦ′
∫ ∞

−∞
dZ v

(
d(R; Z, Φ′, θΛa)

)
(8)

d(R; Z, Φ′, θΛa) =
√

R2 + Z2 + r2 − 2Rr cos Φ′ sin θΛa − 2Zr cos θΛa (9)

The quantity w(R; θΛa), taken as a function of θΛa , can be expanded into m = 0 spherical harmonics:

w(R; θΛa) =
∞∑
l=0

vl(R)Y 0
l (θΛa) (10)

vl(R) = 2π

∫ π

0

sin θdθ Y 0
l (θ)w(R; θ)

= 2π

∫ π

0

sin θdθ

∫ 2π

0

dΦ′
∫ ∞

−∞
dZ Y 0

l (θ) v
(
d(R; Z, Φ′, θ)

)
(11)

Here, we use the Bradley and Cracknell spherical harmonics (Ref. [11]). Upon rotation, spherical
harmonics transform into linear combinations of spherical harmonics. One has

R(α, β, γ)Y m
l (θ, φ) =

l∑
n=−l

Dl
n,m(α, β, γ)Y n

l (θ, φ) (12)

The rotation operator R(α, β, γ) has been introduced before; the quantities Dl
n,m(α, β, γ) are the Wigner

D-functions. In the present case, cylindrical symmetry implies m = 0, for which the α-independent
Wigner D-functions reduce to

Dl
n,m=0(β, γ) =

√
4π

2l + 1

[
Y n

l (β, γ)
]∗ (13)
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Collecting the previous equations results in the following potential energy expression for a rotated
molecule:

V (α, β, γ) = σR

60∑
Λa=1

∞∑
l=0

vl(R)R(α, β, γ)Y 0
l (θΛa)

= σR

∞∑
l=0

vl(R)
l∑

n=−l

Dl
n,m=0(β, γ)

60∑
Λa=1

Y n
l (θΛa , φΛa) ≡ V (β, γ) (14)

The potential energy V (β, γ) depends on the molecule’s orientation and on the tube’s radius; it can
therefore be considered as a potential energy field (nanotube field) set up by the surrounding tube and
experienced by the molecule. Note that there is no α-dependence since the initial rotation Rz(α) about
the z-axis has no effect on the interaction energy—a consequence of the “smooth-tube approximation”.

So far, only the cylindrical symmetry—the site symmetry—has been used. The molecular symmetry
is accounted for by the distribution of C atoms. We introduce atomic form factors cn

l ,

cn
l =

60∑
Λa=1

Y n
l (θΛa , φΛa) (15)

molecular shape factors gl,

gl =

√√√√ l∑
n=−l

(
cn
l

)2 (16)

and normalised atomic form factors αn
l ,

αn
l =

cn
l

gl

(17)

Icosahedral molecular symmetry implies that cn
l differs from zero only for n even and l = 0, 6, 10, 12, . . ..

The non-vanishing gl and αn
l values are tabulated in Table 1 up to l = 12. We can now rewrite V (β, γ)

as

V (β, γ) = σR
∑

l=0,6,10,12,...

vl(R)glUl(β, γ) (18)

where

Ul(β, γ) =
l∑

n=−l

αn
l Dl

n,0(β, γ) (19)

are molecular-and-site-symmetry-adapted rotator functions (SARFs). Rotator functions, originally in-
troduced by James and Keenan [2], are the appropriate variables for the description of orientational-
dependent properties of molecules in crystals [3,4]. They account for the symmetry of the molecule
and the symmetry of the crystal site point group. In the present case the crystal site symmetry is the
D∞h symmetry of the (smooth) nanotube. The cylindrical site symmetry has the consequence that the



Int. J. Mol. Sci. 2011, 12 322

Wigner D-functions are linear combinations of spherical harmonics [Equation (13)], and that the rotator
functions Ul(β, γ) can be easily implemented:

Ul(β, γ) =

√
4π

2l + 1

l∑
n=−l

αn
l

[
Y n

l (β, γ)
]∗ (20)

The symmetry of a C60 molecule implies some restrictions on the atomic form factors. The combination
of a center of inversion and the (x, z)- and (x, y)-planes being mirror planes results in the follow
properties:

cn
l = 0 if l odd (21a)

(cn
l )∗ = cn

l (21b)

c−n
l = cn

l (21c)

cn
l = 0 if l even and n odd (21d)

The same relations hold for the normalized molecular form factors αn
l . In particular, it follows that the

rotator functions are real functions since α−n
l = αn

l and
[
Y n

l (β, γ)
]∗

= Y −n
l (β, γ).

