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Abstract: Robotic milling has broad application prospects in many processing fields. However, the
milling performance of a robot in a certain posture, such as in face milling or grooving tasks, is
extremely sensitive to process parameters due to the influence of the serial structure of the robot
system. Improper process parameters are prone to produce machining defects such as low surface
quality. These deficiencies substantially decrease the further application development of robotic
milling. Therefore, this paper selected a certain posture and carried out the robotic flat-end milling
experiments on a 7075-T651 high-strength aeronautical aluminum alloy under dry conditions. Milling
load, surface quality and vibration were selected to assess the influence of process parameters like
milling depth, spindle speed and feed rate on the milling performance. Most notably, the contribution
ratio based on the analysis of variance (ANOVA) was introduced to statistically investigate the
relation between parameters and milling performance. The obtained results show that milling depth
is highly significant in milling load, which had a contribution ratio of 69.25%. Milling depth is also
highly significant in vibration, which had a contribution ratio of 51.41% in the X direction, 41.42% in
the Y direction and 75.97% in the Z direction. Moreover, the spindle speed is highly significant in
surface roughness, which had a contribution ratio of 48.02%. This present study aims to quantitatively
evaluate the influence of key process parameters on robotic milling performance, which helps to
select reasonable milling parameters and improve the milling performance of the robot system. It
is beneficial to give full play to the advantages of robots and present more possibilities of robot
applications in machining and manufacturing.

Keywords: contribution ratio; process parameters; milling load; surface quality; vibration

1. Introduction

The application of industrial robots for milling processing has the advantages of
large processing range, flexibility and speed compared with traditional multi-axis milling
machining centers [1,2], and it occupies an important position in the fields of aerospace,
energy and transportation, for example, the machining of aircraft wings, aircraft fuselages
and other aviation structural parts in the aerospace field. The robot can perform milling
tasks such as chamfering, deburring and polishing by clamping milling cutters, rotary
burrs and other tools [3–5]. However, industrial robots have low system rigidity due to
their own open-chain multi-rod serial structure. Improper milling process parameters
will easily cause large-scale fluctuations in machining accuracy, and ultimately affect the
overall performance of the product, including wear resistance and fatigue resistance and
further processing and assembly [6]. At the same time, when the robot is applied in the
cutting of difficult-to-cut materials such as titanium alloy [7], the robot milling system is
prone to chattering, which leads to a decrease in processing accuracy, and even serious
consequences such as product scrap and robot damage [8]. Therefore, choosing reasonable
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milling process parameters can greatly reduce the vibration of the robot and improve
the milling performance of the robot system, which helps to overcome the deficiencies of
industrial robot milling [9].

In the past ten years, robotic drilling technology has developed more maturely in
the field of robotic processing. However, the research on robotic milling technology has
mainly focused on improving the robotic machining accuracy and the vibration suppression
during the milling process, and the research and comprehensive analysis on the influence
of milling parameters on milling load, surface quality and vibration during robotic milling
are insufficient. Therefore, it is necessary to study the effects of process parameters on
robotic milling performance [10–13].

In the research on the industrial robot milling processing system, several studies have
been performed. Kihlman et al. developed a robotic spiral milling system for difficult-to-
process materials such as titanium alloys and composite materials. The results showed that
spiral milling can reduce the axial force in the cutting process and improve the machining
quality [14]. Hao et al. conducted an experimental study of stability prediction for high-
speed robotic milling of aluminum. Modal tests were conducted on a milling robot by
using a laser tracker and a displacement sensor [15]. Yin et al. studied the machining error
prediction and compensation technology for a stone-carving robotic manipulator. The
feasibility and effectiveness of the proposed compensation technology were verified by an
experiment using the KUKA-240-2900 SCRM system [16]. Chen et al. introduced a milling
force model for robotic milling of cortical bone, and analyzed the influence of bone material
anisotropy on the milling force. At the same time, they also considered the low stiffness
of the robot and introduced it into the milling force model [17]. Tunc et al. conducted an
experimental study on the dynamics of a hexapod robot for mobile machining. The results
can be generalized to mobile machining with hexapod robots [18].

In recent years, several studies have been conducted on the influence of process
parameters on milling performance. As for the milling experiment investigations con-
ducted in traditional CNC machining centers, Abou-EI-Hossein et al. established statistical
laws between different milling parameters and milling forces based on a large amount
of experimental data [19]. Kull Neto Henrique et al. conducted an experimental study
on the milling component force and surface roughness when milling molds for different
milling strategies and tool overhangs. The results of variance analysis showed that the
mold surface roughness is directly related to the radial force [20]. Lu et al. developed a
surface roughness model considering tool vibration, which can be used to estimate surface
roughness under different machining parameters and tool geometry parameters during the
micro-milling process [21]. Ratnam et al. investigated the influence of process parameters
on machining performance during turn-milling processes by using the Taguchi method.
Experimental results show that feed rate, tool speed and cutting depth are of different
importance in generating surface roughness and surface hardness [22]. Salur et al. studied
the influence of MQL and dry conditions on the end milling process, and found that the
cutting environment had the greatest influence on power consumption, while cutting speed
had an important influence on tool wear [23].

