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Value-based decision making relies on distributed neural systems that weigh the benefits

of actions against the cost required to obtain a given outcome. Perturbations of these

systems are thought to underlie abnormalities in action selection seen across many

neuropsychiatric disorders. Genetic tools in mice provide a promising opportunity to

explore the cellular components of these systems and their molecular foundations.

However, few tasks have been designed that robustly characterize how individual mice

integrate differential reward benefits and cost in their selection of actions. Here we present

a forced-choice, two-alternative task in which each option is associated with a specific

reward outcome, and unique operant contingency. We employed global and individual

trial measures to assess the choice patterns and behavioral flexibility of mice in response

to differing “choice benefits” (modeled as varying reward magnitude ratios) and different

modalities of “choice cost” (modeled as either increasing repetitive motor output to

obtain reward or increased delay to reward delivery). We demonstrate that (1) mouse

choice is highly sensitive to the relative benefit of outcomes; (2) choice costs are heavily

discounted in environments with large discrepancies in relative reward; (3) divergent cost

modalities are differentially integrated into action selection; (4) individual mouse sensitivity

to reward benefit is correlated with sensitivity to reward costs. These paradigms reveal

stable individual animal differences in value-based action selection, thereby providing

a foundation for interrogating the neural circuit and molecular pathophysiology of

goal-directed dysfunction.

Keywords: operant behavior, mouse, cost-benefit, economic choice, flexibility, value, decision-making

BULLET POINTS:

• Novel protocol to reveal stable “trait-like” measures of value-based choice in mice.
• Mice integrate relative rewards and costs associated with obtaining those rewards in selecting

future actions.
• Reward costs are heavily discounted in the context of large discrepancies in outcome benefit.
• Both increased operant scheduling and temporal delay to reward decrease the relative value of

choice alternatives, but do so in divergent manners.
• Sensitivity to reward benefit is correlated with sensitivity to cost at the individual animal level.
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INTRODUCTION

In order to make optimal choices in a complex world, individuals
must be sensitive to the costs and benefits of particular actions
and integrate those components to holistically control motor
output (Floresco et al., 2008; Cox et al., 2015; Louie et al.,
2015; Kroemer et al., 2016; Mikhael and Bogacz, 2016; Friedman
et al., 2017). As neuroeconomic approaches to decision-making
have flourished (Kable and Glimcher, 2007; Montague, 2007;
Glimcher, 2014; Khaw et al., 2017), there is increasing interest
in the cellular and circuit-level neural mechanisms that support
value-based action selection (Tai et al., 2012; Wang et al., 2013;
Xiong et al., 2015; Parker et al., 2016; Padoa-Schioppa and
Conen, 2017). These directions provide a strong foundation
to better understand how physiological differences in reward
processing contribute to behavioral diversity. Furthermore, they
may eventually inform our conception of neuropsychiatric
disorders, which often manifest deficits in value-based choice as
major features of their behavioral pathology (Der-Avakian and
Markou, 2012; Griffiths et al., 2014; Gold et al., 2015; Solomon
et al., 2015; Albrecht et al., 2016; Collins et al., 2017; Hélie et al.,
2017; Zald and Treadway, 2017).

A number of model systems have been employed to
characterize the behavioral aspects of reward processing as well
as the neural circuits mediating value representation in the
brain (Samejima et al., 2005; Sugrue et al., 2005; Floresco et al.,
2008; Lau and Glimcher, 2008; Gan et al., 2010; Sul et al.,
2010; Cai et al., 2011; Levy and Glimcher, 2012; Tachibana
and Hikosaka, 2012; Wang et al., 2013; Khaw et al., 2017).
While the “gold-standard” for these cognitive studies has long
been primates (Sugrue et al., 2005; Gold and Shadlen, 2007),
rodents offer numerous advantages for pharmacological, cell-
type, and circuit-specific molecular approaches (Carandini and

Churchland, 2013; Jaramillo and Zador, 2014). Accordingly,
behavioral approaches in rats have significantly informed our
understanding of the interplay between reward processing and

choice. While too numerous to cover here, paradigms such

as devaluation, reversal learning, delayed-discounting, operant
response scheduling, and probabilistic reward tasks have been
employed to examine value encoding, response flexibility, time-
dependent value decay, willingness to work, and choice patterns
under uncertainty, respectively (Yin et al., 2004, 2005b; Floresco
et al., 2008; Castañé et al., 2010; Koffarnus et al., 2011; Mar et al.,
2011; Hosking et al., 2015; Yates and Bardo, 2017). Manipulations
and recordings done in the context of these behavioral models
have begun to reveal the contribution of distinct brain regions
to aspects of value processing and goal-directed decision making
(Yin et al., 2004, 2005a, 2006; Jones et al., 2012; Gourley et al.,
2016; Hart et al., 2018).

The use of mice to characterize economic choice behavior has
thus far received less attention. While there have been doubts
about the ability of mice to perform the complex cognitive
tasks required to assess value-based choice (Carandini and
Churchland, 2013; Jaramillo and Zador, 2014), recent work
contradicts this idea (Tai et al., 2012; Parker et al., 2016;
Guo et al., 2018). As in rat, choice selection under outcome
uncertainty has successfully been modeled with alternatives of

varying reward probability (Ineichen et al., 2012; Tai et al.,
2012; Parker et al., 2016). In addition, the integration of choice
benefit and cost has been explored within the context of delayed
discounting, whereby larger reward volumes are associated with
longer temporal delay to reward delivery (Oberlin and Grahame,
2009; Boomhower and Newland, 2016; Pope et al., 2016). A
related attempt at quantifying the discounting of benefit took
advantage of the natural tendency for mice to avoid brightly
lit spaces as a fixed cost against which rising benefits were
compared (Friedman et al., 2017). In our work, we sought to
systematically investigate how benefits and two distinct types of
action-associated cost are integrated to regulate action selection,
with a specific focus on individual mouse differences. Toward
this end, we developed a trial-based, forced-choice, serial reversal
paradigm that forces mice to make sequential decisions by
using previous reward history to continually update subjective
choice values. To characterize the subjective value of actions, we
measured response bias and performance across a wide dynamic
range of reward outcomes and contingencies.

We demonstrate that mice behaviorally manifest internal
representations of value by altering the distribution and
execution of their choices in response to previously rewarded
outcome magnitudes. Furthermore, we show that two unique
cost modalities, increased effort to reward and increased
delay to reward, generate similar devalued responses
but integrate into decision-making via divergent choice
mechanisms. Finally, longitudinal, cross-session analysis of
individual animal value-processing revealed stable patterns of
behavioral performance, consistent with reproducible “trait-like”
responses to reward, effort and delay. Together, these findings
represent a robust behavioral approach for understanding
circuit control of value-based choice in normal and
disease-modeled states.

MATERIALS AND METHODS

Animal Subjects
Animal procedures were approved by the University of
Pennsylvania Laboratory Animal Care and Use Committee and
carried out in accordance with National Institutes of Health
standards. Twenty-four adult male C57Bl6/J mice (The Jackson
Laboratory, stock# 000664) were used in this study. Animals were
housed in cages of at least four, with ad libitum access to water.
Mice were food-deprived to 85–90% of normal body weight and
maintained at this level for the duration of experiments. On days
in which no experiments were conducted, mice were weighed and
allocated 0.2 g extra chow relative to their recent daily allowance
to account for differences in caloric intake between experimental
and non-experimental days. Mice were given supplemental food
if their weight fell below 85% of their initial weight. Mice were
kept on a 7 a.m.–7 p.m. regular light-dark cycle and maintained
in constant temperature and humidity conditions.