Table 1. Atomic form factors cn
l , molecular shape factors gl, and normalised atomic form

factors αn
l for Ih symmetry.

l gl n αn
l

0 16.9257 0 1

6 2.6365 0 −0.2073

6 2 −0.4750

6 4 0.3878

6 6 0.3202

10 19.2982 0 0.3545

10 2 −0.2880

10 4 −0.3572

10 6 −0.0565

10 8 −0.4251

10 10 0.2069

12 9.0051 0 −0.4145

12 2 −0.1179

12 4 −0.1830

12 6 0.4635

12 8 −0.0738

12 10 −0.2924

12 12 −0.2469

In summary, as a numerically much more efficient alternative to Equation (3) involving explicit coor-
dinate transformations (Euler rotations), one can maximally exploit the symmetry of both the molecule
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and its environment by first calculating the atomic form factors cn
l [Equation (15)], molecular shape

factors gl [Equation (16)], and normalised atomic form factors αn
l [Equation (17)]. The latter then serve

as coefficients in linear combinations of spherical harmonics defined as SARFs [Equation (20)]. These
coefficients have only to be calculated once. For a given tube radius R, the expansion coefficients
vl(R) are calculated by numerical integration [Equation (11)]. The evaluation of a few leading terms of
[Equation (18)] then serves as an excellent approximation for the molecule’s potential energy V (β, γ).

For actual calculations, a potential function and potential parameters have to be specified. In Refs.
[12] and [13], a Born–Mayer–van der Waals C-C pair potential,

v(d) = C1e
−C2d − B

d6
(22)

was introduced for studying C60-C60 interactions in C60-fullerite (solid buckminsterfullerene); it led to
a crystal field potential and a structural phase transition temperature [14,15] in good agreement with
experiments. Using the potential constants C1 = 3.24×107 K×kB, C2 = 3.6 Å−1 and B = 4.579×105

K × kB · Å
6

of Refs. [6] and [7] results in the vl(R) coefficients, obtained via numerical integration
of expression (11), shown in Table 2. The amplitude of these coefficients decreases with increasing l.
More indicative are the weighted coefficients glvl(R), also given in Table 2. They reveal the relative
importance of the contributing l terms. The l = 12 terms clearly contribute much less than the l = 6

terms— the lowest-order terms introducing (β, γ)-dependence, but the l = 10 contribution obviously
plays an important role for the R = 6.0 and R = 7.0 cases.

Table 2. Expansion coefficients vl(R) and weighted expansion coefficients glvl(R) for
R = 6.0 Å, R = 7.0 Å and R = 8.0 Å, obtained with Born–Mayer–van der Waals
potential (22), in units K × kB · Å.

R v0(R) v6(R) v10(R) v12(R)

6.0 Å −2201.02 −833.92 −53.79 7.87

7.0 Å −2151.95 −7.81 −1.99 0.36

8.0 Å −886.63 4.23 −0.04 0.01

R g0v0(R) g6v6(R) g10v10(R) g12v12(R)

6.0 Å −37253.82 −2198.65 −1038.13 62.97

7.0 Å −36423.20 −20.58 −38.49 2.85

8.0 Å −15006.86 11.14 −0.71 0.09

Having calculated the quantities gl, vl(R) and αn
l allows to construct the rotator functions Ul(β, γ)

and to evaluate expression (18). In Figure 2, we show the results of V (β, γ) for R = 6.0 Å, R = 7.0 Å
and R = 8.0 Å for a calculation up to l = 12. For R = 6.0 Å, there are 12 local minima, corresponding
to the twelve equivalent molecular orientations where two opposing pentagons of the C60 molecule are
perpendicular to the z-axis. The 20 maxima correspond to orientations where hexagons are perpen-
dicular to the z-axis. (The “soccer-ball structure” indeed features 12 pentagons and 20 hexagons.) At
R = 7.0 Å, there are 30 local minima: they correspond to the molecular configurations where opposing
double bonds are perpendicular to the tube’s long axis (z-axis). The potential energy is maximal when
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a hexagon is perpendicular to the z-axis. Finally, at R = 8.0 Å, minima and maxima correspond to
hexagons and pentagons perpendicular to the z-axis, respectively.