In the robotic milling research, ABB found that when the robot is in a certain posture
and the cutting depth reaches a certain value, milling chatter with a larger amplitude will
occur, which will damage the machined parts [24]. Zhang et al. analyzed the influence
of different spindle speeds and machining methods on the vibration during the milling
process when a new milling tool was used for robot milling, and optimized the spindle
speed, feed speed and machining method by the response surface method [25]. Lei et al.
proposed a new method to reduce the mode coupling chatter of the robot. They actively
suppressed the chatter generated during the milling process of the robot by installing a
special vibration suppressor on the spindle [26]. Jayakrishnan et al. obtained the optimal
machining parameters for robotic end milling by using the Taguchi–Grey relational method.
They found that the tool path during robotic machining has the greatest influence on ma-
chining performance [27]. Chen et al. studied the posture and feed orientation optimization
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in the robotic milling process based on the stiffness performance index. The normal stiffness
performance index (NSPI) of the surface, which is derived from the comprehensive stiffness
performance index (CSPI), was proposed to evaluate the robot stiffness performance for a
given posture [28]. Tunc et al. proposed a new method to study the effects of tool path and
feed direction on chatter in order to improve material removal rate without chatter during
robotic milling. Simulation and experimental results have confirmed the effectiveness of
the proposed method [29]. Sun et al. investigated the chatter stability of robotic rotary
ultrasonic milling and developed an analytical model of stability. The analysis results
indicate that stability region of RRUM is improved by 133% compared with robotic conven-
tional milling (RCM) [30]. He et al. studied the optimization algorithm of the milling path
through a new stiffness orientation method, which is of great significance for optimizing the
milling path of the robot, reducing machining chatter and thus improving the machining
stability of robotic milling [31]. By adopting an optimal control method related to robotic
posture, Nguyen et al. were able to actively suppress tool tip vibrations during the robotic
milling mainly caused by the characteristics of milling forces. This method was proven to
be effective in improving robotic machining accuracy [32]. Li et al. discussed the influence
of tool path and workpiece position on machining chatter during planar milling. The re-
sults show that the surface quality obtained in different directions is significantly different
due to the different machining stiffness of robots in different directions [33]. In order to
improve the quasi-static performance of robotic milling, Qin et al. obviously reduced the
tool offset during robot machining by optimizing the workpiece pose. At the same time,
the optimization of workpiece poses can also reduce the change of the tool offset along the
processing path [34].

According to the abovementioned literature items, the majority of researchers have
studied the effects of material properties, milling methods and the robot itself on the robotic
milling performance. There are few studies of percentage contribution on the influence
of milling parameters such as milling depth, spindle speed and feed rate on the milling
performance of the robot in a certain posture. Therefore, the comparative experiments
of flat-end milling processing of a 7075-T651 high-strength aeronautical aluminum alloy
were carried out on the robot under dry conditions in a common posture. Milling depth,
spindle speed and feed rate were chosen as process parameters. Next, the effect of process
parameters on robotic milling performance, such as milling load, surface quality and
vibration, was evaluated by ANOVA. Moreover, the milling load empirical model of the
relationship between the milling load and process parameters was established. Therefore,
the main purpose of this article is to investigate the influence of the milling parameters
on the robotic milling performance using the contribution ratio. The research results
can provide some guidance for the selection of process parameters when the six-degrees-
of-freedom industrial robot is milling aluminum alloy materials, which is conducive to
improving the processing quality and the stability of the robotic milling and increasing the
application possibilities of the robot in more fields.

2. Experiment
2.1. Experimental Setup

The experimental tests were carried out on a 7075-T651 aluminum alloy using a
cemented carbide three-blade milling cutter under dry conditions. The total length of
the tool was 75 mm, the blade length was 20 mm with a diameter of 6 mm and the helix
angle was 55◦. Figure 1 shows the schematic diagram of the experimental setup. The
milling tool rotates clockwise and feeds in the negative direction of Y. The dimensions of
the workpiece were 100 mm × 45 mm × 15 mm. The nominal chemical composition and
material properties of 7075-T651 are listed in Tables 1 and 2, respectively. The Mitsubishi
RV-4FRL-1D-S11 six-axis industrial robot and NAKANISHI spindle were used for milling
experiments. The specifications of the robot and spindle are shown in Table 3. The three
milling load components (radial load Fx, main milling load Fy and axial load Fz) were
acquired with a three-dimensional piezoelectric sensor (PZT. sensor; type: ME-K3D120).
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The vibration accelerations were measured with a three-dimensional acceleration sensor
(ACC. sensor; type: SD14N20) installed on the spindle, and an UTEKL test system was used
for acquiring the milling load signal and vibration signal of the robot during milling with
its acquisition frequency of 1280 Hz. Mitutoyo SJ-210 measuring instrument was employed
to measure and analyze the roughness of the processed surface. In order to observe the
morphology of the processed surface, a KEYENCE VW-9000 high-speed optical microscope
was also used.

Materials 2022, 15, x FOR PEER REVIEW 4 of 20 
 

 

RV-4FRL-1D-S11 six-axis industrial robot and NAKANISHI spindle were used for mill-
ing experiments. The specifications of the robot and spindle are shown in Table 3. The 
three milling load components (radial load 𝐹 , main milling load 𝐹  and axial load 𝐹 ) 
were acquired with a three-dimensional piezoelectric sensor (PZT. sensor; type: 
ME-K3D120). The vibration accelerations were measured with a three-dimensional ac-
celeration sensor (ACC. sensor; type: SD14N20) installed on the spindle, and an UTEKL 
test system was used for acquiring the milling load signal and vibration signal of the 
robot during milling with its acquisition frequency of 1280 Hz. Mitutoyo SJ-210 measur-
ing instrument was employed to measure and analyze the roughness of the processed 
surface. In order to observe the morphology of the processed surface, a KEYENCE 
VW-9000 high-speed optical microscope was also used. 