Behavioral Apparatus and Task Structure
All experiments were conducted inside a modular chamber
with dimensions 8.5 × 7.12 × 5 inches (W × D × H) (Med
Associates, Inc., Burlington, VT). Each chamber contained a
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modified reward magazine through which liquid reward was
pumped directly into a custom-made receptacle. On either side
of the magazine were retractable levers which had to be fully
depressed to register choices. A light in the magazine turned
on to indicate the beginning of each trial, after which animals
were required to make a sustained (200ms) magazine head entry
to initiate the choice period. The choice period was marked by
the extension of levers on either side of the reward magazine,
illumination of lights immediately above the protracted levers,
and extinction of the magazine light. Mice then had an x-sec
temporal window (contingent on current protocol) to register
choice via lever press, after which the lever retracted and the
trial was considered an omission. Following successful choice
selection, the levers were retracted and a variable volume of
liquid reward (Boost, 70%, Nestlé) was delivered via the center
magazine, which had its light turned on for the duration of the
reward period. Reward volumes were determined by variable
activation time of single-speed syringe pumps (pre-determined
for each pump in prior calibration sessions, Med Associates).
Mice were allowed 5 s for reward consumption after which all
box lights were inactive for a 1 s inter-trial interval prior to
next trial start. All magazine entries (detected by interruption of
infrared beam) and lever presses were recorded byMedAssociates
software (MedPC-IV). Data were exported to Microsoft Excel via
MedAssociates software (MED-PC to Excel).

Simple Action Outcome Contingency
In the first stage of training, animals were habituated to
behavioral boxes for 10min., followed by a program that
delivered 10 µL of reward every minute for 40min. via the
magazine port. Reward delivery was not contingent on mouse
choice. Upon reward delivery, the magazine light turned on
for 10 s to cue the mouse to reward, followed by a 50 s inter-
trial interval. After 3 days in this introductory program, mice
learned a lever press-reward contingency. Trials were initiated as
described previously. During the choice phase, 1 of 2 levers were
protracted, at random, on each trial. Mice had a 10 s temporal
window to register their choice via lever press, otherwise the lever
retracted and the trial was considered an omission. If animals
registered a selection within the given choice time, 10 µL of
reward was delivered (Prew = 1.0). Sessions lasted 45min with no
trial number limits. After nine sessions, mice that had completed
2 consecutive days of >150 trials or 1 day >200 trials progressed
to the serial reversal task. If mice missed this deadline, they were
again assessed after sessions 12 and 15. Mice that failed to meet
these criteria by session 15 were excluded from the study (n= 3).

Serial Reversal Task
Animals that met the criteria for acquisition of the action-
outcome contingency progressed to a forced-choice two-
alternative serial reversal paradigm. Trials began as in the
previous protocol, with illumination of themagazine light. Again,
mice initiated trials with a 200-ms sustained magazine entry,
which led to the choice period. Mice then had a 5 s temporal
window to register their choice via lever press, otherwise the lever
retracted and the trial was considered an omission. On every
trial, both levers were presented. Reward volumes were varied

according to experiment and reward probabilities (Prew = 1.0,
0.7, 0.4) were equally applied to both levers. These contingencies
were held constant for the duration of a session. Following choice
selection, both levers retracted and the 5 s reward phase initiated.

To prevent outcome-insensitive behavior, we employed a
“moving window” to trigger changes in lever-reward association
(Figure 1B). When 8 of the last 10 actions were allocated to
the large reward volume side, an un-cued contingency shift
flipped the lateralization of the high and low benefit alternatives.
The probability of reinforcement as well as the relative reward
contrast between choices were kept consistent over individual
sessions. Sessions were limited to 1 h, or 360 trials, whichever
occurred first. Each relative reward contingency was performed
on the same animal in a semi-random order (contingencies were
never repeated on adjacent days).

Application of Response Costs
We decided to model costs as operant contingencies that
either increased the number of required operant responses
or the temporal delay prior to reward delivery. Costs were
exclusively associated with the large reward benefit alternative
in all contingencies. In tasks in which repetitive motor output
was required, selection of an alternative led to retraction of the
unselected lever and extinction of the corresponding lever light.
The selected alternative remained protracted until the animal
completed the required motor repetitions. In tasks in which a
temporal disparity was introduced between choice and outcome,
selection of an alternative initiated the requisite time disparity,
with no light indicating the presence of reward. Upon completion
of the time delay, the reward period was triggered with the
illumination of magazine light and delivery of the appropriate
volume of reward. Each cost-benefit contingency was performed
on the same animal in a semi-random order (contingencies were
never repeated on adjacent days).

Analysis of Behavioral Performance
Data were analyzed using custom-written scripts developed in R
Studio (3.3.1) (R Core Team, 2017), making use of base functions
supplemented by Rmisc (Hope, 2013), plyr (Wickham, 2011),
and reshape2 (Wickham, 2007) packages. All analysis code is
freely available upon request.

The Average Block Length over the course of a session was
calculated as:

Average Block Length =

(

n
∑

i=1

BLi

)

/n

where BLi refers to the number of trials till a contingency switch
in the ith block of an individual session and n is the number of
blocks completed in a session.

Overall session performance was calculated as:

Prob(Large Reward) =
CLarge

CTotal

where CLarge and CTotal refer to the total number of choices to the
large reward alternative and the total number of choices made in
an individual session, respectively.
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FIGURE 1 | Acquisition of value-based choice paradigm is accompanied by dynamic changes in reinforcement. (A) Schematic of trial structure showing that mice

initiate trials via sustained magazine entry, respond via lever press during specified temporal window, and collect rewards from center magazine. (B) Block

structure—trials with the same contingency occur consecutively until mice select the alternative with the large reward eight times in a proximal window of 10 trials.

Dotted lines signify block switch and gray box denotes 10-trial moving window for triggering contingency switch. (C) Mice that were trained in a simple lever

(Continued)
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FIGURE 1 | press-reward contingency were initiated into the reversal paradigm at one of three probabilities of reinforcement. On any given trial, one alternative

resulted in reward and the other resulted in no reward (Prew = 1, n = 5; Prew = 0.7, n = 11; Prew = 0.4, n = 5). (D) Block length, the average number of trials until a

contingency switch, decreased over the duration of the training period in a reward probability dependent fashion. (E) The overall probability that mice select the large

reward increases over the duration of training in a reward probability dependent fashion. (F) Logistic regression modeled the effects of past reinforcers on subsequent

choice in early (<1,000 trials, top) and late (>2,000 trials, bottom) periods of acquisition. We performed multiple t-tests comparing “Large Reward” and “No Reward”

coefficients to assess which reward outcome types were reinforcing (significance indicated by asterisk, corrected for multiple comparisons using Holm-Sidak). In early

acquisition, only the T−1 trial at Prew = 1 was positively reinforcing relative to no reward outcome. In later acquisition, the T−1 trial was significantly reinforcing for all

probabilities tested. (G) The probability that animals stayed on a choice alternative after receiving a large reward (Pr(Reward)-Stay) increased over the course of

training in a reward probability dependent manner. (H) There was a significant effect of acquisition day on the probability that animals stayed on a choice alternative

after receiving no reward (Pr(No Reward)-Stay), however, pairwise comparisons revealed few differences in these values and we noted no consistent differences over

the course of multiple days. (I) The relative action value, defined as the reinforcing property of large reward vs. no reward outcomes, increased as animals gain

experience in this paradigm in a reward probability dependent fashion. All data analyzed by Repeated Measures (Day) Two-Way ANOVA.

