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Background: Hepatocellular carcinoma (HCC) is the world’s second most deadly
cancer, and metabolic reprogramming is its distinguishing feature. Among metabolite
profiling, variation in amino acid metabolism supports tumor proliferation and metastasis
to the most extent, yet a systematic study on the role of amino acid metabolism-related
genes in HCC is still lacking. An effective amino acid metabolism-related prediction
signature is urgently needed to assess the prognosis of HCC patients for individualized
treatment.

Materials and Methods: RNA-seq data of HCC from the TCGA-LIHC and GSE14520
(GPL3921) datasets were defined as the training set and validation set, respectively.
Amino acid metabolic genes were extracted from the Molecular Signature Database.
Univariate Cox and LASSO regression analyses were performed to build a predictive risk
signature. K-M curves, ROC curves, and univariate and multivariate Cox regression were
conducted to evaluate the predictive value of this risk signature. Functional enrichment
was analyzed by GSEA and CIBERSORTx software.

Results: A nine-gene amino acid metabolism-related risk signature including B3GAT3,
B4GALT2, CYB5R3, GNPDA1, GOT2, HEXB, HMGCS2, PLOD2, and SEPHS1 was
constructed to predict the overall survival (OS) of HCC patients. Patients were separated
into high-risk and low-risk groups based on risk scores and low-risk patients had lower
risk scores and longer survival time. Univariate and multivariate Cox regression verified
that this signature was an independent risk factor for HCC. ROC curves showed that this
risk signature can effectively predict the 1-, 2-, 3- and 5-year survival times of patients
with HCC. Additionally, prognostic nomograms were established based on the training
set and validation set. These genes were closely correlated with the immune regulation.

Conclusion: Our study identified a nine-gene amino acid metabolism-related risk
signature and built predictive nomograms for OS in HCC. These findings will help us
to personalize the treatment of liver cancer patients.
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INTRODUCTION

A series of biochemical changes during cancer development
can promote infinite tumor cell proliferation, activate tissue
invasion and metastasis, and prevent tumor cell growth
from being inhibited. Metabolic reprogramming is one of
the most critical biochemical variations observed in cancer
(Boroughs and DeBerardinis, 2015). Amino acids are essential
nutrients and energy sources for tumor cells. Amino acids
associate with the metabolism of glucose, lipids and nucleotides,
which are crucial for tumor proliferation, invasion and
metastasis (Li and Zhang, 2016; Vettore et al., 2020). Many
cancers require exogenous supplementation with glutamine to
maintain tumor cell proliferation, in a process called “glutamine
dependence”(Lukey et al., 2017). Serine, glycine and threonine
metabolism and the one-carbon unit product derived from these
processes properly satisfy tumor cell proliferation and maintain
the redox, genetic and epigenetic state (Locasale, 2013).

Increasing studies have supported that amino acid metabolic
genes are vitally important in tumor development. Glutaminase
2 (GLS2) encodes glutaminase, which can induce tumor cells
to resist ROS-related apoptosis and enhance drug resistance
through p53 mediated transcription (Matés et al., 2020). Serine
hydroxymethyltransferase 2 (SHMT2) can be induced by both
c-Myc and HIF1α to enhance the ability to resist hypoxia-induced
tumor cell death and promote the invasion of various cancers
(Ye et al., 2014). Solute carrier family 7 member 8 (SLC7A8) is
an important branched-chain amino acid (BCAA) transporter.
SLC7A8 regulates the activation of glutamine-dependent mTOR
and enhances the resistance of pancreatic cancer to gemcitabine,
which promotes tumor proliferation and inhibits apoptosis
(Feng et al., 2018).

Globally, liver cancer is the second most deadly tumor, with
a 5-year survival rate of 18% (Villanueva, 2019). Hepatocellular
carcinoma is the most common type of liver cancer, accounting
for 90% (Forner et al., 2018). Current treatments such as surgical
therapy, chemotherapy, and radiotherapy have significantly
suppressed cancer proliferation and improved the survival of
HCC patients. However, HCC displays a high degree of molecular
heterogeneity among patients, at different locations within a
patient, and even within a single tumor, which is closely
correlated with the common occurrence of drug resistance and
relapse after surgical resection and comprehensive treatment,
consequently leading to a poor prognosis (Li and Wang, 2016;
Xu et al., 2019). It is urgent that more effective biomarkers be
identified to provide individual treatment for HCC patients. The
liver is the central organ for amino acid metabolism and the
importance of amino acid metabolism in HCC has been noticed
in recent years. Aberrant amino acid and protein metabolism
provided active biosynthesis support for HCC. For example,
branched-chain amino acid (BCAA) metabolism disorders are
common in HCC, such as upregulation of isoleucine and
downregulation of glutamate (Di Poto et al., 2017). Moreover,
an increasing proportion of BCAAs restrains the proliferation of
HepG2 liver tumor cells and helps to recover liver functions and
prevent early recrudescence after surgical resection (Tajiri and
Shimizu, 2013). A recent study revealed that BCAA reduction