Data acquisition

Robot

Flexpendant
ACC. sensor

Spindle

 PZT. sensor

Milling tool

Workpiece

Amplifier Signal 
analysis 

Computer

vf

Y

X

Z

ꞷ 

 
Figure 1. Schematic diagram of the experimental setup. 

Table 1. Chemical composition of 7075-T651. 

Element Ti Si Mn Mg Fe Cr Zn Cu Al 
wt.% 0.2 0.4 0.3 2.1~2.9 0.5 0.18~0.28 5.1~6.1 1.2~2.0 Remainder 

Table 2. Material properties of 7075-T651. 

Properties Density (g/cm3) Hardness (HB) Yield Strength 
(MPa) 

Tensile Strength 
(MPa) 

Elastic Modulus 
(G Pa) 

Elongation 
(%) 

Value 2.81 150 503 572 71.7 11 

Table 3. Parameters of experimental system. 

Parameters of Robot Parameters of Spindle 
Properties Value Properties Value 

Body weight (kg) 41 Motor model EM-3030T-J 
Operating radius (mm) 649 Rated power (W) 350 

Rated load (kg) 4 Rated speed (rpm) 7500 
Repeatability (mm) ±0.02 Maximum speed (rpm) 30,000 
The number of axis 6 Cooling method Air cooling 

Figure 1. Schematic diagram of the experimental setup.

Table 1. Chemical composition of 7075-T651.

Element Ti Si Mn Mg Fe Cr Zn Cu Al

wt.% 0.2 0.4 0.3 2.1~2.9 0.5 0.18~0.28 5.1~6.1 1.2~2.0 Remainder

Table 2. Material properties of 7075-T651.

Properties Density
(g/cm3)

Hardness
(HB)

Yield
Strength

(MPa)

Tensile
Strength

(MPa)

Elastic
Modulus

(G Pa)

Elongation
(%)

Value 2.81 150 503 572 71.7 11

Table 3. Parameters of experimental system.

Parameters of Robot Parameters of Spindle

Properties Value Properties Value

Body weight (kg) 41 Motor model EM-3030T-J
Operating radius (mm) 649 Rated power (W) 350

Rated load (kg) 4 Rated speed (rpm) 7500
Repeatability (mm) ±0.02 Maximum speed (rpm) 30,000
The number of axis 6 Cooling method Air cooling

Before investigating the effect of process parameters, exploratory experiments were
first conducted on the influence of the robot structure. Among them, the milling depth,
spindle speed and feed rate remained the same, and their values were 0.15 mm, 3500 r/min
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and 45 mm/min, respectively. There were 12 experiments in total, and three repetitive
processing experiments were carried out along the positive and negative directions of X
and Y, respectively. Figure 2 shows the machined surface results for milling by the robot in
different directions.
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According to the analysis of the machined surface, there is a noticeable difference in
the machined surface quality when the robot feeds in different directions. On the whole, the
machined surface quality feeding in the Y direction is better than feeding in the X direction.
The vibration in the Y direction is not as pronounced as the vibration in the X direction.
Moreover, when the robot feeds in the negative direction of X, the machined surface quality
is better than feeding in the positive direction of X. The same is true for the Y direction.
It is known from the literature that the stiffness in different directions in the robot WCS
is different. This is because the feed direction of the robot during milling largely affects
the value of the diagonal elements of the stiffness matrix of the robot end. Furthermore,
the value of the robot end stiffness matrix is related to the change of the robot Jacobian
matrix. The Jacobian matrix changes with the robot posture, so the stiffness performance
of the robot end is affected by the robot pose. This explains the obvious vibration marks
on the machined surface when the robot feeds in the positive direction of X. In summary,
the negative direction of Y with better processing performance was selected for further
research in this paper.

This research considered the three influencing factors of milling depth, spindle speed
and feed rate. According to literature data [25], as well as to the robot’s limitations, the
selected levels of each influencing factor are shown in Table 4. Among them, spindle speed
n is a technological parameter needed for the setting of spindles. The normal working
speed of the spindle is about 80% of its maximum speed. In this study, the rated speed of
the spindle is 7500 rpm and its 80% value is 6000 rpm. When the spindle speed is about
5500 rpm, the working noise is quite obvious. Therefore, the level of e spindle speed was set
as 2500, 3000, 3500, 4000 and 4500 rpm. The actual value of cutting speed, vc, corresponding
to spindle speed is 47.1, 56.5, 66.0, 75.4 and 84.8 m/min (vc = πnd/1000; d is the tool
diameter). In this paper, a statistical design of experiments based on Taguchi’s Orthogonal
Array (OA) was adopted for experimentation, and the L25

(
56) orthogonal experiment

was designed.
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Table 4. Parameters of experiment and levels.

