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Recently, we demonstrated that different running overtraining (OT) protocols with
the same external load, but performed downhill (OTR/down), uphill (OTR/up), and
without inclination (OTR), led to hepatic fat accumulation. As the disruption of endo-
plasmic reticulum (ER) homeostasis is linked to animal models of fatty liver disease,
we investigated the effects of these OT models on the proteins related to ER stress
(i.e., BiP, inositol-requiring enzyme 1, protein kinase RNA-like endoplasmic reticulum
kinase, eIF2alpha, ATF6beta, and glucose-regulated protein 94) and apoptosis (C/
EBP-homologous protein, Caspase-3, 4, and 12, Bax, and tumor necrosis factor
receptor-associated factor 2) in livers of C57BL/6 mice. Also, aerobic training can
attenuate cardiac ER stress and improve exercise capacity. Therefore, we investi-
gated whether the decrease in performance induced by our OT protocols is linked to 
ER stress and apoptosis in mouse hearts. The rodents were divided into six groups:
naïve (N, sedentary mice), control (CT, sedentary mice submitted to the performance 
evaluations), trained (TR), OTR/down, OTR/up, and OTR groups. Rotarod, incremen-
tal load, exhaustive, and grip force tests were used to evaluate performance. After
the grip force test, the livers and cardiac muscles (i.e., left ventricle) were removed
and used for immunoblotting. All of the OT protocols led to similar responses in the
performance parameters and displayed significantly lower hepatic ATF6beta val-
ues compared to the N group. The OTR/down group exhibited lower liver cleaved
caspase-3 values compared to the CT group. However, the other proteins related to
ER stress and apoptosis were not modulated. Also, the cardiac proteins related to ER 
stress and apoptosis were not modulated in the experimental groups. In conclusion, 
the OT protocols decreased the levels of hepatic ATF6beta, and the OTR/down group 
decreased the levels of hepatic cleaved caspase-3. Also, the decrease in performance 
induced by our OT models is not associated with ER stress and apoptosis in mice
hearts.
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inTrODUcTiOn

The endoplasmic reticulum (ER) is a dynamic organelle of the 
eukaryotic cells with a central role in protein and lipid biosynthe-
sis (1, 2), in which polypeptides are synthesized from messenger 
RNA (mRNA). When the ER suffers physiological disturbances 
that increase the synthesis of unfolded and misfolded proteins, 
an adaptive response, also known as unfolded protein response 
(UPR), is triggered (2, 3). Reticular function monitoring and 
UPR signaling are controlled by three proteins associated with 
the ER membrane: the inositol-requiring enzyme 1 (IRE1), pro-
tein kinase RNA-like endoplasmic reticulum kinase (PERK), and 
activating transcription factor 6 (ATF6). These proteins remain 
inactive due to their connections with a binding protein (BiP) 
chaperone in the intraluminal domains. However, in response to 
stress situations such as an excess of immature proteins in the 
ER, the chaperones are recruited, reducing their associations with 
IRE1, PERK, and ATF6 (2). The glucose-regulated protein 94 
(GRP94) is another ER-resident chaperone, which plays a major 
role in protein folding and ER quality control (4).

When activated, IRE1 oligomerizes and leads to the trans-
autophosphorylation of its cytosolic domain and RNase activity. 
Increased RNase activity cleaves the mRNA of Xbox-binding 
proteins (XBP1) in the cytosol, which generates spliced XBP1 
mRNA encoding a basic leucine zipper (bZIP)-containing 
transcription factor that increases the ER-associated degradation 
(ERAD) components and ER chaperones (5). Also, IRE1 can 
bind to the tumor necrosis factor receptor-associated factor 2 
(TRAF2), which activates the apoptosis signal-regulating kinase 
1 (ASK1) and forms the IRE1–TRAF2–ASK1 ternary complex. 
This compound may activate the nuclear factor kB (NF-kB) that 
exerts anti or proapoptotic effects depending on the cell type and 
physiological context. IRE1 can also interact with components 
of the cell-death machinery such as caspase-12 and activates the 
stress-induced c-Jun N-terminal kinase (JNK), which phospho-
rylates and inactivates the antiapoptotic regulator BCL-2, leading 
to Bax-dependent apoptosis (1, 2).