is an independent risk factor for sarcopenia in the course of
HCC recurrence, worsening the prognosis of HCC patients (Sano
et al., 2021). Research on amino acid metabolism is of great
significance for the prevention and treatment of HCC. HCC
tumor cell can active immune reaction and provide appropriate
tumor microenvironment for cancer development (Long et al.,
2019). B and T cells played a vital role in the HCC tumor
microenvironment. NK cell decreasing enrolled in HBV or HCV
infection and promote the progression of liver cancer (Sun et al.,
2015). However, whether amino acid metabolism-related genes
are involved in immune regulation of HCC remains unclear.
Moreover, effective amino acid metabolic genes to predict the
overall survival (OS) of patients with HCC are still lacking.

In this study, we obtained HCC RNA sequencing data from
the TCGA database and the GEO database, mined amino acid
metabolism-related genes closely related to the OS of HCC
patients, and then established an effective signature of amino
acid metabolism-related biomarkers to extend the knowledge of
molecular mechanisms and clinical prognosis of HCC.

MATERIALS AND METHODS

Data Collection
We downloaded the RNA-seq (HTseq-FPKM) data and clinical
data of HCC from the TCGA database.1 The TCGA barcode
was used to match different patients, and 370 HCC and 50
normal samples were selected as the training set. The clinical
information included age, gender, histological grade, stage, TNM
classification, survival time and survival status.

The GSE14520 (GPL3921) dataset was obtained from the
GEO database, which contained gene expression and clinical
data of HCC, paired non-tumor tissues, and healthy liver
tissues analyzed by Affymetrix microarray profiling. Finally, 221
tumor samples were selected as the validation set. The clinical
information included age, gender, main tumor size, number of
tumors, TNM staging, BCLC staging and CLIP staging. Clinical
data of the two cohorts are listed in Table 1.

Screening Metabolism-Related
Differentially Expressed Genes
We downloaded the KEGG gene sets
(c2.cp.kegg.v7.0.symbols.gmt) from the Molecular Signature
Database (MSigDB) and extracted genes in amino acid
metabolism pathways to find amino acid metabolic genes
from the training set. Next, the intersecting amino acid metabolic
genes in the validation set and the training set were selected,
and their expression was corrected by the “sva” package (R
software version 4.0.2) for further differential analysis. The
“limma” package was employed to obtain differentially expressed
genes (DEGs) between normal liver tissues and HCC from the
training set. FDR < 0.05 and | logFC| ≥ 0.5 were the criteria
used to define DEGs.

1https://portal.gdc.cancer.gov/
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TABLE 1 | The clinicopathological characteristics of HCC patients in the training
set and validation set.

Parameter Total (%)

TCGA n = 370

Survival status Alive 244 (65.9)

Dead 126 (34.1)

Age ≤65 years 231 (62.4)

>65 years 138 (37.3)

Gender Male 249 (67.3)

Female 121 (32.7)

Histological grade G1 55 (14.9)

G2 177 (47.8)

G3 121 (32.7)

G4 12 (3.2)

Stage I 170 (45.9)

II 86 (23.2)

III 85 (23.0)

IV 5 (1.4)

T T1 180 (48.6)

T2 94 (25.4)

T3 80 (21.6)

T4 13 (3.5)

N N0 251 (67.8)

N1 4 (1.1)

NA 115 (31.1)

M M0 265 (71.6)

M1 4 (1.1)

NA 101 (27.3)

GSE14520 in GEO n = 221

Survival status Alive 136 (61.5)

Dead 85 (38.5)

Gender Male 191 (86.4)

Female 30 (13.6)

Age ≤65 years 200 (90.5)

>65 years 21 (9.5)

Main tumor size >5 cm 80 (36.2)

≤5 cm 140 (63.3)

MultiNodular No 176 (79.6)

Yes 45 (20.4)

TNM staging I 93 (42.1)

II 77 (34.8)

III 49 (22.2)

BCLC staging 0 20 (9.0)

A 148 (67.0)

B 22 (10.0)

C 22 (10.0)

CLIP staging score 0 97 (43.9)

1 94 (42.5)

2 35 (15.8)

3 9 (4.1)

4 3 (1.4)

5 1 (0.5)

Building and Validating the Amino Acid
Metabolism-Related Prognostic
Signature
To select genes significantly related to patient overall survival
(OS) in the training set, a univariate Cox proportional hazard
regression analysis was carried out. To ensure accurate results,
patients with a survival time of less than 30 days were excluded.
To prevent overfitting of the model, LASSO regression was
carried out by “glmnet” R package. Genes with independent
prognostic values were selected and the risk score formula was
as follows:

Risk score = (Coefficient mRNA1 × expression of mRNA1)

+ (Coefficient mRNA2 × expression of mRNA2)

+ · · · + (Coefficient mRNAn × expression mRNAn).