Factor Level 1 Level 2 Level 3 Level 4 Level 5

ap 0.05 0.10 0.15 0.20 0.25
n 2500 3000 3500 4000 4500
vf 15 30 45 60 75

2.2. Evaluation Method

In order to compare the degree of influence of each process parameter on the milling
performance, number pairs of process parameters, p(i, j, k), was used for the analysis,
expressed as:

p(i, j, k) =
(
vf(i), n(j), ap(k)

)
(1)

p = {p(i, j, k)} (2)

vf = {vf|vf = vf(i)}i=1,2,3,4,5 = {15, 30, 45, 60, 75} (3)

n = {n|n = n(j)}j=1,2,3,4,5 = {2500, 3000, 3500, 4000, 4500} (4)

ap =
{

ap
∣∣ap = ap(k)

}
k=1,2,3,4,5 = {0.05, 0.10, 0.15, 0.20, 0.25} (5)

where p(i, j, k) represents the process parameter when the feed rate is vf(i), the spindle
speed is n(j) and the milling depth is ap(k). In this study, i, j and k represent the different
levels of each process parameter.

Generally, the ANOVA can be used to quantitatively estimate the influence of each
factor on the response results [35,36]. The contribution ratio of each factor can be obtained
by separating the total variation of the response results. Therefore, in order to obtain the
proportion of the influence of the level change of each process parameter on the fluctuation
of the response data during the robotic milling experiments, the contribution ratio was
introduced for assessment. The factors with the largest contribution ratio are significant
factors, and those similar to the error contribution ratio are considered insignificant. The
contribution ratio is expressed by Formula (6). F test is a statistical test method proposed
by R.A. Fisher, which is mainly applied in ANOVA [19,22].

Contribution ratio(%) =
MSB

MST
(6)

where ‘MSB’ is the average sum of square between groups and ‘MST’ is the average sum of
the square in total.

3. Results and Discussion
3.1. Milling Load

In the milling process, milling load is a critical physical parameter, which directly
affects robotic milling performance. Therefore, it is vital to study the contribution ratio of
process parameters on milling load. A series of repetitive robotic milling experiments have
been performed on 7075-T651 aluminum alloy based on the orthogonal experiment table
designed in Table 4. The complete obtained results for milling load, surface roughness and
vibration are given in Table 5. As shown on the right side of Figure 1, for each experiment,
the signal of the three milling load components were recorded with a piezoelectric sensor.
Then the three milling load component signals recorded by the piezoelectric sensor were
amplified by the amplifier and then transmitted to the UTEKL data acquisition instrument.
The sampling frequency of the UTEKL system was set as 1280 Hz and then the acquired
signals were analyzed and processed by the signal analysis software in the computer.
Eventually the dynamic response diagram of the milling load over time was obtained. All
experimental results were in good consistency. Therefore, a set of relatively stable dynamic
curves was randomly selected to analyze the milling load. The stable stage in the response
diagram was selected for filtering and noise reduction processing to obtain the average
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value of milling load. As shown in Figure 3, the stable milling stage from 50 to 70 s in
Experiment 1 was selected for calculation. When the feed rate was set to other levels in
Table 4, the values of t1 and t2 were selected according to the table on the right side of
Figure 3. Finally, the changes in the milling load under different process parameters were
evaluated by the resultant load FR.

Table 5. Milling experiment results of 7075-T651 aluminum alloy.

Test No.
Milling
Depth
(mm)

Spindle
Speed
(rpm)

Feed Rate
(mm/min) Fx(N) Fy(N) Fz(N) FR(N)

Surface
Roughness Ra

(µm)
ax (g) ay (g) az (g)

1 0.05 2500 15 0.593 −0.840 0.401 1.104 0.690 3.800 3.722 4.926
2 0.05 3000 45 0.974 −1.172 0.603 1.639 0.874 5.291 5.735 8.344
3 0.05 3500 75 1.040 −1.288 0.574 1.752 0.394 1.981 0.993 3.187
4 0.05 4000 30 0.469 −0.521 0.196 0.728 0.374 1.236 0.591 1.731
5 0.05 4500 60 0.774 −1.022 0.314 1.320 0.400 1.510 0.934 4.205
6 0.10 2500 75 1.957 −2.064 1.521 3.225 2.389 9.999 12.282 17.647
7 0.10 3000 30 0.993 −1.180 0.631 1.666 0.962 5.962 6.313 8.581
8 0.10 3500 60 1.312 −2.293 0.712 2.736 1.457 6.797 7.241 13.938
9 0.10 4000 15 0.462 −0.834 0.309 1.002 0.607 2.474 2.243 6.686