The Relative Action Value of a larger volume outcome, A, vs.
a smaller volume outcome, B, was calculated as:

Relative Action Value = ln





(

Pr(A)
1−Pr(A)

)

(

Pr(B)
1−Pr(B)

)





where Pr(A) and Pr(B) refer to the probability that mice stay on
the choice alternative producing the larger volume outcome (A)
and the smaller volume outcome (B), respectively, on the T−1

trial.
Adaptability Index was calculated as:

Adaptability Index =





n
∑

i=1

(

L
post
i − S

post
i

)

+

(

L
pre
i − S

pre
i

)

10



 /n

where L
pre
i and L

post
i refer to the number of large alternative

selections in the 10 trials before and after the ith contingency

switch in an individual session and S
pre
i and S

post
i refer to the

number of small alternative selections in the same time window.
n is the number of blocks completed in a session.

Relative Initiation Latency was calculated as:

Relative Latency to Initiate =
LatInitLarge − LatInitSmall

LatInitSmall

where LatInitLarge and LatInitSmall refer to the average latency to
initiate trials following large reward and small reward outcomes,
respectively, in an individual session.

The extent to which the application of reward costs affected
the choice distribution of individual animals was calculated as:

Cost DiscountingIndividual = RAVCost − RAVNoCost

where RAVCost and RAVNoCost refer to the relative action values
for animals in reward contingencies with and without cost
considerations, respectively. The magnitude of values represent
the degree to which costs decrease (negative values) or increase
(positive values) the relative value of choice alternatives to which
costs have been applied. The relative sensitivity of animals to
particular cost modalities was calculated as the z-score of this
value.

A logistic regression model was used to model current choice
as a function of past actions (n = 5 trials) and their resulting
outcomes:

log

(

R(i)

1− R(i)

)

= β0 +

n
∑

p=1

βLR
p LR

(

i− p
)

+

n
∑

p=1

βSR
p SR

(

i− p
)

+

n
∑

p=1

βNR
p NR

(

i− p
)

+ error

where R(i) is the probability of choosing the right-sided
alternative on the ith, current, trial. LR(i-p), SR(i-p), and NR(i-p)
refer to the outcomes of the pth previous trial. LR(i-p) is defined
such that LR(i-p) = +1 if an animal received a large reward on
the pth previous trial resulting from a right press, a −1 if an
animal received a large reward on the pth previous trial resulting
from a left press and 0 if the animal did not receive a large
reward. SR(i-p) and NR(i-p) are defined similarly for trials that
resulted in small reward and no reward outcomes, respectively.
Together these variables account for lateralization of past choices
and the resultant outcomes. This method assumes equivalent
reinforcement from outcomes regardless of the lateralization of
choice. Regression coefficients were fit to individual mouse data
using the glm function in R with the binomial error distribution
family. Coefficient values for individual mice were averaged to
generate the plots and perform the analysis observed in Figure 1F
and Figure 4.

Reinforcement Learning Model
We fit an adapted Q-Learning Reinforcement Model with four
parameters to our behavioral data (Sutton and Barto, 1998; Daw,
2011). The input to this model was the sequence of choices
of each mouse and resulting outcomes. Similar to our logistic
regression model, the reinforcement model assumes that choice
behavior is heavily influenced by the subjective value of each
alternative on a given trial. Action values for the two alternatives
were initiated at 0 and values were updated via the following rule:

Qt+1 = Qt + α(Rt − Qt)

where Qt is the value of the action taken on trial t and Rt is
the reward volume resulting from that action. Rt − Qt thus
defines the reward prediction error on a given trial and this
value, scaled by the learning rate (α), is used to update the
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value of subsequent actions. In this context, α determines the
extent to which new information about the state-action pairing
alters subsequent behavior. In keeping with standard Q-learning
models, values for the unchosen alternative were not updated.
In order to model the choice behavior of mice based on these
action values, we implemented a softmax decision function to
convert values into action probabilities. The operator computed
the probability of choosing an alternative A on trial t as:

PA (t) =
1

1+ e−z
, where

z = β (QA (t) − QB (t)) + κCt−1 + c

The inverse temperature parameter, β, is the regression weight
linking the values of each option to the choice output. High
values for β indicate mice more readily exploit differences in
action values between the alternatives, while lower values suggest
that mice exhibit more exploratory behavior. To account for
the global preference or aversion of mice to choices they have
recently made, we included a term, κCt−1, where Ct−1 is an
indicator variable that denotes whether the animal selected
alternative A on the previous trial (Ct−1 = 1 if animal selected
choice A and = −1 otherwise). κ represents the extent to
which the animal’s previous choice influences its subsequent
choice irrespective of outcome. The constant value, c, captures
any existing preference for a particular choice alternative. In
order to fit this model to our choice data we performed a
maximum likelihood fit using function minimization routines
of the negative log likelihood of models comprised of different
combinations of our three parameters (α, β, κ , c) in MATLAB
(Vo et al., 2014).

Statistical Methodology
All data were initially tested with appropriate repeated measure
ANOVA (Prism 7.0). Main effect and interaction terms
are described both within figures and accompanying figure
legends. Results of relevant post-hoc testing (Tukey’s multiple
comparisons) are included in Table 1.

RESULTS

A Dynamic Choice Paradigm to Probe
Value-Based Behavioral Selection
To generate a reliable global estimation of how individual
animals weighed benefits and costs, we employed a block
structure design that maximized trial number while preventing
outcome-insensitive behavior by dynamically altering reward
contingencies in response to proximal choice patterns
(Methods, Figures 1A,B, see outcome-insensitive effects of
fixed contingency in Figure 2A). After acquiring a simple lever
press-for-reward contingency, mice progressed to the dynamic
reversal task. For initial training, one lever was associated with
15 µL of reward while the other was unrewarded (Figure 1C).
Furthermore, feedback density was manipulated by applying
reward probabilities to both choices (Prew = 1.0, 0.7, and 0.4 for
different cohorts of mice throughout training). The number of
trials performed between contingency switches (Block Length)

as well as the overall probability that mice chose the rewarded
outcome [Pr(Large Reward)] served as global measures of
choice efficiency in this task (Figure 1B). We observed that
these two measures tracked in opposite directions over 10 days
of training, with the average block length steadily decreasing
(Figure 1D), and the overall rate of large reward selection steadily
increasing (Figure 1E), both in a reward probability-dependent
manner. Consistent with increased global task efficiency,
we observed a reduction in choice and initiation latencies
(Figures 2B,C).

To understand the changes in action selection underlying
this increased behavioral efficiency, we explored how reward
differentially shaped behavior in early and late periods of training.
When first presented with a choice between levers following
rewarded outcomes, mice exhibited random choice preference.
Upon further training, these distributions became biased
toward choices that produced proximal rewarded outcomes
(Figures 1E,G). To further probe the factors influencing mouse
decision-making in this task, we employed a logistic regression
model (Lau and Glimcher, 2005; Tai et al., 2012; Parker et al.,
2016) to quantify how an animal’s previous choices and resulting
outcomes impacted their subsequent choices during early and
late learning. In contrast to models generated from trials in early
learning (Figure 1F, top), trials from later periods of training
revealed a marked influence of the immediately preceding trial
(T−1) on future choice (Figure 1F, bottom). The degree to which
prior trials contributed to current choice varied according to
reward probability, with sparse conditions (Prew = 0.4) driving
less robust control of current behavior. Given that the outcome
of the T−1 trial largely determined future choice for higher rates
of reinforcement (Prew =0.7 and 1; the reward environments for
our following experiments), we focused primarily on this trial for
analyses of behavior.