Figure 2. Nanotube field V (β, γ) of a C60 molecule in a CNT with radius (a) R = 6.0 Å, (b)
R = 7.0 Å and (c) R = 8.0 Å, in units K × kB. The absolute minima have been subtracted
so that the local energy minima lie at zero.

(a) (b)

(c)

When comparing the nanotube fields shown in Figure 2 to the (β, γ)-maps obtained via the exact
formula with explicit coordinate transforms [Equation (3)], there is no visual difference: the SARFs
expansion up to l = 12 is an excellent approximation. Using the same integration routines, the direct
calculations took a few hours each, however, while the evaluation of the vl(R) coefficients and the SARFs
expansion was a matter of seconds. Therefore, in addition to providing physical and mathematical
understanding of the symmetries present in the system, SARFs have a considerable computational
advantage.

2.2. Discussion

The important feature in the construction of an expansion into SARFs is the vanishing of several
atomic form factors cn

l (αn
l ). This is a direct consequence of the symmetry of the considered molecule.
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In terms of group theory, only certain linear combinations of spherical harmonics Y n
l (β, γ) belong to the

unit representation (A1g irreducible representation) of the molecular symmetry group and contribute to
the expansion of V (β, γ) into SARFs. For a cylindrical tube there is no α-dependence, and the expansion
into SARFs is in fact nothing but an expansion into linear combinations of spherical harmonics Y n

l (β, γ)

belonging to the unit representation.

2.3. Extension to clusters with different types of interaction centers

Often, several types of molecular sites are treated as interaction centers (ICs). In the case of a molecule
consisting of different types of atoms, every atomic type interacts differently with the surrounding
nanotube, which can be accounted for by using different potential constants (or even different potential
functions). The pair potential v(d) and the expansion coefficients vl(R) then become type-dependent:

vt
l(R) = 2π

∫ π

0

sin θdθ

∫ 2π

0

dΦ′
∫ ∞

−∞
dZ Y 0

l (θ) vt(d(R; Z, Φ′, θ)
)

(23)

Here, the superscript t stands for the IC type. The ICs need not only be atoms; in the case of C60

molecules, it is customary to place ICs on bonds. For a C60 molecule, double bonds (fusing hexagons)
and single bonds (fusing hexagons and pentagons) are considered, and labeled t = db and t = sb,
respectively. (By bonds, the midpoints of bonds are understood.) These additional ICs were originally
introduced to account for variations in the charge distribution of a C60 molecule [13,16]. For each of the
IC types, t = a, db, sb, the atomic form factors

ct,n
l =

60∑
Λt=1

Y n
l (θΛt , φΛt) (24)

the molecular shape factors

gt
l =

√√√√ l∑
n=−l

(
ct,n
l

)2 (25)

and the normalised atomic form factors

αt,n
l =

ct,n
l

gt
l

(26)

have to be calculated. Here, θΛt and φΛt stand for the polar and azimuthal angles of the ICs of type
t, labeled Λt = 1, . . . , Nt, with Nt the number of ICs of type t (Na = 60, Ndb = 30 and Nsb = 60).
Remarkably, it turns out that

αt,n
l = ξt

lα
a,n
l (27)

with ξt
l = ±1. It is therefore useful to introduce modified molecular shape factors

g̃t
l = ξt

lg
t
l (28)

so that

ct,n
l = g̃t

lα
n
l (29)
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where αn
l ≡ αa,n

l . This allows to write the following generalised expression for V (β, γ):

V (β, γ) = σR
∑

l=0,6,10,12,...

∑
t = a, db, sb

vt
l(R)g̃t

lUl(β, γ) (30)

Note that the same SARFs as before [Equation (19)] can be used.
The nanotube fields of a C60 molecule arising from the extended interaction model described in the

present subsection do not differ qualitatively from the ones shown in Figure 2. For full details, we refer
to Ref. [8].