Protein kinase RNA-like endoplasmic reticulum kinase 
induces phosphorylation of the alpha subunit of eukaryotic 
translation initiation factor-2 (eIF2alpha) at serine 51 (6). 
Chronic activation of PERK increases the expression of the C/
EBP-homologous protein (CHOP), also known as GADD153, 
by the activating transcription factor 4 (ATF4). Increased CHOP 
levels lead to apoptosis by Bax translocation from the cytosol to 
mitochondria and lower activation of BCL-2 expression (2, 7). 
ATF6 is translocated from the ER to the Golgi complex and is 
first cleaved by site 1 protease and then by site 2 protease in the 
intramembrane region, which leads to the release of the cytosolic 
DNA-binding portion, ATF6f (“f ” for fragment). ATF6f moves 
to the nucleus and activates a subset of UPR target genes (8). 
According to Yoshida and coworkers (9), ATF6 is also related to 
the transcriptional activation of XBP1.

The mechanisms above aim to protect against cell death as well 
as to decrease overall synthesis and increase chaperone produc-
tion. However, when UPR persists, the synthesis of immature 
proteins is not reduced, which results in apoptosis that probably 
involves other mediators such as caspases 4 and 12, JNK, and 

CHOP (1). As a non-pharmacological strategy, several studies 
have investigated the effects of physical exercise on ER stress in 
different conditions (10–15). Bourdier and coworkers (16) veri-
fied that Wistar rats submitted to high-intensity training did not 
present significant alterations of the pPERK, peIF2alpha, ATF4, 
ATF6, XBP1, CHOP, and caspase-3-cleaved proteins in the 
myocardium. However, obese animals submitted to a swimming 
training protocol reduced the pro-inflammatory molecules (JNK, 
NF-kB) and ER stress proteins (PERK and eIF2alpha) in adipose 
and hepatic tissues (10).

Kim et  al. (17) verified UPR activation in human skeletal 
muscle after running 200 km and highlighted that the therapeutic 
effects of exercise are strictly dependent on its intensity. Based 
on the cross talk between ER stress and inflammation (18, 19), 
our research group (20) tested the responses of some ER stress 
proteins in skeletal muscle samples of mice classified in the non-
functional overreaching (NFOR) state. According to Meeusen 
and coworkers (21), the NFOR state results from an intensified 
period of training, also known as overtraining (OT), and is char-
acterized as a decline in performance that may be reversed after 
weeks or months of recovery and may be related to psychological 
and hormonal alterations.

Regarding NFOR etiology, Smith (22, 23) proposed the 
cytokine hypothesis speculating that an imbalance between 
high-load training sessions and sufficient recovery periods leads 
to musculoskeletal trauma, increasing the release of interleukin 
1beta (IL-1beta), IL-6, and tumor necrosis factor alpha (TNF-
alpha) (22, 23). High serum levels of pro-inflammatory cytokines 
would communicate with other organic systems, triggering most 
of the signs and symptoms previously related to NFOR. Our 
research group verified that different running OT protocols 
with the same external load (i.e., intensity versus volume), but 
performed downhill (OTR/down), uphill (OTR/up), and without 
any inclination (OTR), increased the serum levels of IL-1beta, 
IL-6, and TNF-alpha (24), which corroborates with the cytokine 
hypothesis.

Recently, using immunohistochemistry staining, da Rocha 
et al. (25) observed hepatic upregulation of IL-6 after the OTR/
down and OTR/up protocols, and upregulation of TNF-alpha 
after the OTR/up protocol. Also, the three OT models led to 
hepatic fat accumulation (25). As it is known that the disruption 
of ER homeostasis is linked to animal models of fatty liver disease 
(26, 27), the aim of this study was to investigate the effects of the 
OTR/down, OTR/up, and OTR protocols on the proteins related 
to ER stress (i.e., BiP, IRE1, PERK, eIF2alpha, ATF6beta, and 
GRP94) and apoptosis (CHOP, Caspase-3, 4, and 12, Bax, and 
TRAF2) in livers of C57BL/6 mice. Because aerobic training can 
attenuate cardiac ER stress and improve exercise capacity (14), we 
also investigated whether the decrease in performance induced 
by our OT models is linked to ER stress and apoptosis in hearts 
of C57BL/6 mice.