We hypothesized that overall efficiency in this task would
be driven by increasing ability to (a) choose the higher value
option and (b) flexibly alter behavioral responding at contingency
changes. To better characterize how different outcome values
alter mouse choice patterns, we systematically compared the
probability that animals returned to a choice after receiving
a reward (reward-stay, Figure 1G) with the probability of
returning after receiving no reward (no reward-stay = [1-(no
reward-shift)], Figure 1H). This measure, which we call the
“relative action value,” increased with training and plateaued
at ∼2.5, representing ∼12-fold higher odds of staying on an
alternative that produced a 15 µL reward as compared to a
no reward alternative (Figure 1I). Relative action value serves
as an internally controlled metric describing the comparative
reinforcing properties of distinct operant outcomes. To capture
how flexible responding contributed to global task efficiency, we
compared the choice patterns in the 10 trials before and after un-
cued contingency switches (Figure 1B). This adaptability metric
progressively increased across 10 days of training, suggesting
the mice more dynamically modulated their behavior as they
learned the overall task structure (Figure 2D). Furthermore, we
noted a consistent trend toward greater flexibility with higher
reinforcement probabilities, consistent with the idea that negative
feedback signals are particularly relevant for switching behaviors.
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TABLE 1 | Statistical results of pairwise post-hoc comparisons for: Figure 1H—means of Pr(NO REWARD)-Stay for specified days; Figure 3D—means of Pr(LARGE

REWARD)-Stay for different reward contrast and probability; Figure 3G—means of Latency to Initiate for different reward contrast and probability; Figure 8E—means of

Pr(SMALL REWARD)-Stay for different temporal delays.

Mean 1 Mean 2 Mean difference Adjusted P-Value Significance

FIGURE 1H: Pr(NO REWARD)-STAY

1 vs. 2 0.575 0.528 0.047 0.135 ns

1 vs. 3 0.575 0.549 0.026 0.864 ns

1 vs. 4 0.575 0.555 0.021 0.967 ns

1 vs. 5 0.575 0.599 −0.024 0.923 ns

1 vs. 6 0.575 0.584 −0.009 1.000 ns

1 vs. 7 0.575 0.564 0.011 1.000 ns

1 vs. 8 0.575 0.591 −0.016 0.995 ns

1 vs. 9 0.575 0.561 0.014 0.998 ns

1 vs. 10 0.575 0.573 0.003 1.000 ns

2 vs. 3 0.528 0.549 −0.021 0.959 ns

2 vs. 4 0.528 0.555 −0.027 0.846 ns

2 vs. 5 0.528 0.599 −0.071 0.002 **

2 vs. 6 0.528 0.584 −0.056 0.032 *

2 vs. 7 0.528 0.564 −0.036 0.481 ns

2 vs. 8 0.528 0.591 −0.063 0.008 **

2 vs. 9 0.528 0.561 −0.033 0.615 ns

2 vs. 10 0.528 0.573 −0.044 0.198 ns

3 vs. 4 0.549 0.555 −0.006 1.000 ns

3 vs. 5 0.549 0.599 −0.050 0.095 ns

3 vs. 6 0.549 0.584 −0.035 0.533 ns

3 vs. 7 0.549 0.564 −0.015 0.996 ns

3 vs. 8 0.549 0.591 −0.042 0.275 ns

3 vs. 9 0.549 0.561 −0.012 0.999 ns

3 vs. 10 0.549 0.573 −0.023 0.927 ns

4 vs. 5 0.555 0.599 −0.044 0.209 ns

4 vs. 6 0.555 0.584 −0.029 0.758 ns

4 vs. 7 0.555 0.564 −0.009 1.000 ns

4 vs. 8 0.555 0.591 −0.036 0.483 ns

4 vs. 9 0.555 0.561 −0.006 1.000 ns

4 vs. 10 0.555 0.573 −0.018 0.988 ns

5 vs. 6 0.599 0.584 0.015 0.997 ns

5 vs. 7 0.599 0.564 0.035 0.551 ns

5 vs. 8 0.599 0.591 0.008 1.000 ns

5 vs. 9 0.599 0.561 0.038 0.420 ns

5 vs. 10 0.599 0.573 0.026 0.857 ns

6 vs. 7 0.584 0.564 0.020 0.973 ns

6 vs. 8 0.584 0.591 −0.007 1.000 ns

6 vs. 9 0.584 0.561 0.023 0.930 ns

6 vs. 10 0.584 0.573 0.012 1.000 ns

7 vs. 8 0.564 0.591 −0.027 0.847 ns

7 vs. 9 0.564 0.561 0.003 1.000 ns

7 vs. 10 0.564 0.573 −0.008 1.000 ns

8 vs. 9 0.591 0.561 0.030 0.740 ns

8 vs. 10 0.591 0.573 0.018 0.983 ns

9 vs. 10 0.561 0.573 −0.011 1.000 ns

FIGURE 2D: Pr(LARGE REWARD)-STAY

Prew = 0.7

15/10 µL vs. 15/5 µL 0.928 0.959 −0.031 0.150 ns

15/10 µL vs. 15/0 µL 0.928 0.958 −0.030 0.174 ns

(Continued)
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TABLE 1 | Continued

Mean 1 Mean 2 Mean difference Adjusted P-Value Significance

15/5 µL vs. 15/0 µL 0.959 0.958 0.001 0.996 ns

Prew = 0.4

15/10 µL vs. 15/5 µL 0.877 0.880 −0.003 0.984 ns

15/10 µL vs. 15/0 µL 0.877 0.842 0.035 0.113 ns

15/5 µL vs. 15/0 µL 0.880 0.842 0.038 0.080 ns

FIGURE 2G: LATENCY To INITIATE

Prew = 0.7

15/10 µL vs. 15/5 µL 1.194 1.113 0.081 0.932 ns

15/10 µL vs. 15/0 µL 1.194 1.318 −0.124 0.850 ns

15/5 µL vs. 15/0 µL 1.113 1.318 −0.205 0.642 ns

Prew = 0.4

15/10 µL vs. 15/5 µL 1.507 2.094 −0.587 0.047 *

15/10 µL vs. 15/0 µL 1.507 2.696 −1.189 <0.001 ****

15/5 µL vs. 15/0 µL 2.094 2.696 −0.602 0.041 *

FIGURE 5E: Pr(SMALL REWARD)-STAY

0 s vs. 1.5 s 0.804 0.813 −0.009 0.927 ns

0 s vs. 3 s 0.804 0.807 −0.003 0.996 ns

0 s vs. 4.5 s 0.804 0.867 −0.064 0.000 ***

1.5 s vs. 3 s 0.813 0.807 0.006 0.979 ns

1.5 s vs. 4.5 s 0.813 0.867 −0.055 0.002 **

3 s vs. 4.5 s 0.807 0.867 −0.061 0.000 ***

*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001.

To test whether these two metrics—relative action value and
adaptability—explain global task performance of individual mice,
we performed a bivariate linear regression of these metrics
against Pr(Large Reward). We chose the last 3 days of training at
Prew = 0.7 (n = 33 sessions; no mean difference in population
performance over these days) to perform this analysis. We
found that together, the relative action value and adaptability
index explained 82% of the variability in individual session
performance (adjusted R2, Figures 2E,F).