According to the median risk scores, HCC patients were
divided into high-risk and low-risk groups in both the
training set and the validation set. Univariate and multivariate
Cox proportional hazard regression analyses of risk scores
and clinicopathological items were conducted to validate the
performance of the prognostic signature. We generated Kaplan-
Meier(K-M) curves using the “survival” and “survminer” R
packages. To evaluate the predictive performance of the risk score
for the 1-, 3-, and 5- year survival of HCC patients, we plotted
a time-dependent receiver operating characteristic (ROC) curve
with the “timeROC” and “survival” R packages.

Establishing Predictive Nomograms
The results of the multivariate analysis were used to build
nomograms for predicting 1-, 2-, 3-, and 5- year survival.
The “rms” R package was employed to establish and visualize
the results. The discrimination performance and predicting
value of nomograms were assessed by Harrell’s C-index and
calibration curve.

Functional Enrichment Analysis
Gene set enrichment analyses (GSEA) were analyzed according
to the Molecular Signatures Database (MSigDB, version 7.2) to
reveal the molecular mechanism of the prognostic gene signature.
The “c2 KEGG gene set,” and “c5 all GO gene sets” were chosen
for analysis. GSEA software (version 4.1.0) was employed and the
parameters were as follows: number of permutations = 1,000, min
size = 15 and max size = 500. Pathways with NOM p-value < 0.05
and FDR q-value < 0.25 were defined as significantly enriched.
The results were visualized by the “ggplot2” R package. The
infiltration scores of 22 immune cells in the training set and
validation set were analyzed with the CIBERSORTx web tool.
The algorithm was run using the LM22 signature matrix at
1,000 permutations.

Cell Culture and Treatment
The human hepatocyte LO2 cell line, human hepatoma HepG2
and Hep3B cell lines were obtained from the America Type
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Culture Collection (ATCC, Manassas, VA, United States). The
cells were incubated at 37◦C in a humid atmosphere containing
5% CO2. The cells were cultured in dulbecco’s modified eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum
(FBS) (GIBCO-BRL, Thermo Fisher Scientific, Waltham, MA,
United States). Cells were inoculated in 12-well plates and 6-well
plates at densities of 1∗105/well and 2∗105/well, respectively.

Quantitative Real-Time PCR
Total RNA from the cells were extracted by RNA isolater Total
RNA Extraction Reagent (Vazyme, Nanjing, China) and were
used to synthesis cDNA by HiScript II Q RT SuperMix for qPCR
(Vazyme, Nanjing, China). To measure the abundance of mRNA,
the cDNA template, primers (Supplementary Table 1) and AceQ
qPCR SYBR Green Master Mix (Vazyme, Nanjing, China) were
mixed and run in a Light-Cycler 480 Software (Roche Diagnostics
GmbH, Mannheim, Germany). Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as an internal control. The
2−11Ct method was used to calculate mRNA expression.

Western Blot Analyses
Total protein from the cells was extracted and concentrations
were quantitated. Protein samples were mixed with 1 × SDS-
polyacrylamide gel electrophoresis(SDS-PAGE) loading buffer
and boiled for 10 min. Denatured proteins were separated by 10%
polyacrylamide gels (EpiZyme, Shanghai, China). The separated
proteins were transferred to polyvinylidene fluoride (PVDF)
membranes (Millipore Corp., Billerica, MA, United States). The
membranes were blocked with 8% non-fat milk prepared with
TBST containing 0.1% Tween20 for 1 h, and incubated in
the diluted specific antibodies (Supplementary Table 2) at 4◦C
overnight with gentle shaking, and the next day were incubated
with the secondary antibody for 1 h. The immunoreactive bands
were detected with enhanced chemiluminescence (ECL) kit
(Vazyme, Nanjing, China) and quantified with ImageJ software
(V1.8.0, National Institutes of Health).

Immunohistochemistry Analysis
A total of three pairs of HCC and paired adjacent tissues were
obtained from three patients of Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology. This
clinical trial is registered in the Chinese Clinical Trial Registry
(ChiCTR2100049106). The histologic grades of all HCC tissues
were identified by the pathology department. Liver tissues were
fixed with 4% paraformaldehyde, embedded in paraffin and made
into 4 µm slices. Slices were dewaxed and incubated with diluted
specific primary antibodies at 4◦C overnight (Supplementary
Table 3) and were subsequently incubated with biotinylated
secondary antibody (Proteintech, Wuhan, China) at room
temperature for 1 h. DAB chromogenic reagent was used to
detect positive staining, and each section was counterstained with
hematoxylin. An optical microscope (Olympus, BX-51, Tokyo,
Japan) was used to take 40 × immunohistochemical images.
For semi-quantitative immunostaining analysis, 5 random fields
per slice were used to calculate average optical density, and
ImageJ software (V1.8.0, National Institutes of Health) was
used for analysis.