MaTerials anD MeThODs

experimental animals
Eight-week-old male C57BL/6 mice from the Central Animal 
Facility of the Ribeirão Preto campus were kept in individual cages 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Table 1 | Characteristics of the training (TR) protocol.

experimental 
weeks

intensity 
(% eV)

Volume  
(min)

Frequency recovery (h) Treadmill  
grade (%)

1 60 15 1/day 24 0
2 60 30 1/day 24 0
3 60 45 1/day 24 0
4 60 60 1/day 24 0
5–8 60 60 1/day 24 0

Table 2 | Characteristics of the running overtraining (OT) protocols performed in downhill, uphill and without inclination.

experimental weeks intensity (% eV) Volume (min) Frequency recovery (h) Treadmill grade (%)

OTr/down OTr/up OTr

1 60 15 1/day 24 0 0 0
2 60 30 1/day 24 0 0 0
3 60 45 1/day 24 0 0 0
4 60 60 1/day 24 0 0 0
5 60 60 1/day 24 −14 14 0
6 70 60 1/day 24 −14 14 0
7 75 75 1/day 24 −14 14 0
8 75 75 2/day 4 −14 14 0

OTR/down, overtrained by downhill running; OTR/up, overtrained by uphill running; OTR, overtrained by running without inclination.
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at a controlled temperature (22 ± 2°C) on a 12:12-h light–dark 
inversion cycle with food (Purina chow) and water ad  libitum. 
The experimental procedures were performed according to the 
Brazilian College of Animal Experimentation (COBEA) and were 
approved by the Ethics Committee of the University of Sao Paulo 
(ID 14.1.873.53.0). The rodents were randomly divided into 
naïve (N; sedentary mice; n = 10), control (CT; sedentary mice 
submitted to the performance evaluations; n = 10), trained (TR; 
n = 10), overtrained by downhill running (OTR/down; n = 10), 
overtrained by uphill running (OTR/up; n = 10), and overtrained 
by running without inclination (OTR; n =  10). The mice were 
manipulated, trained, and overtrained in a dark room between 
6:00 a.m. and 8:00 a.m.

incremental load Test (ilT)
First, the mice were adapted to treadmill running (INSIGHT®, 
Ribeirão Preto, São Paulo, Brazil) for 5 days, for 10 min/day at 
3 m/min. The initial intensity of the ILT was 6 m/min at 0% with 
increasing increments of 3 m/min every 3 min until exhaustion, 
defined when the rodents touched the treadmill end five times 
in 1  min. The animals were encouraged by physical prodding, 
and when they became exhausted without finishing the stage, the 
exhaustion velocity was corrected as proposed by Kuipers and 
coworkers (28). The EV of each rodent was used to prescribe the 
intensities of the training or OT protocols (29–31). The speed 
(m min−1) of the ILT for the experimental groups during the evalu-
ation weeks were (1) week 0: CT = 25.5 ± 2.8, TR = 22.0 ± 3.5, OTR/
down = 20.7 ± 2.8, OTR/up = 24.2 ± 2.7, and OTR = 23.7 ± 2.5; (2) 
week 4: CT = 24.3 ± 2.5, TR = 27.7 ± 3.4, OTR/down = 27.3 ± 3.4, 
OTR/up  =  27.3  ±  1.6, and OTR  =  29.7  ±  0.9; (3) week 8: 
CT = 19.8 ± 3.3, TR = 31.0 ± 6.3, OTR/down = 15.3 ± 3.1, OTR/
up = 17.1 ± 2.3, and OTR = 18.3 ± 3.4.

Training Protocol
The 8-week training protocol was based on the study from 
Ferreira et al. (32) and consisted of 5 days of continuous training 
interposed by 2 days of recovery (Table 1).

running OT Protocols and Performance 
evaluations
The 8-week running OT protocols were performed as previously 
described (20, 24, 25, 33) and also consisted of 5  days of con-
tinuous training interposed by 2 days of recovery (Table 2). The 
performance evaluations were applied on week 0 and 48 h after 

the last sessions of the TR and OT protocols at the end of weeks 4 
and 8 and consisted of the rotarod test, the ILT, the exhaustive test, 
and the grip force test (24, 33–36). A detailed description of these 
performance evaluations has been previously published in other 
studies by our research group (24, 33, 36, 37). For the perfor-
mance tests, we used 10 animals from each group. Interestingly, 
regardless of the predominance of the muscle contraction type 
used during the OT models, the training volume performed by 
each group during the experimental weeks was similar (33, 37).