The manifestation of potential energy landscapes as in Figure 2 as a consequence of molecular sym-
metry and cylindrical confinement and their dependence on the tube radius R has important implications
on the physical properties of a “peapod”—a chain of several molecules encapsulated in a CNT. In partic-
ular, the peapod system of C60 molecules encapsulated in a CNT displays unusual dynamical behavior as
demonstrated by different experimental techniques: inelastic neutron scattering [17], nuclear magnetic
resonance [18,19] and high-pressure near-infrared Raman scattering [20]. Obviously, for a realistic
description of peapods, molecule-molecule interactions have to be taken into account as well. For typical
tube radii (R ∼ 7 Å) of C60 peapod samples, though, the intermolecular interactions are several orders
of magnitude smaller than the molecule-tube interaction [8] and do therefore not significantly influence
the molecules’ optimal orientation with respect to the surrounding CNT. A discussion of the dynamics
of the molecules in a C60-peapod is beyond the scope of the present paper, however — we recall that
our purpose is to provide the mathematical framework for the effective exploitation of the molecular
and the environmental symmetry for calculating potential energies. For details, we refer to the relevant
experimental [17,18,19,20] and theoretical [6,7,8] literature.

2.4. General formulation for non-spherical clusters of interaction centers

In the foregoing we have introduced SARFs for a C60 molecule, displaying icosahedral symmetry,
with atoms, double and single bonds considered as three different types of ICs. A special feature of the
C60 molecule is that for each IC type, the radial coordinates of the ICs are equal (dependent on t, not
on Λt): rΛa ≡ ra, rΛdb ≡ rdb, rΛsb ≡ rsb. This does not hold for all symmetries, however. The general
formulation of a molecule’s nanotube field V (β, γ) has to take this into account.

To fix ideas, we take the example of a C70 molecule, which has an ellipsoidal shape and D5h symmetry.
(All formulas of this subsection will hold in general, though.) A popular IC cluster model for C70 features
the 70 carbon atoms (t = a), 20 so-called D-centers on bonds near the top and bottom of the molecule
(t = D) and 30 so-called I-centers in the “equatorial zone” of the molecule as ICs (Figure 3). The essential
step to develop appropriate SARFs is to group ICs with the same value of the radial coordinate rΛt . In the
case of a C70 molecule, ICs with the same |zΛt| value have the same rΛt value. Therefore, we can think
of layers of ICs having the absolute value of their z-coordinate in common. We use the term ‘layers’ in
an abstract way and let it refer to a group of ICs with equal rΛt values. We label the layers by an index
λt, and the ICs within layer λt by an index νλt . This results in a compound index

Λt ≡ (λt, νλt) (31)
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to address IC Λt. Introducing the layer-dependent analogues of Equations (15) – (17),

ct,n
l (λt) =

∑
νΛt

Y n
l (θΛt , φΛt) (32a)

gt
l(λt) =

√√√√ l∑
n=−l

(
ct,n
l (λt)

)2 (32b)

αt,n
l (λt) =

ct,n
l (λt)

gt
l(λt)

(32c)

and the layer-dependent SARFs

Ut
l(λt; β, γ) =

l∑
n=−l

αt,n
l (λt)D

l
n,0(β, γ) (33)

results in the following expression for the molecule’s nanotube field:

V (β, γ) = σR

∞∑
l=0

vt
l(R)gt

lU
t
l(λt; β, γ) (34)

Equation (34) is the most general form of the SARFs expansion for a molecule placed on the long axis of
a CNT. It takes into account different IC types and the non-spherical distribution of ICs. Note that there
is no proportionality rule like Equation (29) in the case of “layered” structures (different rΛt values for
IC type t). Results for the C70 molecule’s nanotube fields and their physical implications can be found in
Ref. [9].

Figure 3. Projection of a C70 molecule in the standard orientation on the (y, z)-plane. Apart
from atoms (dots), midpoints of certain bonds in the “cap” and “belt” regions are considered
as ICs as well — D-centers (circles) and I-centers (squares), respectively.

2.5. Example #2

We now apply the SARFs procedure to an example with cubic molecular symmetry. Cubane, C8H8,
has eight carbon atoms arranged on the corners of a cube to each of which a hydrogen atom is bound
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(Figure 4). While its chemical synthesis dates back to 1964 [21], it has gained renewed interest after
the successful synthesis of fullerene-cubane, C60.C8H8, a remarkable molecular crystal consisting of
icosahedral (Ih) and cubic (Oh) molecules with stoichiometry 1:1 [22].