Modulation of Choice by Relative Benefit
To explore the sensitivity of mice to differentially beneficial
outcomes, we associated each lever with a specific reward volume,
keeping the large reward at 15µl and randomly altering the small
reward between 10, 5, and 0 µl in separate sessions (Figure 3A).
Data were compiled from three separate sessions per mouse for
each contingency. Given that block completion depends on the
formation of biased choice patterns, we were unsurprised to
find that larger reward contrasts had shorter block lengths and
higher overall rates of large reward selection than smaller relative
reward contrasts, at both high and low reward probabilities
(Figures 3B,C). We modified our logistic regression model to
include a term for small rewarded outcomes and the coefficients
generated from the behavioral data in each contingency again
demonstrated the weight of the immediately preceding trial
(T−1) (Figure 4), so we focused our analysis on T−1 win-
stay probabilities for each operant outcome (Figures 3D,E).
The relative action values for large vs. small reward outcome
demonstrated a stepwise decrease with smaller relative reward

contrasts (Figure 3F). While we noted a small but significant
effect for reward contrast on the reinforcing properties of the
15 µL reward (Figure 3D, Large Reward-Stay), the alteration
in the relative value of large and small rewarded outcomes
was mainly driven by the increased reinforcing property of
the small reward (Figure 3E). We also noted that for each
relative reward environment, decreasing the overall rate of
reinforcement decreased the relative value of large vs. small
rewarded outcomes, indicating a relationship not just between
reward volume and reinforcement, but reward frequency and
reinforcement (Figure 3F). Taken together, these data show
that within this feedback-directed task, animal choice can be
explained as the result of competing reinforcement probabilities
that relate most strongly to total reward volume.

In addition to the modulation of lever return by outcome
benefit, we also noted a consistent alteration in initiation latencies
depending on the previous trial outcome (Figure 3H). While
the average initiation latencies of most trials were stable at
∼1 s for Prew =0.7 (Figure 3G), when we sorted trials by their
prior outcome we found that mice more rapidly initiated trials
following large reward outcomes (Figure 3H, blue bars). This
local modulation of action performance, which may provide a
proxy for attentional or motivational states (Wang et al., 2013)
was seen only for the initiation epoch latency (not shown)
and was not robustly observed in sparser reward conditions
(Figure 3H, Prew = 0.4). As demonstrated previously, the rate at
which animals selected the large reward outcome in this task was
influenced not just by the ability of the animals to discriminate
between relative benefits of the lever alternatives, but also by their
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FIGURE 2 | Acquisition of value-based choice paradigm is accompanied by dynamic changes in motor-efficiency and behavioral flexibility: (A) Choice patterns in the

absence of benefit differences show that some mice continually sample the two available options while others develop significant choice bias. (B,C) As animal acquire

the reversal task, they display increased motor efficiency in the execution of the task, including the speed with which choices are made [latency to choice (B)] and the

speed with which trials are initiated [latency to initiate (C)]. (D) Adaptability, a measure of choice flexibility, shows a probability-dependent increase with training. (E)

Both the relative action value (left) and the adaptability index (right) have significant linear relationships with overall task performance in an individual session (data from

Days 8,9,10 of n = 11 mice at Prew = 0.7) (F) Bivariate linear regression analysis of session performance against RAV and the Adaptability Index indicates that both of

these variables are significant, with minor multicollinearity (VIF = 1.76). Together, they account for 83% of variability in session performance of mice.
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FIGURE 3 | Choice is strongly shaped by differentially rewarded outcomes. (A) Animals (n = 21) were tested at three reward magnitude contrasts and either high or

low reinforcement probability regimes. (B,C) The average block length and the probability that animals select the large reward alternative over the course of a session

are both sensitive to the relative contrast in reward as well as the probability of reinforcement. (D) While there was a significant interaction between reward contrast

and probability for Large-Reward-Stay behavior, Tukey’s multiple comparisons test revealed no pairwise differences for relative rewards within individual probabilities of

reinforcement. (E) There was a significant main effect of reward contrast on Small-Reward-Stay behavior. (F) The relative action value exhibited significant main effects

for both relative reward contrast and probability of reinforcement. (G) The latency to initiate trials, averaged by session, showed a significant effect for reward contrast

and an interaction between reward contrast and probability. Pairwise differences obtained by Tukey’s multiple comparison’s test indicate no significant differences in

the initiation times for mice at the higher probability of reinforcement. (H) The relative initiation latency demonstrates that at Prew = 0.7, mice more rapidly initiate trials

following large than small rewards. This disparity is sensitive to relative reward magnitude contrast. (I) Behavioral flexibility after contingency switches is sensitive to

relative reward magnitude contrasts as well as the probability of reinforcement. All data analyzed by Repeated Measures (Reward Ratio) Two-Way ANOVA.

flexibility at contingency switches. Here we note that adaptability
is modulated by differing value contingencies (Figure 3I), with
a significant interaction between reward magnitude and rate of
reinforcement.

To further describe how mice selected actions based on
relative benefit, we fit a reinforcement Q-learning model to our
behavioral data (see sectionMaterials andMethods and Figure 5;
Sutton and Barto, 1998; Daw, 2011). Our model comprised four
principle components of mouse choice behavior—learning rate,
inverse temperature parameter, choice persistence factor and bias

parameter. The model was fit to choice and reward data by
estimating the action value of alternatives on any given trial via a
standard iterative Q-learning algorithm,Qt+1 = Qt+ α(Rt−Qt).
Here, the learning rate (α) provides a measure of how strongly
new reward information modifies values for a specific action. To
characterize the extent to which action values influenced choice
behavior, we utilized a softmax decision function to solve for the
inverse temperature parameter (β). We added additional terms
to capture the propensity of mice to repeat actions irrespective
of previous outcome, κ, and a constant measure of bias, c, for
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FIGURE 4 | Choice is largely influenced by the T−1 trial in a relative reward environment. (A–F) The average coefficients for the multivariate logistic regression model

that describes previous choice and reward history. (Prew = 0.7, n = 11; Prew = 0.4; n = 10) For each of the relative reward regimes tested, note that the T−1 trial is

significant for large reward outcomes. For relative reward regimes with 10 µL (A,D) and 5 µL (B,E) small reward outcomes we note a significant T−1 coefficient. We

detect no significant T−2 (or further) coefficients indicating that mouse choice is largely dictated by the outcome of the T−1 trial.

one alternative over another. We fit this model to our data and
observed that it predicted actual mouse choice behavior with high
accuracy (Figures 5B,C).

We observe high α values (>0.79) in most reward
environments tested, suggesting a high gain for proximal
reward history—a finding supported by our regression model
of choice behavior (Figures 5A, 1F). Furthermore, we noted
a significant effect of reward probability on the value of
κ, with higher reinforcement rates encouraging a higher
probability of remaining on chosen actions, particularly with
small reward contrasts. Interestingly, neither α nor β varied

substantially across relative reward contrast or probability of
reward (Figure 5A). This suggests that differences in behavioral

efficiency and adaptability observed as relative rewards fluctuate

(Figures 3B,C) do not exclusively result from gross changes in
reward-seeking strategy between sessions.