heart and liver extractions
The rodents were anesthetized 36  h after the grip force test. 
After an overnight fast (12 h), the mice were anesthetized using 
an intraperitoneal injection of 2-2-2 tribromoethanol 2.5% 
(10–20  µL  g−1). Once anesthesia was confirmed by the loss of 
pedal reflexes, each mouse liver and cardiac muscle (i.e., left 
ventricle) were removed and used for immunoblotting. For the 
immunoblotting technique, we used 6 or 8 animals from each 
group for each protein.

immunoblotting Technique
Livers and cardiac muscles (i.e., left ventricles) were homog-
enized in extraction buffer (1% Triton X-100, 100 mM Tris, pH 
7.4, containing 100 mM sodium pyrophosphate, 100 mM sodium 
fluoride, 10 mM EDTA, 10 mM sodium vanadate, 2 mM PMSF, 
and 0.1 mg/ml aprotinin) at 4°C with a Polytron PTA 20S gen-
erator (model PT 10/35; Brinkmann Instruments, Westbury, NY, 
USA), operated at maximum speed for 30  s. The homogenates 
were centrifuged (9,900 g) for 40 min, and the supernatants were 
used for protein quantification using the Bradford method (38). 
Proteins were denatured by boiling in Laemmli sample buffer 
containing 100 mM DTT, run on SDS-PAGE gel, and transferred 
onto nitrocellulose membranes (GE Healthcare, Hybond ECL, 
RPN303D). The transfer efficiency onto nitrocellulose membranes 
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was confirmed by brief staining of the blots with Ponceau red 
stain. These membranes were blocked with Tris-buffered saline 
(TBS) containing 5% BSA and 0.1% Tween-20 for 50 min at room 
temperature.

The antibodies used for immunoblotting overnight at 4°C 
were Bax (CELL2772s), beta-actin (CELL4967s), Caspase-4 
(CELL4050s), Caspase-12 (CELL2202s), CHOP (CELL2895s), 
TRAF2 (CELL4712s), phospho-TRAF2 (Ser11; CELL13908s) 
from Cell Signaling Technology (Beverly, MA, USA) at a dilu-
tion of 1:1,000; beta-actin (SC69879), BiP (SC33757), Caspase-3 
(SC7148), eIF2alpha (SC11386), phospho-eIF2alpha (Ser52; 
SC101670), GRP94 (SC11402), PERK (SC13037), and phospho-
PERK (Thr981; SC32577) from Santa Cruz Biotechnology (Santa 
Cruz, CA, USA) at a dilution of 1:750; IRE1 (A37073) and phos-
pho-IRE1 (Ser724; AB104157) from Abcam (Cambridge, UK) at 
a dilution of 1:1,000; ATF6beta (orb155755), and phospho-Bax 
(Ser184; orb4658) from Biorbyt (Cambridge, UK) at a dilution 
of 1:1,000.

After the membranes had been washed with TBS containing 
0.1% Tween-20, they were incubated for 1 h at 4°C with secondary 
antibody conjugated with horseradish peroxidase. The specific 
immunoreactive bands were detected using chemiluminescence 
(GE Healthcare, ECL Plus Western Blotting Detection System, 
RPN2132). Images were acquired by the C-DiGit™ Blot Scanner 
(LI-COR®, Lincoln, NE, USA) and quantified using the Image 
Studio software for C-DiGit Blot Scanner.

statistical analysis
The results are expressed as the mean  ±  SEM. While the 
Shapiro–Wilk W-test was used to test data normality, the 
Levene test was used to test the homogeneity of variances. When 
normality was confirmed, the one-way ANOVA was used to 
examine the effects of the TR and OT protocols. When one-way 
ANOVA indicated statistical significance, a Bonferroni post hoc 
test was performed. When normality was not confirmed, the 
Kruskal–Wallis test was used to examine the effects of the TR 
and OT protocols. When Kruskal–Wallis indicated statistical 
significance, a Games–Howell post hoc test was performed. All 
the statistical analyses were two-sided, and the significance level 
was set at P < 0.05. The statistical analyses were performed using 
the SPSS v.20.0 for Windows software (IBM, Chicago, IL, USA).

resUlTs

Performance Parameters
Figure 1A shows that the alteration (%) in the rotarod test per-
formance from week 0 to week 4 was not significantly different 
between the experimental groups. From week 4 to week 8, all OT 
groups decreased their performance significantly compared to 
the CT and TR groups. Also, the OTR group was significantly 
lower compared to the OTR/down group. Figure 1B shows that 
the alteration (%) in the ILT performance from week 0 to week 
4 was significantly higher for the OTR/down and OTR groups 
compared to the CT group.