Figure 4. A C8H8 molecule.

We consider a cubane molecule encapsulated in a CNT with radius R; it is intended as a generic
example of a cubic molecule inserted into a nanotube. An example of an actual molecule with Oh

symmetry that has successfully been encapsulated in a nanotube is octasilesquioxane, Si8H8O12 [23,24].

Table 3. Atomic form factors cn
l , molecular shape factors gl, and normalised atomic form

factors αn
l for Oh symmetry.

l gl n αn
l

0 2.2568 0 1

4 3.4473 0 −0.7638

4 4 −0.4564

6 5.1143 0 0.3536

6 4 −0.6614

8 1.9797 0 0.7181

8 4 0.2700

8 8 0.4114

10 6.7237 0 −0.4114

10 4 0.4146

10 8 0.4934

12 4.6866 0 0.0919

12 4 −0.3625

12 8 0.5977

12 12 −0.0849

We model the cubane molecule as a simple cubic cluster of 8 ICs placed on the H atoms and define
the standard orientation (α = β = γ = 0) as the orientation where the cube’s faces are parallel
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to the coordinate planes. The ICs then have coordinates (±a,±a,±a), (±a,±a, a), (±a, a,±a) and
(a,±a,±a) with a = 1.4139 Å. First, the atomic form factors cn

l and the derived quantities gl and αn
l

have to be determined [Equations (15) – (17)]. In Table 3 we show the non-zero gl and αn
l coefficients

up to l = 12. The symmetry relations (21a) – (21d) are also valid for cubic symmetry. In addition, cn
l

(αn
l ) coefficients vanish if n is not a multiple of 4:

cn
l = 0 if n /∈ 4Z (35)

The lowest non-zero l-value yielding non-vanishing cn
l coefficients is l = 4. This is a well-known result

from group theory; the l = 4 rotator function

U4(β, γ) =

√
4π

9

[
α4

4Y
4
4 (β, γ) + α0

4Y
0
4 (β, γ) + α4

4Y
−4
4 (β, γ)

]
(36)

is proportional to the cubic harmonic K4(β, γ). The next non-zero terms in the SARFs expansion have
l = 6, 8, 10, 12, . . ..

Table 4. Expansion coefficients vl(R) and weighted expansion coefficients glvl(R) for
R = 5.0 Å and R = 7.0 Å, obtained with Lennard-Jones potential (37), in units K × kB · Å.

R v0(R) v4(R) v6(R) v8(R) v10(R) v12(R)

5.0 Å −474.28 106.87 −49.25 14.53 −3.38 0.67

7.0 Å −103.26 −1.89 0.11 0.00 0.00 0.00

R g0v0(R) g4v4(R) g6v6(R) g8v8(R) g10v10(R) g12v12(R)

5.0 Å −1070.37 368.41 −251.86 28.76 −22.71 3.14

7.0 Å −233.04 −6.53 0.55 −0.01 0.00 0.00

For the pair interaction potential v(d) we take the Lennard-Jones potential used for modeling cubane-
fullerene interactions in C60.C8H8 [25]:

v(d) = 4ε

[(σ

d

)12

−
(σ

d

)6
]

(37)

with ε = 16.733 K×kB and σ = 2.895 Å. For two radii, R = 5.0 Å and R = 7.0 Å, we first calculate the
expansion coefficients vl(R) [Equation (11)]. They are shown in Table 4 up to l = 12, together with the
weighted expansion coefficients glvl(R). The magnitude of glvl(R) decreases rapidly with increasing
l. The R = 5.0 Å and R = 7.0 Å nanotube fields, calculated via the SARFs expansion up to l = 12,
Equation (18), are shown in Figure (5). Both display cubic symmetry, but the local minima and maxima
are located differently. For R = 5.0 Å, 6 equivalent minima can be distinguished. They correspond
to the 6 realisations of the standard orientation where the cubane molecule’s faces are aligned with the
coordinate planes. There are 12 maxima, they correspond to the orientations where the z-axis (long
axis of the tube) intersects the midpoints of two opposing edges of the cube. At R = 7.0 Å, the local
minima have become local maxima. There are 8 local minima, corresponding to orientations where the
tube’s long axis intersects two opposing vertices of the cube. These findings are relevant for explain-
ing actual experimental results; Si8H8O12 molecules (of cubic symmetry) inserted in CNTs with radii
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R ≈ 6 Å - 7 Å self-assemble into Si4nH8O8n−4 ladder-like structures [26]. We argue that the optimal
orientations found here are a necessary prerequisite for the formation of the experimentally observed
chemical bonds between neighboring octasilesquioxane monomers.