Stable Characteristics of Reward
Processing
While manipulations of relative reward contingencies show
consistent population effects on outcome valuation and
behavioral flexibility, we sought to characterize whether these
metrics exhibited stable patterns across multiple sessions and
contingencies. For each session, we extracted the relative
action value and adaptability index and z-scored these values
relative to the population performing the same day of a given
operant contingency. This allowed us to estimate the individual
value sensitivity and behavioral flexibility of mice relative to
the population for each session. We observed a significant
correlation of relative action value and adaptability between the
first day and subsequent sessions (averaged metrics from days
2 to 3) within the same reward contingency (Figures 6A,B).
Next, we analyzed cross-contingency stability of these metrics,
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FIGURE 5 | Q-learning reinforcement learning model predicts choice behavior. In order to extract information on how mice update action values using reward

prediction errors (α) and how sensitive mouse choice is to differences in action values (β), a reinforcement learning model was fit to the choice data of mice performing

the relative reward paradigm. (A) Table summarizing model parameters in both reward probability environments. (B) The calculated Q-values of the two levers for an

individual mouse in a single session [15 vs. 0 µL at Prew = 0.7]. As the animal performs reversals, we note an oscillation in the action value for both options. (C) The

probability that the mouse selected alternative A on a given trial vs. predicted probabilities generated by the full model. This model is a significant predictor of choice

behavior (R2 = 0.43). Q-values and choice probabilities are calculated as a moving average of nine trials.

using performance in 15 vs. 0 µL as our baseline measures
of reward sensitivity and behavioral adaptability. We noted
a correlation in the relative action value with data produced
from the 3x relative reward contingency (Figure 6C) and a
trend in the 1.5x (Figure 6E), suggesting trait-like patterns of
relative-reward sensitivity. We did not observe a significant
non-zero correlation between behavioral flexibility at either

relative reward ratio (Figures 6D,F). This suggests that while

both metrics are stable across sessions within mice, the
relative action value is also robust across relative reward
ratios.

Integration of Effort Costs and Benefit for
Action Selection
Efficient value-based choice requires integrating the positive
benefits of an outcome with negative events that are associated
with or required to obtain that outcome. To model outcome-
associated costs in mice, we modified our operant contingencies
to require increased physical effort to obtain the higher volume
reward (Figure 7A). Within the context of our task, each lever
was linked to a specific fixed ratio operant schedule to create
three relative effort contrasts—fixed-ratio 2 (FR2) vs. FR2, FR2
vs. FR10 and FR2 vs. FR15. We tested each of these in 3x (15 vs.
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FIGURE 6 | “Trait-like” stability of reward sensitivity and flexibility measures. (A,B) Cross-session correlation of relative action value and adaptability index revealed a

significant positive linear relationship between the values of mice relative to the population on Day 1 and the values of mice relative to the population on Days 2/3

(averaged) for both reward sensitivity and behavioral flexibility. (C,D) Cross-contingency correlations of relative action value and adaptability whereby z-scored values

for RAV and adaptability index in the large disparity (15 vs. 0 µl) reward environment were correlated with values from the 3x (top) and 1.5x (bottom) relative reward

environments. (C) We noted a significant correlation between the RAV for the large and 3x reward ratio and (E) a trend in the correlation of the large and 1.5x reward

ratios. (D,F) We note no cross-contingency correlation for the adaptability index.
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FIGURE 7 | Effort costs alter the reinforcing properties of small reward alternatives. (A) Mice (n = 19) were tested at two reward magnitude contrasts across three

different operant schedule contrasts. (B,C) Both the relative reward contrast as well as the effort schedule had a significant effect on the block length and the overall

rate of selecting the large reward as well as a significant interaction between the effects of effort and the relative reward on both measures. (D) The imposition of

high-effort costs on the large reward alternative did not have statistically significant effects on the reinforcing properties of that alternative. (E) Increased operant

scheduling on the large reward alternative had a statistically significant effect on the reinforcing properties of the small reward choice. (F) We observed a significant

interaction between reward contrast and effort, with increased effort costs exerting more dynamic effects in the small reward contrast environment. (G) Increased

effort to reward had a small but significant effect on behavioral flexibility. Pairwise analysis indicates that behavioral flexibility was actually increased with the application

of increased operant scheduling. All data analyzed by Repeated Measures (Reward Ratio, Effort) Two-Way ANOVA.

5 µl) and 1.5x (15 vs. 10 µl) relative reward regimes (Prew =1),
with the higher response schedule exclusively paired to the large
reward alternative. Interestingly, global task measures (average
block length, overall probability of large reward) demonstrated
that disparities in effort schedule did not significantly alter
the performance of mice in the task when the relative
reward difference was sufficiently large (see 15/5 µl column in
Figures 7B,C). In contrast, we observed a stepwise increase in the
block length and decrease in large reward selection as the amount
of required responses for the large reward increased in the regime
with the smaller discrepancy in reward magnitude (see 15/10 µl
column in Figures 7B,C). These changes in global performance
were matched by changes in the relative action value of large and
small rewarded outcomes (Figure 7F, left).

To better understand the effect of effort costs on the choice
patterns observed, we analyzed and compared the reward-stay
probabilities of animals after particular outcomes, as described
above. Surprisingly, we found that while the increased response
schedule was associated exclusively with the large reward

alternative on any given trial, the distribution of mouse choice
following a large reward was unchanged in either reward regime
(Figure 7D). Instead, the increasing response requirement on
the larger volume lever was associated with increases in the
reinforcing property of the lower volume, but less effortful
outcome in 15/10 µl but not 15/5 µl regimes (Figure 7E).
Among mice that completed at least five blocks in each of
the reward contingencies tested we observed a small but
significantmain effect of increasing effort on behavioral flexibility
(Figure 7G).

Integration of Temporal Delay Costs and
Benefit for Action Selection
Given the unique manner in which effort costs interacted with
relative benefits, we sought to test whether this observation held
across other cost modalities that lower the value of a given
choice. To do this, we introduced temporal disparities between
choice and reward delivery (1T = 0, 1.5, 3, and 4.5 s) and
applied these delays exclusively to large reward alternatives in

Frontiers in Neuroscience | www.frontiersin.org 14 February 2019 | Volume 13 | Article 50

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Alabi et al. Mouse Value-Based Choice Paradigm

FIGURE 8 | Delay costs primarily alter the reinforcing properties of large reward alternatives. (A) Mice (n = 21) were tested at two reward magnitude contrasts across

four delays to reward delivery, applied exclusively to the large reward option. (B,C) Both the relative reward contrast as well as the delay to reward had a significant

effect on the average block length and the probability mice chose the large reward over the course of a session. We observed a significant interaction between the

effects of delay and reward contrast for block length, but not Pr(Large Reward). (D) The application of delay costs to the large reward alternative had a significant

effect on win-stay behavior following large reward outcomes, where we observed an interaction between delay and reward contrast. (E) The addition of delay to large

reward outcomes had a statistically significant effect on the reinforcing properties of small reward outcomes. Nevertheless, Tukey’s multiple comparisons revealed no

pairwise differences between values at three of the four delay regimes. (F) The relative reinforcing properties of large and small reward outcomes is sensitive to reward

magnitude contrast as well as increasing temporal delay to reward delivery. (G) Increased temporal delay to reward had a significant effect on flexibility, with

adaptability generally being higher with larger reward contrasts. All data analyzed by Repeated Measures (Reward Ratio, Delay) Two-Way ANOVA.

any given block (Figure 8A). We again tested each of these delay
environments in both large (15 vs. 5 µl) and small (15 vs. 10
µl) reward discrepancy environments (Prew = 1). An analysis
of global performance demonstrated main effects of relative
reward ratio and temporal delay on Pr(Large Reward), and a
significant interaction between these variables for block length
(Figures 8B,C).