10 0.10 4500 45 1.273 −1.653 0.559 2.160 0.428 1.775 0.938 6.000
11 0.15 2500 60 2.616 −2.723 1.943 4.247 2.417 11.375 16.352 34.115
12 0.15 3000 15 0.875 −1.754 0.413 2.003 0.900 6.257 5.616 12.043
13 0.15 3500 45 1.754 −2.714 0.688 3.304 1.799 9.378 11.108 27.335
14 0.15 4000 75 2.179 −2.954 1.112 3.835 1.711 9.537 11.602 30.964
15 0.15 4500 30 0.978 −1.431 0.412 1.782 0.612 3.150 4.337 13.167
16 0.20 2500 45 2.360 −2.385 1.412 3.640 2.782 18.605 17.51 43.471
17 0.20 3000 75 3.088 −3.208 1.630 4.742 2.562 21.404 18.388 49.884
18 0.20 3500 30 1.689 −3.872 0.473 4.251 1.583 9.198 10.724 29.248
19 0.20 4000 60 2.347 −3.667 1.048 4.478 1.308 9.066 6.675 30.815
20 0.20 4500 15 0.946 −1.761 0.171 2.006 0.634 3.594 4.785 15.699
21 0.25 2500 30 2.516 −4.513 0.625 5.205 3.131 22.403 21.864 51.942
22 0.25 3000 60 3.488 −3.575 1.300 5.161 2.216 18.578 16.791 44.044
23 0.25 3500 15 0.610 −2.956 0.209 3.026 1.252 10.590 10.723 32.704
24 0.25 4000 45 2.382 −3.941 0.423 4.624 1.558 10.933 9.856 33.901
25 0.25 4500 75 3.102 −3.718 0.661 4.887 1.051 7.033 6.896 29.100Materials 2022, 15, x FOR PEER REVIEW 8 of 20 
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The contribution ratio based on the analysis of variance (ANOVA) was introduced to
statistically investigate the relation between parameters and milling load. Table 6 shows the
ANOVA analysis results for milling load. Among them, E denotes the error; SS denotes the
sum of squares of each factor; MS denotes the average sum of squares; D denotes the degree
of freedom; F0.05(4, 12) = 3.26. F is a statistic. The results of variance analysis showed that
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the order of the significant influence on milling load is: milling depth—1; feed rate—2;
spindle speed—3. Milling depth ap is a highly significant influencing factor (HS), while
feed speed vf is a significant influencing factor (S), and spindle speed n is not significant
(NS). The contribution ratio of the above process parameters on the milling load is 69.25%,
5.78% and 23.32%, respectively. The milling depth has the maximum contribution ratio on
the milling load and its contribution ratio is much larger than the spindle speed and feed
rate. The contribution ratio of the spindle speed is similar to the error contribution ratio and
it is considered insignificant. The main reason for the largest contribution ratio of milling
depth is that the variation of milling depth directly changes the unit cutting area, while the
variation of feed rate and spindle speed is to change the material removal thickness per
unit time by changing the milling thickness per tooth, thereby indirectly changing the unit
cutting area [37].

Table 6. Variance analysis results of milling load orthogonal experiment.

Factor SS D MS F Contribution (%) Significance Rank

ap 33.728 4 8.432 41.968 69.25% Highly significant
Milling depth-1

Feed rate-2
Spindle speed-3

n 2.814 4 0.704 3.501 5.78% Not significant
vf 11.358 4 2.840 14.133 23.32% Significant

Error 2.411 12 0.201 1.65%
Total 50.311 24

Based on the literature [37], this paper establishes a general form between milling load
and milling parameters:

FR = Cap
b1 nb2 vf

b3 (7)

where FR denotes the cutting force, N; ap denotes the axial cutting depth, mm; n denotes

the spindle speed,
(

r·min−1
)

; vf denotes the feed rate,
(

mm·min−1
)

; C, b1, b2 and b3 are
constants. Based on the principle of the least square method, according to the milling load
data in Table 5, MATLAB was applied to perform the calculation. The result of C = 85.693,
b1 = 0.779, b2 = −0.404, b3 = 0.384 was acquired. According to the model, the milling load
under different milling parameter combinations was calculated, and the calculated values
were compared with the experimental values in Table 5, as shown in Figure 4. It can be seen
from Figure 4 that the prediction model is highly significant and fits well with the actual
situation. The analysis of variance was used for testing to judge the degree of fitting of
the model [38]. It is known that F = 385.83, R2 = 0.92. Under the given significance level
α = 0.05, F0.05(3, 21) = 3.07, F� F0.05(3, 21), so the regression model is credible. Therefore,
using this model to predict the milling load when milling the 7075-T651 aluminum alloy
has a high degree of credibility.
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According to the analysis of the milling load model, we can intuitively see the degree
of influence of each milling parameter on the milling load. The milling load shows an
increasing trend with the increase of the milling depth ap and the feed speed vf, and the
influence of ap is more obvious. However, as the spindle speed n increases, the milling load
decreases and the spindle speed has the least influence on it. This is consistent with the
primary and secondary relationship of the influence of each process parameter in Table 6
on the milling load. To sum up, the milling depth is most significant in the milling load
compared to spindle speed and feed rate.

3.2. Surface Quality

The surface quality of the machined workpiece directly reflects the milling perfor-
mance of the robot. Surface morphology and surface roughness, as two major parameters
reflecting surface quality, can evaluate the surface quality of the workpiece qualitatively and
quantitatively, respectively [39]. In order to study the degree of influence of each process
parameter on the surface morphology, the workpieces milled by the robot in Section 3.1
were observed under a high-speed optical microscope and acquired the processed surface
morphology under each set of milling parameters. For each observation, the middle part of
the processing area was selected as the sampling area (Figure 5a); the summary of surface
morphology in the sampling area is shown in Figure 5b. Among them, the brightness of the
images is to highlight the details of the processed surface, and has nothing to do with the
processed material itself. All experiments use the same batch of materials. Further, in order
to intuitively analyze the contribution ratio of each process parameter on the surface rough-
ness, the arithmetic mean roughness values of the above-mentioned processed surface
were measured by a roughness-measuring instrument with a precision of 0.05 mm. Among
them, the cutoff length and sampling length were taken as 0.8 mm and 5 mm, respectively.
In order to reduce the measurement error, five points were evenly selected along the feed
direction on the measured surface for measurement, and finally the average value of the
five results was taken as the experimental value. The obtained results for surface roughness
are given in Table 5.