Figure 5. Nanotube field V (β, γ) of a C8H8 molecule in a CNT with radius (a) R = 5.0 Å
and (b) R = 8.0 Å, in units K × kB. The absolute minima have been subtracted so that the
local energy minima lie at zero.

(a) (b)

3. Conclusions

We have outlined the construction of SARFs for molecules of any symmetry in cylindrical confine-
ment. The molecules are taken as discrete clusters of ICs, labeled Λt, of different types, labeled t. In
general, SARFs Ut

l(λt; β, γ) are obtained via Equation (33), where the index λt groups ICs having the
same radial coordinate rΛt ≡ rλt (layers of ICs). The SARFs are type- and layer-dependent. In some
special cases, e.g., for spherical clusters like C60, type-independent SARFs can be constructed. The
main consequence of the cylindrical site symmetry is the SARFs’ independence on the Euler angle α.
The molecule-tube interaction energy (nanotube field) is conveniently obtained as an expansion into
SARFs, Equation (34), where the expansion coefficients vt

l(R) are obtained via numerical integrations
[Equation (23)] involving the pair potentials vt(d). It turns out that a limited number of terms (typically
up to l = 12) provides an excellent approximation to the exact expression [Equation (3)] with explicit
coordinate transforms. For concrete examples, the SARFs expansion has proven to be computationally
much more efficient: the calculations of a C60 molecule’s nanotube field take less than 1000 times the
time for the direct calculation.

Knowledge of the nanotube field of a molecule encapsulated in a CNT immediately allows to identify
stable molecular orientations. In the case of C60 molecules, depending on the tube radius R, different
configurations are energetically favorable: pentagons (R = 6.0 Å), double bonds (R = 7.0 Å) or
hexagons (R = 8.0 Å) perpendicular to the tube’s long axis. For cubic molecules, an example of which
is C8H8, we also find different regimes. For small radii, the cube’s faces are aligned to the crystal planes,
while for large radii, two opposing edges are intersected halfway by the tube’s long axis of the tube.
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The computational efficiency for nanotube field calculations is one of the main advantages of using
SARFs. There are, however, many more situations in which SARFs are useful, especially in the context
of orientational order-disorder phase transitions in molecular crystals (see e.g. Ref. [27] for a treatment
of the Fm3m −→ Pa3 phase transition in solid C60) . The general theoretical framework of SARFs
as described by Michel and Parlinski [4] is readily applicable to the one-dimensional crystals resulting
from inserting molecules in CNTs. For example, the thermal averages

〈Ut
l(λt)〉 =

∫ π

0
sin βdβ

∫ 2π

0
dγ Ut

l(λt; β, γ)e
−V (β,γ)

kBT∫ π

0
sin βdβ

∫ 2π

0
dγ e

−V (β,γ)
kBT

(38)

can play the role of order parameters of second-order orientational phase transitions and are also are
quantities relevant for the interpretation of Raman and/or infra-red spectroscopic measurements.

Throughout the paper, we have worked under the smooth-tube approximation, neglecting the actual
honeycomb network of carbon atoms of the CNT. As has been shown by comparing the results of both
the smooth-tube approach and calculations taking the discrete structure of a CNT into account, this is a
valid approximation [8,9]. Another assumption has been that the molecule is located on the tube’s long
axis. While this is plausible for small tube radii because of the strong repulsion between the molecule
and the surrounding tube wall, one expects a shift ∆r away from the tube’s axis from a certain radius
onwards. This is indeed the case; for C60 and higher (tubular) fullerene molecules, the energetically
favorable position is off-axis from R ≈ 7 Å [6,7,28] onwards. For small deviations from the on-axis
position, a Taylor expansion into powers of the off-axis shift ∆r in combination with an expansion into
SARFs can provide a generalization of the on-axis treatment given here. However, this is beyond the
scope of the present paper.
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