Statistical Analysis
All statistical analyses were conducted by R software v4.0.2
and Graphpad Prism software v8.0.2. “Wilcox test” was used to
compare gene expression and immune scores between different
groups. Univariate Cox and LASSO regression analyses were
adopted to identify the prognostic signature. The OS and
recurrence-free survival (RFS) were analyzed by Kaplan-Meier
analysis with a log-rank test. Gene expression at different stages
was compared with one-way ANOVA. Immunohistochemical
statistical analysis and gene and protein expression in different
cells were analyzed by unpaired t-test. P < 0.05 was considered
statistically significant.

RESULTS

Building a Nine-Gene Amino Acid
Metabolism-Related Risk Signature
There were 393 amino acid metabolic genes in the training set,
and 327 amino acid metabolism-related genes were obtained
after intersecting with the validation set. Further differential
expression analysis showed that there were 140 differentially
expressed genes (DEGs) in the training set (82 upregulated
and 58 downregulated, Supplementary Table 4). The heatmap
and volcano plot of 140 DEGs are drawn in Figures 1A,B.
Next, we adopted the univariate Cox proportional hazard
regression analysis to identify mRNAs related to OS. The
41 genes with prognostic value (p < 0.01) in univariate
Cox regression were further analyzed by LASSO regression
(Supplementary Table 5 and Figures 1C–E). The model
was constructed by using the “glmnet” and “survival” R
packages. Finally, 9 amino acid metabolism-related genes
were chosen to establish a prognostic model, including
B3GAT3, B4GALT2, CYB5R3, GNPDA1, GOT2, HEXB,
HMGCS2, PLOD2, and SEPHS1. Detailed information on
nine genes is listed in Table 2. The risk score formula was as
follows: Risk score = (0.0068∗expressionB3GAT 3) + (0.0123∗
expressionB4GALT 2) + (0.0001∗expressionCYB5R3) + (0.0072∗
expressionGNPDA1)—(0.0006∗ expressionGOT 2) + (0.0071∗
expressionHEXB)—(2.5286e-05∗ expressionHMGCS2) + (0.0181∗
expressionPLOD2) + (0.0601∗ expressionSEPHS1).

Validating the Amino Acid
Metabolism-Related Risk Signature
According to the formula, we calculated the risk scores of patients
in the training set and validation set. Then we separated patients
into high-risk and low-risk groups according to the median
risk score. The K-M curves showed worse OS in the high-risk
group than in the low-risk group in both the training set and
validation set (p = 1.437e−08, and p = 1.35e−02, respectively)
(Figures 2A,B). In Figure 3, we plotted heatmaps of gene
expression and displayed the impact of risk scores on risk
ranking, survival time and survival status. The results verified that
the signature had significant prognostic value for HCC patients.
The independent prognostic analysis of the univariate and
multivariate Cox proportional hazard regression also verified the
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FIGURE 1 | Visualization of differential amino acid metabolism-related genes. (A) The heatmap of differential amino acid metabolism-related genes. (B) The volcano
plot of differential amino acid metabolism-related genes. (C) The forest plot of univariate Cox regression of OS related amino acid metabolism-related genes. (D,E)
LASSO regression analysis.
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TABLE 2 | Detail information of nine genes in the risk signature.

Gene symbol Full name Function of the encoded protein

B3GAT3 Beta-1, 3-glucuronyltransferase 3 B3GAT3 is a glycosyltransferase that plays an important role in proteoglycan (PG)
biosynthesis

B4GALT2 Beta-1, 4-galactosyltransferase 2 B4GALT2 is a beta-1, 4-galactosyltransferase (beta4GalT) and synthesizes
N-acetyllactosamine in glycolipids and glycoproteins

CYB5R3 Cytochrome b5 reductase 3 CYB5R3 encodes cytochrome b5 reductase, functions in desaturation and elongation
of fatty acids, in cholesterol biosynthesis, and in drug metabolism

GNPDA1 Glucosamine-6-phosphate deaminase 1 GNPDA1 links the hexosamine system with the glycolytic pathway and promotes the
catabolism of hexosamines derived from glycoproteins, glycolipids, and sialic acids into
phosphate sugars to provide energy sources

GOT2 Glutamic-oxaloacetic transaminase 2 GOT plays a role in amino acid metabolism and the urea and tricarboxylic acid cycles

HEXB Hexosaminidase subunit beta HEXB catalyzes the degradation of the ganglioside GM2, and other molecules
containing terminal N-acetyl hexosamines

HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 HMGCS2 is a mitochondrial enzyme that catalyzes the first reaction of ketogenesis, a
metabolic pathway that provides lipid-derived energy for various organs during times of
carbohydrate deprivation

PLOD2 Procollagen-lysine PLOD2 catalyzes the hydroxylation of lysyl residues in collagen-like peptides