While the global effects of delay largely mirror the effects

of effort (Figures 8F,G), we found this was achieved by distinct
effects on choice patterns. Increasing the temporal delay of
reward primarily altered the distribution of choices on the
cost-associated alternative (the large reward) rather than the
contralateral lower cost side, as in the effort paradigm (compare
Figures 8D,E with Figures 7D,E). While we note a significant
effect for delay in win-stay probability following both large

and small rewards, further investigation of pairwise differences
revealed that win-stay probabilities following small reward
outcomes were unaltered at either reward regime for three of the
four temporal delays tested (all but 1T = 4.5 s), while multiple

such pairwise differences exist in the win-stay behavior exhibited
after high benefit-high delay outcomes.

Interaction of Benefit and Cost Sensitivity
in Goal-Directed Decision Making
For further insight into any systematic relationships between
how animals process benefit and cost, we analyzed individual
mouse values for benefit sensitivity, with and without relative
cost considerations. Our previous data demonstrated trait-
like patterns of relative reward bias, reflecting an underlying
distribution of reward sensitivities (Figure 6). We hypothesized
that these patterns would persist in the face of costs, with
the animals most sensitive to relative reward benefit showing
the least alteration in choice pattern upon introduction of
barriers to reward. To test this for both cost modalities, we
took the relative action value at baseline conditions (Effort:
FR2 v FR2; Delay: 0 s v 0 s) and measured how this value was
altered in the presence of reward-associated costs. Significant
correlations between the sensitivity to reward of mice with
and without relative costs confirmed that the addition of cost
did not dramatically shift the rank order of benefit sensitivity
within the whole population for large reward contrasts (i.e.,
the most reward sensitive animals continued to be so in the
presence of increasing cost) (Figures 9A,C). Similar trends
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FIGURE 9 | Sensitivity to reward benefits and costs are correlated. (A,C) The baseline sensitivity of mice to reward benefits (measured as the relative action value of

15 v 5 µL in FR2 v FR2 for effort (A, n = 19) and 0 s v 0 s for delay (C, n = 21) was correlated with the averaged relative action values measured upon addition of effort

and delay costs. We found a significant correlation between the sensitivity of animals to reward benefits with and without the addition of associated costs, consistent

with “trait-like” expression of reward sensitivity. (B,D) To quantify the extent to which each cost modality altered mouse choice distributions we took the difference in

relative action value of mice in baseline conditions and with application of operant costs (RAVcost -RAVbaseline). Increasing negative values indicate larger choice

disruption in the presence of costs. We observed a significant relationship in the sensitivity of mice to reward benefits and the sensitivity of mice to the addition of

reward costs, relative to the population.

were observed when comparing the noisier small reward
contrast data (Figures 10A,C). Nevertheless, an analysis of
the relationship between benefit sensitivity and cost sensitivity
(defined as the magnitude of negative modulation of RAV by
cost, see Methods) demonstrated that both effort and delay
cost most dramatically altered the choice pattern of mice that
were most sensitive to relative reward benefits in baseline
conditions (Figures 9B,D, 10B,D) . For example, mice that
were most sensitive to larger reward volume (large positive z-
scores on benefit) in general exhibited the largest reduction
in RAV once costs were introduced (most negative z-scores
on effort discounting), yielding data points in the lower right
quadrant (Figure 9B). In addition, we noted no correlation
in the sensitivity of mice to the different cost modalities
(Figure 10E).

DISCUSSION

The development of quantitative behavioral assays in mice
that probe core features of value-based action selection is

an important step toward understanding the neural substrates
underlying economic decision-making. These circuits are of
critical behavioral relevance, regulating how animals select
actions based on the assigned values of available options, a
fundamental organizing principle for how organisms interact
with their environment (Knutson et al., 2005; Lau and
Glimcher, 2008; Hunt et al., 2012; Allen et al., 2017). As
such, exploring their function may eventually illuminate the
pathophysiological underpinnings of goal-directed dysfunction
in neuropsychiatric disorders, a symptom domain that severely
limits societal function. As mice currently allow the highest
level of experimental interrogation within mammalian systems
(Jaramillo and Zador, 2014), it is essential to have a thorough
understanding of how they make economic decisions, as well as
the extent of individual animal variability in these processes. This
paper details a set of behavioral paradigms in mice that captures
essential elements of economic choice behavior, including the
sensitivity to differences in total value, flexibility to action-
outcome contingency shifts, and outcome-sensitive modulation
of task engagement.
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FIGURE 10 | Cost-benefit correlations with small reward contrats. (A,C) The sensitivity of mice to reward benefits was measured as the relative action value in

baseline conditions for the effort (A, FR2 v FR2, n = 19) and delay (C, 0 s v 0 s, n = 21) experiments (Reward Contrast: 15 v 10 µL). These values were correlated with

the averaged relative action values measured in mice with the addition of effort and delay costs. (A) At the low discrepancy in reward magnitude, there is a significant

correlation between the sensitivity of animals to reward benefits, in environments with and without the addition of increased operant scheduling. (C) We note no

cross-session correlation in reward sensitivity with the application of temporal delay costs in a reward environment with a small discrepancy in reward benefit. (B,D)

We note a significant relationship in the sensitivity of mice to reward benefits and the sensitivity of mice to the addition temporal delay (D) but not effort costs, relative

to the population, in this reward environment. (E) No correlation exists between the sensitivity of mice to the two cost modalities tested.

A Paradigm to Assess Value-Based Choice
in Mice
Our goal was to create a paradigm that could produce robust
quantitative assessments of value-based choice. We reasoned

such measures would result from observing a large number

of choices over a range of benefit and cost environments.

To achieve this, we employed a repeated trial structure

in which groups of trials with the same contingency were
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arranged into blocks, and contingencies were regularly shifted
in response to proximal patterns of mouse choice behavior. By
dynamically alternating reward contingencies upon the detection
of prolonged choice bias, we ensured that mice remained
continually engaged in updating subjective values for choice
alternatives. To further maintain reward-sensitive behavior, we
reduced reward probability to increase exploratory choice. Our
own data confirms the necessity of these approaches, as fixed
contingency protocols and certainty of reward delivery led to
highly biased responding, even in the absence of value differences
between the two levers (Figure 2A). In order to isolate the ability
of mice to create and act exclusively upon outcome valuations,
our task de-emphasized the use of audio or visual cues in
signaling action-outcome relationships or contingency alteration.
Instead, we believe, the paradigm forces mice to use reward
feedback to shape internal representations of option value, which
are then externally expressed as a distribution in choice behavior.
In such an environment, we argue, the most accurate behavioral
readout of the internal representation of outcome value is the
probability that mice return to or “stay” on an alternative after
having just received that outcome.

Quantification of Value-Based Choice
In highly trained mice, our logistic regression models
demonstrate heavy discounting of all but the trial immediately
preceding the current choice (Figure 1F). Effectively, this task
shaped mice to adopt an enduring “win-stay, lose-shift” strategy
that heavily favored the most proximal reward outcomes. We
attribute this narrow integration window to the specifics of
our paradigm as opposed to fundamental constraints of mouse
working memory, as alternative behavioral frameworks in mice
demonstrate integration of up to three trials in the past (Tai
et al., 2012; Parker et al., 2016). Nevertheless, this observation
provided a framework for understanding local decision-making
strategies in this task and provided a framework for subsequent
analysis. Having established an understanding of the cognitive
strategies mice used to seek reward in this paradigm, we
developed metrics for outcome sensitivity (relative action value),
behavioral flexibility in new environments (adaptability index)
and modulation of action performance (relative initiation
latency). The relative action value is a measure of the relative
reinforcing properties of two competing operant outcomes. By
comparing choice distributions following discrete outcomes at
the individual-mouse level, this measure minimized individual
mouse variability in non-outcome-related stay behavior. The
adaptability index takes advantage of the behavioral constraint
dictating that each behavioral “block” ends in a similar pattern of
choice. By constraining the pre-switch behavior in this way, we
create a fixed behavioral state to contextualize choices made after
contingency switches. We noted that a significant amount of
the variability (>80%) in mouse performance (measured by the
rate of large reward selection) in any individual session could be
explained by a combination of the animal’s sensitivity to reward
discrepancies and their behavioral flexibility.