From week 4 to week 8, the TR group increased its ILT per-
formance significantly compared to the OTR/down, OTR/up, 
and OTR groups. On the other hand, the OTR/down and OTR 

groups decreased their ILT performances significantly compared 
to the CT group. As it is known that a decrease or stagnation in 
performance is the only marker for the diagnosis of the NFOR 
state (21, 39–42), our performance results (i.e., Figures  1A–D 
from week 4 to week 8) reinforce our having established three 
successful models of OT for mice.

Figure  1C shows that the alteration (%) in the exhaustive 
test performance from week 0 to week 4 for the TR and OTR/up 
groups was significantly higher compared to the CT group. Also, 
the TR group increased its performance significantly compared 
to the OTR/down group. From week 4 to week 8, all OT groups 
decreased their performances significantly compared to the CT 
and TR groups. Figure 1D shows that the alteration (%) in the 
grip force performance (%) from week 0 to week 4 was not signifi-
cantly different between the experimental groups. From week 4 to 
week 8, all OT groups decreased their performances significantly 
compared to the CT and TR groups.

Proteins related to er stress and 
apoptosis in the liver
There was no significant difference between the experi-
mental groups for the hepatic protein levels of BiP, pIRE1 
(Ser724), pPERK (Thr981), peIF2alpha (Ser52), and GRP94  
(Figures 2A–D,F, respectively). Figure 2E shows that the hepatic 
protein levels of ATF6beta were significantly lower (P < 0.05) in 
the OTR/down (73.2%), OTR/up (67.7%), and OTR (58.6%) 
groups compared to the N group. Also, the OTR/down and OTR/
up groups were 69.8 and 63.6% lower (P <  0.05) compared to 
the CT group, respectively. There was no significant difference 
between the experimental groups for the hepatic protein levels 
of CHOP, caspase-4, cleaved caspase-12, pBax (Ser184), and 
pTRAF2 (Ser11) (Figures  3A,C–F, respectively). Figure  3B 
shows that the hepatic protein levels of cleaved caspase-3 were 
significantly lower (P < 0.05) in the OTR/down (66.0%) group 
compared to the CT group.

Proteins related to er stress and 
apoptosis in the heart
There was no significant difference between the experimental 
groups for the cardiac protein levels of BiP, pIRE1 (Ser724), 
pPERK (Thr981), peIF2alpha (Ser52), ATF6beta, and GRP94 
(Figures 4A–F, respectively). Also, the cardiac protein levels of 
CHOP, cleaved caspase-3, caspase-4, cleaved caspase-12, pBax 
(Ser184), and pTRAF2 (Ser11) were not significantly different 
between the experimental groups (Figures 5A–F).

DiscUssiOn

This investigation tested the effects of different running OT 
protocols on hepatic and cardiac proteins related to ER stress 
and apoptosis in C57BL/6 mice. First, we observed that the OT 
models induced similar responses in rotarod, incremental load, 
exhaustive, and grip force tests. Second, the OT groups presented 
significantly lower hepatic ATF6beta values compared to the 
N group. Third, the OTR/down group displayed lower hepatic 
cleaved caspase-3 values compared to the CT group. Finally, 
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FigUre 1 | Percentage alterations (%) in rotarod test (a), incremental load test (b), exhaustive test (c), and grip force test (D) from week 0 to week 4, and from 
week 4 to week 8. Data are expressed as the mean ± SE of n = 10 mice. CT, sedentary mice; TR, trained mice; OTR/down, overtrained by downhill running; OTR/
up, overtrained by uphill running; OTR, overtrained by running without inclination. *P < 0.05 vs. CT group. **P < 0.05 vs. TR group. †P < 0.05 vs. OTR/down group.
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the cardiac proteins related to ER stress and apoptosis were not 
modulated in response to the TR and OT protocols.