SEPHS1 Selenophosphate synthetase 1 SEPHS1 is an enzyme that synthesizes selenophosphate from selenide and ATP

effective prognostic value (Figure 4). Furthermore, ROC curves
were drawn to assess the efficiency of risk scores in predicting 1-,
2-, 3-, and 5- year survival. In the training set, the AUCs for 1-,
2-, 3-, and 5- year survival was 0.813 (P < 0.001, 95%CI:0.748–
0.878), 0.770 (P < 0.001, 95%CI:0.705–0.835), 0.744 (P < 0.001,
95%CI:0.6690.820) and 0.702 (P < 0.001, 95%CI:0.611–0.793),
respectively. In the validation set, the AUCs for 1-, 2-, 3-, and
5- year survival was 0.643 (P = 0.013, 95%CI:0.530–0.757), 0.696
(P < 0.001, 95%CI:0.615–0.777), 0.686 (P < 0.001, 95%CI:0.606–
0.765) and 0.634 (P = 0.027, 95%CI:0.515−0.752), respectively
(Figures 2C,D).

Validating the Nine Genes in External
Databases
We analyzed the expression of nine genes in twenty types of
cancers in the Oncomine database. The thresholds were as
follows: p-value = 1E-4, fold change = 2, gene rank = Top
10%, and data type = mRNA. Nine genes were altered in
different cancers (Figure 5A). GOT2 and HMGCS2 were
downregulated in HCC, while PLOD2 and SEPHS1 were
upregulated in HCC. The HCCDB database curated 15 public
HCC expression datasets, among which the HCCDB18 dataset
contained RNA-seq of 212 tumor and 177 adjacent normal tissues
obtained from the ICGC-LIR-JP cohort. As shown in Figure 5B,
B3GAT3, B4GALT2, CYB5R3, GNPDA1, HEXB, and SEPHS1
were significantly upregulated in HCC samples, while GOT2 and
HMGCS2 were downregulated.

We compared the protein expression encoded by the nine
genes between HCC and normal liver tissues in the Human
Protein Atlas (HPA) database. Consistent with the mRNA
expression levels, GOT2 and HMGCS2 decreased in HCC
tissues, and B4GALT2, CYB5R3, GNPDA1, HEXB, and SEPHS1
increased in HCC tissues. B3GAT3 and PLOD2 had no
differential expression (Figure 6).

To verify the clinical performance of these nine genes, we
discussed the relationship between mRNA levels and pathological

stages according to the Gene Expression Profiling Interactive
Analysis (GEPIA) database. GOT2 and HMGCS2 were gradually
downregulated from stage I to stage IV, while B4GALT2,
GNPDA1, PLOD2 and SEPHS1 were gradually upregulated from
stage I to stage III (Figure 7A). We also explored the influence
of each gene on OS and recurrence-free survival (RFS) of HCC
patients. High expression of GOT2, HMGCS2 and low expression
of B3GAT3, B4GALT2, CYB5R3, GNPDA1, HEXB, PLOD2,
SEPHS1 correlated with favorable OS (Figure 7B). In addition,
low expression of B3GAT3 and GNPDA1 and high expression of
GOT2 correlated with favorable RFS (Figure 7C).

Cholangiocarcinoma (CHOL) is the second most common
subtype of liver cancer. To identify whether the prognostic
signature is specific for HCC, we compared the expression of
nine genes between CHOL and normal liver tissues based on
the GEPIA database. B3GAT3, B4GALT2, CYB5R3, GNPDA1,
HEXB, SEPHS1 were upregulated and GOT2 was downregulated
in CHOL, which was consistent with expression in HCC
(Figure 7D). However, PLOD2 and HMGCS2 had no difference
between CHOL and normal liver tissues. These results may
indicate that the risk signature is specific for HCC rather than
other subtypes of liver cancer.

Creating Predictive Nomograms
Based on the final regression analysis, a nomogram was created
that incorporated a 9-gene risk signature and clinicopathological
parameters. In the training set, age, gender, grade, stage and
risk score were chosen in the final model (Figure 8A). In the
validation set, age, gender, main tumor size, multinodular status,
TNM staging, BCLC staging, CLIP staging and risk score were
chosen in the final model (Figure 8B). Both of the nomograms
displayed good discrimination performance. The C-index were
0.786 (95%CI: 0.734–0.838) and 0.722 (95%CI: 0.665–0.779)
in the training set and validation set, respectively. Besides,
calibration plots showed that nomograms of both the training set
and validation set had good agreements between the prediction
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FIGURE 2 | The K-M curves of high-risk and low-risk groups in the training set (A) and validation set (B). The ROC curves of risk signature’s predicting performance
in 1-, 2-, 3-, and 5-year survival for HCC patients in the training set (C) and validation set (D).