Figure 5b shows the processed surface morphology under 25 sets of milling parameters,
which were arranged in the same way as the Taguchi orthogonal experiment. For p(5, 1, 2),
p(4, 1, 3), p(3, 1, 4), p(5, 2, 4), p(2, 3, 4), p(2, 1, 5), p(4, 2, 5), etc., the tool marks are very
serious. The processed surface morphology is poor and there are obvious top-burrs on
both sides of the milling groove [40]. The lack of support when cutting the top edges of the
material is the main cause of the top-burr formation. As shown in Figure 5b, the number of
top-burrs on the workpiece varies greatly under different milling parameters.

As shown in Figure 5b, the surface morphology for level i, p(1, j, k), p(2, j, k), p(3, j, k),
p(4, j, k) and p(5, j, k), reveals a trend of slightly worsening with the increase of the feed
rate; the changes of tool marks and top-burrs are not clear. The surface morphology for level
j, p(i, 1, k), p(i, 2, k), p(i, 3, k), p(i, 4, k) and p(i, 5, k), shows a great trend of improvement
with the increase of the spindle speed. Comparing the five processed surface images
corresponding to p(i, 1, k) and p(i, 5, k), respectively, the changes of tool marks and top-
burrs are extremely obvious. Finally, the surface morphology for level k, p(i, j, 1), p(i, j, 2),
p(i, j, 3), p(i, j, 4) and p(i, j, 5), shows a tendency to deteriorate with the increase of the
milling depth. Comparing the five surface images corresponding to p(i, j, 1) and p(i, j, 5),
respectively, the changes of tool marks and top-burrs are obvious. In summary, the spindle
speed seems to have the greatest influence on the workpiece surface morphology, followed
by the milling depth, and the feed rate has the least effect.

Take Experiments 3, 8, 13, 18 and 23 as examples; the processed surface morphology is
shown in Figure 6. The middle of the picture shows the machined surface after 200 times
magnification, and the bottom side shows the 3D morphology of the machined surface
after 200 times magnification. The surface after milling has obvious tool marks. The evenly
distributed tool marks reflect the movement trajectory of the cutting edge of the milling
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cutter. At the same time, it can be seen that the surface quality at the beginning of milling
is poor, and then gradually stabilizes until the tool is completely removed.
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According to the experimental results of surface roughness in Table 5, it is first visually
analyzed and processed to obtain the degree of influence of each milling parameter on the
surface roughness. The results are given in Table 7. Among them, ki is the mean value
of the experimental values of each factor at different levels (i = 1,2,3,4,5). The surface
roughness increases as the milling depth ap and the feed speed vf increases. The influence
of milling depth ap on the surface roughness is more visible compared with feed speed
vf. The range of variation is 0.546 µm to 1.842 µm and 0.817 µm to 1.621 µm, respectively.
The influence of spindle speed n on the surface roughness is sharp. With the increase of n,
the surface roughness value decreases greatly. The range of variation is between 0.601 µm
and 2.282 µm. The reason for such surface roughness reduction is that the increase of
the spindle speed brings higher milling speed, which will reduce the plastic deformation
during the milling process, and the built-up edge and burrs will also be reduced [25,41].
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Table 7. Visual analysis results of surface roughness orthogonal experiment.

Levels
Factor Milling Depth Spindle Speed Feed Rate

k1 0.546 2.282 0.817
k2 1.144 1.503 1.332
k3 1.488 1.297 1.464
k4 1.774 1.112 1.560
k5 1.842 0.601 1.621

To further investigate the effect of process parameters on the surface roughness, the
values of feed per tooth ft under each experiment were calculated by Formula (8).

ft =
vf

n·N (8)

where N is the number of teeth. The number of teeth used in this test was 3.
The feed per tooth represents the actual working conditions of the cutting edge. The

results of the calculation are shown in Table 8. The effect of feed per tooth on surface
roughness is demonstrated in Figure 7. As shown in Figure 7a–e, it is known and obvious
that the value of surface roughness decreases with increasing cutting speed for the same
value of feed per tooth (see in Figure 7b,e). However, surface roughness also depends on
feed per tooth; it mainly increases with feed per tooth for the stability process of cutting
(see Figure 7a,e). Figure 7 shows the combined effect of feed per tooth and cutting speed
on surface roughness.

Table 8. The feed per tooth in each experiment.