The TR and OT protocols presented the same characteristics 
during the first 4 weeks. Regarding rotarod and grip force per-
formances from week 0 to week 4, the TR and OT models did not 
induce significant alterations compared to the CT group. From 
week 4 to week 8, while the TR protocol did not improve the 
rotarod and grip force performances, the OT models impaired 
these functional capacity parameters, as previously verified 
(33, 36, 37, 43). Using the same TR protocol, other researchers 
found no improvements in rotarod and grip force performances  
(44, 45). The rotarod test estimates cerebellar dysfunctions in 
rodents and may be influenced by cardiorespiratory endurance, 
motor coordination, and learning (46). As the TR group increased 
its ILT results, a parameter of cardiorespiratory endurance, from 
week 4 to week 8, it is possible that this particular protocol did 

not lead to significant alterations in motor coordination or 
learning.

In contrast, Huang and coworkers (47) observed that a run-
ning training protocol performed at 70% maximal oxygen uptake 
increased rotarod test values, which were associated with the 
upregulation of the dendritic density of Purkinje cells, a marker of 
motor coordination. The responses of the ILT and exhaustive test 
to the OT models from week 4 to week 8 are in accordance with 
other investigations performed by our research group (24, 33, 36, 
37, 43) and reinforce the efficiency of these protocols to induce the 
NFOR state. Regarding the hepatic ER stress proteins, we found 
a downregulation of the ATF6beta protein levels in response to 
the OT protocols. ATF6 is an ER membrane-associated bZIP 
transcription factor, which restricts the transcriptional activity of 
sterol regulatory element-binding protein (SREBP) to decrease 
hepatic lipid stores (48).
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FigUre 2 | Protein levels (arbitrary units) of BiP (a), pIRE1 (Ser724)/inositol-requiring enzyme 1 (IRE1) (b), pPERK (Thr981)/protein kinase RNA-like endoplasmic 
reticulum kinase (PERK) (c), peIF2alpha (Ser52)/eIF2alpha (D), ATF6beta (e), and glucose-regulated protein 94 (GRP94) (F) in the livers of experimental animals. 
Data are expressed as the mean ± SE of n = 6 mice. N, sedentary mice; TR, trained mice; CT, sedentary mice; OTR/down, overtrained by downhill running; OTR/
up, overtrained by uphill running; OTR, overtrained by running without inclination. *P < 0.05 vs. CT group. ***P < 0.05 vs. N group. The original experiments are 
available in supplementary file 1 (i.e., BiP, peIF2alpha, eIF2alpha, and ATF6beta), file 2 (i.e., pIRE1, IRE1, Pperk, and PERK), and file 3 (i.e., GRP94).
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Sterol regulatory element-binding protein-1c is the main tran-
scription factor that regulates hepatic triglyceride synthesis, con-
tributing to the pathogenesis of steatosis (49). Because ER stress 
may increase the transcription and mature form of SREBP-1c, 
this physiological phenomenon has been considered an activator 
of hepatic lipogenesis (50, 51). Usui and coworkers (52) found 
that diet-induced obese ATF6alpha-null mice displayed elevated 
mRNA expressions of SREBP1c, which was linked to a tendency 
for a higher degree of hepatic steatosis. Moreover, Yamamoto 

et  al. (53) burdened ATF6alpha-knockout mice with an intra-
peritoneal injection of tunicamycin, an ER stress promoter, and 
observed hepatic dysfunction and steatosis. Zeng and coworkers 
(48) proposed a model in which glucose starvation induces the 
proteolytic cleavage of ATF6 that binds to SREBP2 in the nucleus 
and downregulates lipogenesis.