FIGURE 3 | Characteristics of risk scores and heatmaps of the amino acid metabolism-related gene signature. (A) The risk score, survival time, and status of
patients in the training set. (B) The risk score, survival time, and status of patients in the validation set.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 September 2021 | Volume 9 | Article 731790

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-731790 August 31, 2021 Time: 12:0 # 8

Zhao et al. Prognostic Signature for Hepatocellular Carcinoma

FIGURE 4 | Univariate and multivariate Cox analysis to evaluate independent prognostic value of the risk signature. (A) Univariate Cox analysis in the training set.
(B) Multivariate Cox analysis in the training set. (C) Univariate Cox analysis in the validation set. (D) Multivariate Cox analysis in the validation set.

FIGURE 5 | The mRNA expression of the prognostic genes in HCC patients. (A) mRNA expression of the prognostic genes in 20 cancers from the Oncomine
database. (B) mRNA expression of the prognostic genes between HCC and normal tissues in the HCCDB database.

and actual clinical survival outcomes (Figures 8C,D). A total
score could be calculated to measure the 1-, 2-, 3-, and 5-year
survival rates of HCC patients.

Functional Enrichment Analysis
We performed GSEA to clarify the enrichment pathways of the
low-risk and high-risk groups in the training set. In the high-risk

group, KEGG pathways were mainly enriched in the cell cycle,
nucleotide metabolism, and immune-related pathways, including
RIG-I like receptor signaling pathway, Toll-like receptor
signaling pathway, and cytokine-cytokine receptor interaction.
In the low-risk group, KEGG pathways mainly enriched in
drug metabolism-cytochrome P450, amino acid metabolism and
fatty acid metabolism (Figure 9A). In the high-risk group,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 September 2021 | Volume 9 | Article 731790

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-731790 August 31, 2021 Time: 12:0 # 9

Zhao et al. Prognostic Signature for Hepatocellular Carcinoma

FIGURE 6 | Immunohistochemistry staining of the prognostic genes in HCC and normal liver tissues (the HPA database). Data are shown as mean ± SD, *p < 0.05,
**p < 0.01, ***p < 0.001 vs normal liver tissues.

biological processes were mostly enriched in the cell cycle,
nuclear transport, P53 signaling, and diversification of immune
molecules, and in the low-risk group, biological processes were
mainly enriched in amino acid and fatty acid catabolic processes,
toxin and drug metabolic processes (Figure 9B).

We subsequently explored the connection between the risk
score and immune status. According to the CIBERSORTx
database, we compared the infiltration scores of 22 immune cells
in the low-risk group and the high-risk group. In the training
set, the high-risk group had significantly higher infiltration of
memory B cells, activated memory CD4+ T cells, T follicular
helper (Tfh) cells, M0 macrophages, and neutrophils, while

the low-risk group had significantly higher infiltration of naive
B cells, resting memory CD4+ T cells, resting natural killer
(NK) cells, activated NK cells, monocytes and activated mast
cells (Figure 9C). In the validation set, the high-risk group
had significantly higher scores of naive CD4+ T cells and M0
macrophages, and a lower score of Tfh cells (Figure 9D).

Validating the Nine Genes in Cells and
Human Liver Tissues
We compared the mRNA levels of nine genes between the
LO2 cell line and HCC cell lines (HepG2 and Hep3B) by qRT-
PCR analysis. As shown in Figure 10A, expression of B3GAT3,
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FIGURE 7 | The expression of prognostic genes in HCC and CHOL analyzed based on the GEPIA database. (A) The mRNA expression from stage I to stage IV in
HCC patients. (B) The prognostic value of OS in HCC patients. (C) The prognostic value of RFS in HCC patients. (D) The mRNA expression in 9 normal liver tissues
and 36 CHOL tissues.
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FIGURE 8 | Nomograms for predicting the OS of 1-, 2-, 3-, and 5-years in the training set (A) and validation set (B). Calibration plot of nomograms in the training set
(C) and the validation set (D).

CYB5R3, and PLOD2 were significantly higher in HepG2 cells
than in LO2 cells, expression of B4GALT2 was significantly
higher in Hep3B cells than in LO2 cells, and expression of
GNPDA1, HEXB, SEPHS1 were significantly higher in both
HepG2 and Hep3B cells compared with LO2 cells.

Protein expression analyzed by western blot showed that
PLOD2 was significantly upregulated in HepG2 and Hep3B cells
compared with LO2 cells, HEXB was significantly upregulated
in HepG2 cells compared with LO2 cells, and HMGCS2 was
significantly downregulated in Hep3B cells compared with LO2
cells (Figure 10B). Besides, immunohistochemistry analysis
revealed that B4GALT2, CYB5R3, HEXB, PLOD2, and SEPHS1
were significantly upregulated while GOT2 was significantly
downregulated in HCC tissues compared with adjacent normal
tissues (Figure 11).