Test No. Milling
Depth (mm)

Spindle
Speed (rpm)

Feed Rate
(mm/min)

Feed per
Tooth

(mm/z)

Surface
Roughness

Ra(µm)

1 0.05 2500 15 0.002 0.690
2 0.05 3000 45 0.005 0.874
3 0.05 3500 75 0.007 0.394
4 0.05 4000 30 0.003 0.374
5 0.05 4500 60 0.004 0.400
6 0.10 2500 75 0.010 2.389
7 0.10 3000 30 0.003 0.962
8 0.10 3500 60 0.006 1.457
9 0.10 4000 15 0.001 0.607
10 0.10 4500 45 0.003 0.428
11 0.15 2500 60 0.008 2.417
12 0.15 3000 15 0.002 0.900
13 0.15 3500 45 0.004 1.799
14 0.15 4000 75 0.006 1.711
15 0.15 4500 30 0.002 0.612
16 0.20 2500 45 0.006 2.782
17 0.20 3000 75 0.008 2.562
18 0.20 3500 30 0.003 1.583
19 0.20 4000 60 0.005 1.308
20 0.20 4500 15 0.001 0.634
21 0.25 2500 30 0.004 3.131
22 0.25 3000 60 0.007 2.216
23 0.25 3500 15 0.001 1.252
24 0.25 4000 45 0.004 1.558
25 0.25 4500 75 0.006 1.051
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Similarly, the contribution ratio based on the ANOVA was introduced to statistically
investigate the relation between parameters and surface roughness. Table 9 shows the
ANOVA analysis results for surface roughness. The results of variance analysis showed
that the order of the significant influence on the surface quality is: spindle speed—1;
milling depth—2; feed rate—3. Spindle speed n and milling depth ap are highly significant
influencing factors (HS), and feed speed vf is a significant influence factor (S). The contri-
bution ratio of the above process parameters on the surface roughness is 35.83%, 48.02%
and 13.18%, respectively. The spindle speed has the maximum contribution ratio on the
surface roughness and its contribution ratio is slightly larger than the milling depth. The
contribution ratio of the feed rate on the surface roughness is very small compared with the
former two. Similar results are reported by studies on the effect of process parameters on
surface roughness [42]. The spindle speed (cutting speed) has found to be the most effective
parameter on surface roughness. It is known that an increase in cutting speed will increase
the cutting temperature and reduce the coefficient of friction between the tool and the chip,
thereby reducing the surface roughness. At the same time, the increased temperature can
also reduce the adverse effects of a built-up edge (decreasing the cutting thickness can
also reduce the occurrence of a built-up edge). Additionally, the effect of spindle speed
on the surface roughness is related to the formation of chips. The chip formation rate is
slow at low speeds and gets faster at high speeds. This results in the chips being in contact
with the newly formed surface for a shorter time, and there is small tendency for chips to
wrap back to the new surface compared to the low speed. The chip formation process is
also influenced by the shear length in the shear zone. The shear length is related to the
undeformed chip thickness and the shear angle [43]. The shear angle is large at high cutting
speed. This leads to a smaller shear length. Therefore, the chip will break away with less
plastic deformation, which in turn preserves the machined surface properties [44].
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Table 9. Variance analysis results of surface roughness orthogonal experiment.

Factor SS D MS F Contribution (%) Significance Rank

ap 5.640 4 1.410 12.043 35.83% Highly significant
Spindle speed-1
Milling depth-2

Feed rate-3

n 7.561 4 1.890 16.144 48.02% Highly significant
vf 2.075 4 0.519 4.431 13.18% Significant

Error 1.405 12 0.117 2.97%
Total 16.681 24

To sum up, the spindle speed is most significant in the surface quality compared to
milling depth and feed rate. In actual machining, a higher spindle speed should be selected
under the condition of tool life-permitting for obtaining better machined surface quality.

3.3. Vibration

Excessive vibrations during robotic milling have an important impact on milling
stability. Thus, it is very necessary to study the influence of process parameters on robot
vibration. The obtained results for vibration acceleration are shown in Table 5, and each
result was obtained by calculating the average of maximum values in the vibration acceler-
ation curves. The intuitive analysis results of the influence of each milling parameter on
the vibration acceleration are shown in Table 10.

Table 10. Visual analysis results of vibration acceleration orthogonal experiment.

Levels
Factor Milling Depth Spindle Speed Feed Rate

Vibration acceleration ax

k1 2.764 13.236 5.343
k2 5.401 11.498 8.390
k3 7.939 7.589 9.196
k4 12.373 6.649 9.465
k5 13.907 3.380 9.991

Vibration acceleration ay

k1 2.395 14.346 5.418
k2 5.803 10.569 8.766
k3 9.803 8.158 9.029
k4 11.616 6.193 9.599
k5 13.226 3.515 10.032

Vibration acceleration az

k1 4.479 30.420 14.412
k2 10.570 24.579 20.934
k3 23.525 21.282 23.810
k4 33.823 20.819 25.423
k5 38.338 13.613 26.156

It can be seen from Table 9 that when the robot mills in the horizontal direction (Y
direction), the vibration in the Z direction is the largest. Vibration acceleration ax,ay and
az show an increasing trend with the increase of milling depth ap and feed speed vf, and
show a decreasing trend with an increase of spindle speed n. The influence of ap and n is
more obvious. For vibration acceleration ax, the range of variation is 2.764 g to 13.907 g
and 3.380 g to 13.236 g, respectively. For vibration acceleration ay, the range of variation is
2.395 g to 13.226 g and 3.515 g to 14.346 g, respectively. For vibration acceleration az, the
range of variation is 4.479 g to 38.338 g and 13.613 g to 30.420 g, respectively. However, as
the feed speed vf increases, the overall variation of vibration acceleration ax, ay and az is
not obvious. The range of variation is 5.343 g to 9.991 g, 5.418 g to 10.032 g and 14.412 g to
26.156 g, respectively.
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Table 11 shows the ANOVA analysis results for vibration acceleration. The results
of variance analysis showed that the order of the significant influence on the vibration
acceleration is: milling depth—1; spindle speed—2; feed rate—3. As for the vibration
acceleration generated in the X direction ax, milling depth ap and spindle speed n are highly
significant influencing factors (HS), and feed speed vf is not significant (NS). Similarly, as
for the vibration acceleration generated in the Y direction ay, milling depth ap and spindle
speed n are also highly significant influencing factors (HS), and feed speed vf is also not
significant (NS). The difference is that for the vibration acceleration generated in the Z
direction az, milling depth ap is a highly significant influencing factor (HS), while spindle
speed n is a significant influencing factor (S) and feed speed vf is not significant (NS).
The contribution ratio of the above process parameters on vibration acceleration in the X
direction and the Y direction is basically equivalent, being 51.41%, 36.55% and 8.04% and
47.17%, 41.42% and 8.06%, while the contribution ratio for vibration acceleration in the Z
direction is 75.97%, 13.43% and 8.16%, respectively.