To complement our regression-based behavioral analysis, we
submitted our data to standard Q-learning models (Figure 5)
(Katahira, 2015). This approach can statistically disambiguate

how effectively recent outcomes modify action-values (α) as
well as how much these value differences drive choice patterns
(β). We found that α was consistently higher than 0.79 across
all relative reward contrasts and probabilities, supporting our
conclusion from regression models that well-trained animals rely
almost exclusively on one prior trial for feedback-guided choice.
Similarly, we found similar β parameters across test conditions,
suggesting that mice did not substantially alter their exploration-
exploitation strategies. We did note that choice persistence
(returning to the same choice regardless of outcome) changed
with contingency, being higher in reward-rich environments
(high Prew, large rewards on both levers). Overall, these data
suggest that the changing choice patterns observed during
relative reward experiments are not likely due to fundamental
changes in how mice approach the task but instead to the
nuanced dynamics of the action values themselves. If true, this
behavioral paradigm should provide an ideal testing ground to
examine the cellular integration of outcome cost and benefit on
action values during decision making.

Trait-Like Expression of Behavioral
Characteristics
To further establish the validity of these measures and
their stability within animal, we examined their cross-session
and cross-contingency consistency. We reasoned that value
processing likely represents a behavioral trait—a temporally
stable behavioral pattern unique to each subject. In accordance
with this, we observe significant within-animal consistency
across 3 days of repeated contingencies, for both relative action
value and adaptability (Figures 6A,B). As a further test of trait-
like stability, we assessed whether similar reward sensitivity and
flexibility metrics would manifest across multiple relative reward
regimes. Here we noted that relative action value at 15 vs. 0
µl was significantly correlated to these measures obtained at
15 vs. 5 µl and trended toward a correlation at 15 vs. 10 µl.
In contrast, flexibility at 15 vs. 0 µl did not correlate with
these values at other reward ratios. Consistent with this, several
studies have shown high variability in the cognitive flexibility
of mice due to moderate stressors (Graybeal et al., 2011),
which can be differentially induced via handling (Sorge et al.,
2014), degree of food deprivation (Heiderstadt et al., 2000), and
housing conditions (Tanimura et al., 2008). In sum, individual-
animal analyses indicate that with sufficient training, mice
can reproducibly perform complex value-based tasks typically
reserved for other model systems (Gold and Shadlen, 2007;
Jaramillo and Zador, 2014). The cross-session reproducibility of
these reward metrics suggests that we are extracting meaningful
derivations of elements of mouse reward processing, and that
single sessions with >200 trials may be sufficient to generate
individual representative values in any given reward contingency.
This reliability, together with the discrete temporal structure of
our task, will make it especially suited for combination with
in vivo physiological recordings of corresponding neural activity.

Economic Decision-Making in our Task
Within this quantitative framework of mouse behavior, we
sought to answer a fundamental neuroeconomic question: How
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do the benefits and costs of rewarded outcomes shape mouse
behavior? Characterizing how diverse features of mouse behavior
are modulated by value is a critical step in elucidating neural
circuits with specific reward processing function. We observed
that mice differentially altered their choice patterns in response
to the relative magnitude of the previously rewarded outcome—
with more extreme distributions for outcomes of higher benefit
(Figure 3F). Further analysis revealed that the magnitude of
proximal rewards not only altered mouse choice distributions,
but also had a significant effect on focal task engagement,
suggesting short-term circuit modifications in response to reward
have effects not just on choice patterns, but also action execution
(Figure 3H). We additionally noted that that the ability of mice
to flexibly adapt their behavior scales with the relative magnitude
of rewarded outcomes (Figure 3I).

We then associated two cost modalities exclusively with
high-benefit options in environments with large and small
disparities in reward, to assess the integration of reward costs
in decision making. We demonstrate that in environments
with large differences in reward, costs associated with selecting
those outcomes are heavily discounted. Surprisingly, while
increased operant scheduling and temporal delay both decrease
the relative value of choice alternatives, we found that these
two cost modalities differentially altered the relative value of
previous outcomes, with effort increasing stay behavior on the
small reward and delay reducing stay behavior on the large
reward at the population scale (compare Figures 7D,E with
Figures 8D,E). This finding suggests potentially unique circuit
mechanisms underlying the subjective valuation of these choice
costs and provides further evidence of the sophisticated value
judgments mice can perform. Deeper analysis of our data
demonstrated interesting interactions between benefit and cost
sensitivity at the individual animal level. We found that the mice
whose choice distributions were most radically altered by the
addition of costs were the same animals exhibiting the highest
sensitivity to differences in rewarded outcome (Figure 9). This
observation raises the interesting possibility of common circuit
mechanisms for controlling processing of both components of
value computation.

Conclusions and Considerations
In summary, these findings demonstrate the sensitivity of our
behavioral assay to decision-making strategies adopted by mice
during economic choice, while revealing stable, mouse-intrinsic
differences in value-based action selection. An important
direction for future work will be to characterize the local circuits
governing the distinct behavioral features described here. For
example, the orbitofrontal cortex is intimately involved in value
representations central to efficient performance of this task

(Schoenbaum et al., 2011; Gourley et al., 2016; Baltz et al.,
2018). As updated reward value is integrated into multiple
elements of the decision-making process—including choice
bias, adaptability, and task engagement—it will be important
to ask whether orbital cortex mediates these functions via
distinct subcortical circuits formotor control. Furthermore, these
paradigms will prove essential in determining how cost-benefit
calculations are encoded at the cellular level within striatal
circuits (Mikhael and Bogacz, 2016).

We believe that the reliability and robust quantitative nature
of these paradigms makes them well-suited to investigating
the complex issue of how reward processing is altered by
environmental and genetic factors. We uncovered a substantial
amount of between-animal variability for value processing,
perhaps surprising given the genetic homogeneity of the mouse
strain used. We believe this observation is both unsurprising
and fascinating. In our view, genetically encoded information
provides a basic blueprint for the assembly and maintenance
of neural circuits. However, quasi-stochastic processes such as
axonal targeting and sub-cellular synapse localization are then
superimposed on this basic plan, generating diversity within
circuits, and behavior. These differences can be further amplified
by existing social hierarchies and other experiences in the home
cage leading up to testing (Greenberg et al., 2014; Porcelli and
Delgado, 2017). Given this complexity, our ability to ascribe
circuit-specific genetic contributions to reward processing
abnormalities necessitates the type of stable, robust metrics
generated by this work. While we acknowledge the possibility
that such stable “trait”-like reward-sensitivity characteristics
may in fact reflect task-specific behavioral patterns, their
reproducibility provides solid foundation for further systems-
level analyses (Farashahi et al., 2018). As such, these paradigms
may provide novel pathways for analyzing reward processing in
mouse genetic models for neuropsychiatric disease.
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