DISCUSSION

Metabolism has been revealed to be closely correlated with
epigenetics in cancer in recent years (Vander and DeBerardinis,
2017; Thakur and Chen, 2019). Aberrant metabolism promotes
tumor proliferation and metastasis. Many metabolism-related
genes have proven to be effective prognostic biomarkers.
HCC has active metabolic reprogramming and amino acid
metabolism is an important metabolic variation. Several studies

have explored the energy metabolism-related risk signatures of
HCC through bioinformatic methods (Zou et al., 2019; Liu
et al., 2020; Tang et al., 2020). However, there is still a lack
of bioinformatic research on amino acid metabolism-related
genes in HCC. In this study, for the first time, we analyzed
the characteristics of amino acid metabolism-related genes in
HCC and built a risk signature correlated with OS. First, we
identified 140 amino acid metabolism-related DEGs between
HCC and normal liver tissues based on RNA-seq data. Next,
we built an effective prognostic signature based on univariate
Cox and LASSO regression. Nine genes are contained in
this signature (B3GAT3, B4GALT2, CYB5R3, GNPDA1, GOT2,
HEXB, HMGCS2, PLOD2, and SEPHS1).

Patients can be divided into high-risk and low-risk groups
according to risk scores. K-M curves showed that low-risk
patients had a longer survival time than high-risk patients.
Furthermore, the ROC curve confirmed that the risk signature
can effectively predict the 1-, 2-, 3-, and 5- year survival rates
of HCC patients. Univariate and multivariate Cox analyses
confirmed the independent prognostic value of the risk signature.
Several studies in recent years have identified metabolism-
related risk signatures for effectively predicting OS and have
uncovered the importance of metabolism-related genes in the
process of HCC development (Hu et al., 2020; Wu et al.,
2021). Zhu’s study built a lipid metabolism-related prognostic
signature and revealed that lipid metabolism-related genes are
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FIGURE 9 | Functional enrichment analysis of genes between high-risk and low-risk groups. (A) Result of GSEA analysis in the training set. (B) Result of GSEA
analysis in the validation set. (C) Result of the infiltrating score of 22 immune cells in the training set. (D) Result of the infiltrating score of 22 immune cells in the
validation set.

closely correlated with clinical characteristics, immune cells,
and multiple biological functions of HCC (Zhu et al., 2021).
However, this study did not build a predictive nomogram. Our
study not only built the risk signature but also built nomograms
based on the training set and validation set. Wu’s study (Wu
et al., 2021) built a six-gene metabolism risk signature, which
mainly focuses on nucleotide metabolism and lipid metabolism.
However, our study mainly focuses on amino acid metabolism.
Liu’s study built an amino acid metabolism-related prognostic
signature of glioma and verified that risk scores closely correlated
to different aspects of the malignancy of glioma (Liu et al.,
2019). Consistently, our study verified the importance of energy
metabolism disorders in HCC. We also emphasized that the
amino acid metabolism-related genes played a vital role in the
process of HCC development. Our study built a 9-gene signature
that could effectively predict the OS of HCC patients in both the
training set and validation set, and more importantly, it is a risk
factor that is independent of clinicopathological factors.

Beta-1, 3-glucuronyltransferase 3 (B3GAT3) promotes the
proliferation, metastasis and epithelial mesenchymal transition
(EMT) process of the human HepG2 liver cancer cell line (Zhang
Y. L. et al., 2019). Selenophosphate synthetase 1 (SEPHS1)
promotes the expression of SMADs in liver cancer cells and
stimulates the migration and invasion of tumors induced
by TGF-β, which is negatively correlated with the OS and
RFS of HCC patients (Yang et al., 2021). Glucosamine-6-
phosphate deaminase 1 (GNPDA1) and procollagen-lysine
(PLOD2) are upregulated in liver cancer and promote tumor
proliferation and migration, which are correlated with poor
prognosis (Du et al., 2017; Xia et al., 2021). Mutation of
Beta-1, 4-galactosyltransferase 2 (B4GALT2) leads to abnormal
glycosylation of proteins, promoting the development of
colon cancer (Venkitachalam et al., 2016). Downregulation
of glutamic-oxaloacetic transaminase 2 (GOT2) activates
oxidative stress in human pancreatic ductal adenocarcinoma
(PDAC) cells and inhibits the proliferation of pancreatic
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FIGURE 10 | The mRNA and protein expression of prognostic genes in LO2 cells, HepG2 cells and Hep3B cells. (A) The mRNA expression of nine genes analyzed
by qRT-PCR. (B) The total protein expression of PLOD2, HEXB and HMGCS2 analyzed by western blot. Data are shown as mean ± SD, ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001, ∗∗∗∗p < 0.0001 vs. LO2 cells.

cancer (Yang et al., 2018). Downregulation of 3-hydroxy-3-
methylglutaryl-CoA synthase 2 (HMGCS2) reduces ketone
production, enhances the c-Myc/cyclinD1 and EMT signaling

pathways, and inhibits caspase-dependent apoptosis pathways,
which promotes tumor proliferation, migration and xenograft
tumorigenesis in various cancers (Tang et al., 2017). The
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FIGURE 11 | Representative images of immunohistochemistry staining of prognostic genes in HCC and adjacent normal tissues. Data are shown as mean ± SD,
**p < 0.01, ***p < 0.001, ****p < 0.0001 vs adjacent normal tissues.

function of membrane-bound cytochrome b5 reductase 3
(CYB5R3) and hexosaminidase subunit beta (HEXB) on cancers
is still unclear.