Table 11. Variance analysis results of vibration acceleration orthogonal experiment.

Vibration Acceleration ax

Factor SS D MS F Contribution (%) Significance Rank

ap 435.312 4 108.828 12.884 51.41% Highly significant
Milling depth-1
Spindle speed-2

Feed rate-3

n 309.439 4 77.360 9.158 36.55% Highly significant
vf 68.076 4 17.019 2.015 8.04% Not significant

Error 101.362 12 8.447 4.00%
Total 914.190 24

Vibration Acceleration ay

Factor SS D MS F Contribution (%) Significance Rank

ap 391.319 4 97.830 14.126 47.17% Highly significant
Milling depth-1
Spindle speed-2

Feed rate-3

n 343.628 4 85.907 12.405 41.42% Highly significant
vf 66.909 4 16.727 2.415 8.06% Not significant

Error 83.105 12 6.925 3.35%
Total 884.961 24

Vibration Acceleration az

Factor SS D MS F Contribution (%) Significance Rank

ap 4232.908 4 1058.227 31.128 75.97% Highly significant
Milling depth-1
Spindle speed-2

Feed rate-3

n 748.435 4 187.109 5.504 13.43% Significant
vf 454.423 4 113.606 3.342 8.16% Not significant

Error 407.952 12 33.996 2.44%
Total 5843.718 24

From the above analysis, it is known that the significance and contribution ratio of
the above process parameters on vibration acceleration is different in different directions.
In detail, the significance and contribution ratio of the process parameters on vibration
acceleration in the X direction and the Y direction is basically equivalent, but there is a big
difference compared with the Z direction. The significance of milling depth ap on axial
vibration is quite different from the vibration in the feed direction and the vertical feed
direction, and its contribution ratio is much larger than the other two directions. Axial vibra-
tions are usually neglected in traditional CNC machines. However, they may significantly
affect the stability of the process in industrial robots. According to Mohammadi et al. [45],
the numerical case studies show that axial vibrations may cause the feed-generated and
edge forces to affect the stability of regenerative vibrations in robotic milling.

In summary, as shown in Tables 6, 9 and 11, the tables indicate that the milling depth
is highly significant in generating milling load and vibration acceleration, while the spindle
speed is more significant in generating surface roughness.
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4. Conclusions

In this study, the effects of process parameters such as milling depth, spindle speed
and feed rate on the robotic milling performance were experimentally investigated during
the flat-end milling of the 7075-T651 high-strength aeronautical aluminum alloy. The results
of milling load, surface quality and vibration under each set of milling parameters were
statistically compared. The contribution ratio based on the analysis of variance (ANOVA)
was introduced to investigate the relation between parameters and milling performance.
The conclusions of this paper are summarized as follows:

(1) Based on ANOVA and contribution ratio assessment, it has been estimated that
milling depth (69.25%) has the highest percentage of influence on the milling load followed
by feed rate (23.32%) and spindle speed (5.78%). The spindle speed has a high significance
on surface roughness, with a contribution ratio of 48.02%, followed by milling depth
(35.83%) and feed rate (13.18%).

(2) Milling depth is also highly significant in vibration. The contribution ratios of
milling depth, spindle speed and feed rate on vibration in the X direction and the Y
direction are basically equivalent, being 51.41%, 36.55% and 8.04% and 47.17%, 41.42% and
8.06%, while the contribution ratios on vibration in the Z direction are 75.97%, 13.43% and
8.16%, respectively.

(3) The significance and contribution ratio of the above process parameters on vibration
acceleration is different in different directions. In detail, the contribution ratio of milling
depth on axial vibration is quite different from the vibration in the feed direction and
the vertical feed direction, being 51.41% in the X direction, 41.42% in the Y direction, and
75.97% in the Z direction. The contribution ratio of milling depth on vibration in the Z
direction is much larger than the other two directions.

(4) From the analysis of the influence of feed per tooth on surface roughness, it has
been found that the value of surface roughness decreases with increasing cutting speed for
the same value of feed per tooth. The effect of cutting speed on the surface roughness is
related to the formation of chips. However, surface roughness also depends from feed per
tooth; it mainly increases with feed per tooth for stability process of cutting.

(5) Overall, the milling load, surface roughness and vibration acceleration all showed
an increasing trend with the increase of milling depth and feed speed, and showed a
decreasing trend with the increase of spindle speed.
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