Recently, we found that the OTR/down and OTR/up models 
upregulated the hepatic SREBP-1 p125 precursor, but not the 
p68 mature form. Also, all of the OT protocols induced liver 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
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Caspase-12 (D), pBax (Ser184)/Bax (e), and pTRAF2 (Ser11)/tumor necrosis factor receptor-associated factor 2 (TRAF2) (F) in the livers of experimental animals. 
Data are expressed as the mean ± SE of n = 6 mice. N, sedentary mice; TR, trained mice; CT, sedentary mice; OTR/down, overtrained by downhill running; OTR/
up, overtrained by uphill running; OTR, overtrained by running without inclination. *P < 0.05 vs. CT group. The original experiments are available in supplementary 
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fat accumulation (25). Based on the previously described inves-
tigations (48, 52, 53), future studies should verify the effects of 
these running OT models on the hepatic levels of ATF6alpha 
and SREBP2, as well as on knockout models of ATF6alpha and 
beta, since these two isoforms play different roles in ER stress 
(54). The responses of hepatic ATF6 to exercise protocols are 

scarce (55, 56). For instance, Chapados and Lavoie (55) did not 
observe significant differences in ATF6 gene expression after 
6 weeks of continuous running in female Sprague-Dawley rats. 
Recently, Tang and coworkers (56) verified that seven successive 
days of intense exercise increased the activity levels of ATF6 
in mouse liver. The differences between the exercise protocols, 
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FigUre 4 | Protein levels (arbitrary units) of BiP (a), pIRE1 (Ser724)/inositol-requiring enzyme 1 (IRE1) (b), pPERK (Thr981)/protein kinase RNA-like endoplasmic 
reticulum kinase (PERK) (c), peIF2alpha (Ser52)/eIF2alpha (D), ATF6beta (e), and glucose-regulated protein 94 (GRP94) (F) in the hearts of experimental animals. 
Data are expressed as the mean ± SE of n = 8 mice. N, sedentary mice; TR, trained mice; CT, sedentary mice; OTR/down, overtrained by downhill running; OTR/
up, overtrained by uphill running; OTR, overtrained by running without inclination. The original experiments are available in supplementary file 9 (i.e., ATF6beta), file 
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experimental animals, and liver extraction times hamper the 
comparisons between the investigations above. However, even 
with the differences between the exercise protocols, we consider 
that the downregulation of ATF6 in the OT groups occurred due 
to the accumulation of hepatic fat, which was previously shown 
in the overtrained mice (48, 52, 53).

Regarding the hepatic apoptotic proteins, we found a down-
regulation of the cleaved caspase-3 after the OTR/down protocol. 

In contrast, several investigations did not observe significant 
alterations in cleaved caspase-3 hepatic levels after various acute 
and chronic exercise protocols (57–61). Only two studies exam-
ined the effects of exhaustive sessions on this apoptotic protein 
in the liver (57, 62). Mikami et al. (57) subjected sedentary and 
trained mice to an acute exhaustive running session and did not 
observe a significant change in the cleaved caspase-3 hepatic 
levels. Huang and coworkers (62) used an exhaustive treadmill 
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FigUre 5 | Protein levels (arbitrary units) of C/EBP-homologous protein (CHOP) (a), Cleaved Caspase-3/Caspase-3 (b), Caspase-4 (c), Cleaved Caspase-12/
Caspase-12 (D), pBax (Ser184)/Bax (e), and pTRAF2 (Ser11)/tumor necrosis factor receptor-associated factor 2 (TRAF2) (F) in the hearts of experimental animals. 
Data are expressed as the mean ± SE of n = 8 mice. N, sedentary mice; TR, trained mice; CT, sedentary mice; OTR/down, overtrained by downhill running; OTR/
up, overtrained by uphill running; OTR, overtrained by running without inclination. The original experiments are available in supplementary file 10 (i.e., Caspase-4, 
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exercise to study the effects of a medicinal mushroom on hepato-
protection, but they did not compare the cleaved caspase-3 
content in the liver with a sedentary group.

Probably, the divergences between the studies reported 
above and the current investigation occurred due to the fol-
lowing reasons: (1) different exercise protocols—Mikami et al. 
(57) subjected their animals to a 4-week training period, while 

Huang et  al. (62) subjected their animals to one exhaustive 
session after 30  days of Ganoderma tsugae supplementation. 
In the present study, the animals performed 8  weeks of OT; 
(2) experimental model of rodents—while Mikami et  al. (57) 
and Huang et al. (62) investigated rats, we used C57BL/6 mice; 
(3) time for tissue extractions—Mikami et  al. (57) used 48  h 
after the last exercise session, Huang et al. (62) euthanized the 
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FigUre 6 | Schematic model summarizing the relationships between 
endoplasmic reticulum (ER) stress, apoptosis, and excessive training in the 
liver and heart of C57BL/6 mice.
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animals immediately after the exercise session, and we used 
36 h after the grip force test. It is important to underline that 
the proteins and their targets are phosphorylated at different 
time periods (63).