Combining several databases, our study found that the
mRNA levels of B3GAT3, B4GALT2, CYB5R3, GNPDA1, HEXB,
PLOD2, and SEPHS1 were increased in HCC tissues while mRNA
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levels of GOT2 and HMGCS2 were decreased in HCC tissues. In
addition, the protein expression was consistent with the mRNA
expression. Moreover, the expression of nine genes correlated
with the prognosis of HCC patients. Interestingly, we noticed
that PLOD2 and HMGCS2 had no difference between CHOL
and normal liver tissues. These results may indicate that the risk
signature is specific for HCC rather than other subtypes of liver
cancer. We also verified the mRNA and protein expression of
nine genes in HCC patient samples and cell lines, which showed
consistent results with the public database mining results. In
brief, our results verified the importance of B3GAT3, SEPHS1,
PLOD2, and GNPDA1 in HCC development again. However,
previous studies have lacked an exploration of B4GALT2,
GOT2, and HMGCS2 changes in HCC. Our study disclosed the
prognostic value of B4GALT2, GOT2, and HMGCS2 in HCC.
CYB5R3 functions in drug metabolism, cholesterol biosynthesis,
desaturation of fatty acids, and mitochondrial electron transport
chain (ETC) activity (Fan et al., 2020). HEXB participates in
catalyzing the degradation of the ganglioside GM2 (Kuil et al.,
2019). No influence of two genes (CYB5R3 and HEXB) in cancers
has been reported, but our study found that upregulation of
CYB5R3 and HEXB was significantly linked to the poor prognosis
of HCC patients. Next, we developed nomograms for predicting
the 1-, 2-, 3-, and 5-year OS of HCC patients according to risk
scores and clinicopathological characteristics.

We further performed pathway enrichment analysis. GSEA
revealed that cell cycle regulation and synthesis of biological
macromolecules were active in high-risk patients, which discloses
the importance of amino acid metabolism-related genes in the
energy metabolism process for tumor proliferation. Amino acid
and fatty acid catabolic processes and toxin and drug metabolic
processes were inhibited in high-risk patients, which indicates
that amino acid metabolism-related genes may participate in
tumorigenesis. We also noticed that immune response-related
pathways were enriched. In our study, infiltration of memory B
cells, activated memory CD4+ T cells, T follicular helper (Tfh)
cells, and naive CD4+ T cells was upregulated while infiltration
of naive B cells was downregulated in high-risk patients. It was
reported that there was more B cells infiltration in HCC patients
than in patients with cirrhosis and healthy people (Zhang et al.,
2020). Upregulation of plasma cells and lower expression of
naive B cells correlated with poorer prognosis (Zhang Z. et al.,
2019). In addition, recent studies found that lower expression
of CD8+ T cells can lead to immune dysfunction in HCC
patients. Higher expression of Treg cells can interfere with cell
cycle checkpoints and inhibit effector T cells, and promote the
progression of HCC, which are factors related to poor prognosis
of HCC. Consistently, our results revealed that changes in amino
acid metabolism-related genes influence the ratio of different
B and T cell subtypes, leading to an influence on prognosis.
Our findings also show that high-risk patients have lower NK
cell infiltration. It was reported that increased catabolism of
Trp and Arg can induce apoptosis of NK cells, leading to
tumor immune escape (Grohmann and Bronte, 2010). Therefore,
abnormal expression of amino acid metabolism-related genes
may promote immune escape by influencing NK cells in HCC
proliferation. In addition, the proportion of neutrophils and

M0 macrophages increased in high-risk patients in this study.
Neutrophils influence tumor progression by releasing cytokines
and chemokines with tumorigenic or antitumor functions
(Haider et al., 2019). Zhou’s study also found that neutrophils can
recruit macrophages and Treg cells to promote HCC proliferation
and drug resistance (Zhou et al., 2016). It was found that M0
and M1 macrophages were significantly correlated with RFS
in HBV-HCC and HCV-HCC (Hsiao et al., 2019). Combined
with our results, abnormalities in amino acid metabolism-related
genes may affect neutrophil function and the interaction between
neutrophils and macrophages to promote HCC proliferation.

CONCLUSION

In conclusion, our study screens out amino acid metabolism-
related genes which serve as potential prognostic biomarkers and
builds a novel risk signature that is independently related to
the overall survival of HCC. The findings provide an effective
prediction of HCC prognosis and personalized therapy for
liver cancer patients. The mechanisms related to amino acid
metabolism-related genes and immune regulation during HCC
development need further exploration.
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