Although the hepatic levels of cleaved caspase-12 for the OTR/
down group were 70% higher compared to the N group, the differ-
ences between these groups were not significant. Recently, Ryoo 
(64) highlighted the importance of considering the timeline of 
events in which ER stress induced cell death. As the proteins and 
their targets are phosphorylated at different time periods (63), 
further studies should investigate the time-course of the hepatic 
proteins related to ER stress and apoptosis after the OT protocols 
to clarify whether they were activated before or after the current 
extraction time.

Based on the relationship between aerobic training, attenuated 
cardiac ER stress, and improved exercise capacity (14), we also 
verified whether the decrease in performance induced by our OT 
protocols was linked to ER stress and apoptosis in mice hearts. 
Herein, we found that the cardiac proteins related to ER stress 
and apoptosis were not modulated in response to the TR and OT 
protocols. Murlasits et al. (65) found that five exercise bouts per-
formed at 70% maximal oxygen uptake for 60 min on consecutive 
days did not increase cardiac ER stress protein expressions in 
Sprague-Dawley rats. The authors emphasized that the cardiac 
extraction was performed 24 h after the last exercise session, and 
it was possible that the peak protein expression had occurred at 
a later point in time.

Recently, Bourdier and coworkers (16) verified that male 
Wistar rats subjected to 10  days of high-intensity training 
increased their cardiac levels of BiP without significant changes 
in pPERK, peIF2alpha, ATF4, ATF6, XBP1, CHOP, and cleaved 
caspase-3. The time interval between the last exercise session 
and cardiac muscle extraction performed by Bourdier et  al. 
(16) was lower compared to the current investigation (i.e., 24 h 
versus 36 h). In fact, we selected 36 h of recovery after the grip 
force test to guarantee a minimum period to allow signaling 
pathways affected by exercise to recover to their basal levels. 
Also, our animals were submitted to a 12-h fasting period. 
Stressors like starvation cause BiP dissociation from the ER 
proteins (IRE1, PERK, and ATF6) (66). After release from BiP, 
the signal cascade is initiated for each of the ER proteins. Even 
after the fasting period, the proteins did not show significant 
changes.

Although moderate or high-intensity aerobic training can 
reduce cardiac ER stress induced by post-myocardial infarction 
heart failure or intermittent hypoxia (14, 16), respectively, their 
effects on healthy hearts are minimal. Modifications in redox 
status or reactive oxygen species (ROS) generation directly or 
indirectly affect ER homeostasis and protein folding. Under 
physiological conditions, ROS accumulation is protected by 
numerous endogenous antioxidant defense systems that include 
both enzymatic and non-enzymatic antioxidant mechanisms 
(67–69). One of the consequences of moderate exercise is to 
increase oxygen consumption, creating conditions for ROS 
generation and for oxidative stress in the organelle, cell, and 
tissue. Low physiological concentrations of ROS can regulate 
a variety of key mechanisms due to their roles as signaling 

molecules (70). Also, some tissues such as skeletal muscle have 
a well-developed system for regulating ROS, which includes 
mitochondrial and cytosolic isoforms such as superoxide 
dismutase (71). Recently, compared with the control mice, we 
showed that the animals subjected to the OTR/down protocol 
presented significantly higher levels of thiobarbituric acid reac-
tive substance in the skeletal muscle cells. On the other hand, 
the glutathione levels (GSH) in the skeletal muscle cells were 
significantly lower in the OTR/down group than in the control 
and trained groups.

To date, this is the first investigation regarding the effects of 
OT on the hepatic and cardiac proteins related to ER stress and 
apoptosis. In conclusion, the running OT protocols with the 
same external load, but performed downhill, uphill, and without 
inclination, decreased the levels of hepatic ATF6beta, which 
may be linked to high levels of liver fat, as recently published 
by our research group. Also, the OTR/down protocol decreased 
the levels of hepatic cleaved-caspase 3. Finally, the decrease in 
performance induced by our OT models is not linked to ER stress 
and apoptosis in mice hearts. These results are summarized in 
Figure 6.
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