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Modified leaky competing 
accumulator model of decision 
making with multiple alternatives: 
the Lie‑algebraic approach
Chi‑Fai Lo* & Ho‑Yan Ip

In this communication, based upon the stochastic Gompertz law of population growth, we have 
reformulated the Leaky Competing Accumulator (LCA) model with multiple alternatives such that 
the positive-definiteness of evidence accumulation is automatically satisfied. By exploiting the 
Lie symmetry of the backward Kolmogorov equation (or Fokker–Planck equation) assoicated with 
the modified model and applying the Wei–Norman theorem, we have succeeded in deriving the 
N-dimensional joint probability density function (p.d.f.) and marginal p.d.f. for each alternative in 
closed form. With this joint p.d.f., a likelihood function can be constructed and thus model-fitting 
procedures become feasible. We have also demonstrated that the calibration of model parameters 
based upon the Monte Carlo simulated time series is indeed both efficient and accurate. Moreover, it 
should be noted that the proposed Lie-algebraic approach can also be applied to tackle the modified 
LCA model with time-varying parameters.

Among the current models of decision making, the Leaky Competing Accumulator (LCA) model1–6 has become 
fairly popular recently because it has been shown to account for a variety of behavioural datasets (mostly) related 
to two alternatives. In accordance with the model, evidence accumulation continues until an accumulator reaches 
a certain threshold level of activation, and a decision is made. Mathematically, evidence accumulation in this 
N-alternative model is described by the Ito stochastic differential equations (s.d.e.’s):

for xi � 0 and i = 1, 2, 3, . . . ,N  . Here dxi is the change in activation of accumulator i, Ii is the input, dt is the 
time step size, ξ refers to the noise and dWi denotes a standard Weiner process. In addition, κxi and β

∑

j  =i xj 
quantify the loss of activation of accumulator i due to leakage (sometimes called decay) and inhibition by the 
other accumulators, respectively. Unfortunately, the LCA model does not have a known likelihood function7, 
and the only methods available to fit the model to data are simulation-based, i.e. the LCA model has to generate 
simulated data for each proposed set of parameters in order to calculate any measure of fit. Hence, model-fitting 
procedures are extremely slow, and a thorough investigation of model-fitting procedures, recoverability and 
identifiability of the LCA model has not been performed for multi-alternative cases3. Moreover, recent research 
has found that the LCA model suffers from an instability problem in parameter recovery studies so that inferences 
made directly on the estimated parameter values are unreliable and of little meaning when applied to real data3–6.

Beyond question, in addition to the complicated couplings among the set of s.d.e.’s, a major hurdle in deriving 
a closed-form N-dimensional joint probability density function (p.d.f.) is the restriction that evidence accumu-
lation is positive definite, i.e. {xi � 0} . It has been observed that under reasonable parameter ranges (i.e. when 
the inputs {Ii} are not too small) the effect of neglecting the restriction is insignificant1,8–11 , so it is justifiable to 
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drop the constraint. The resultant model is sometimes called the Linear LCA model12. The special case of two 
alternatives can then be modelled by an Ornstein-Ulenbeck (OU) process:

where x ≡ x1 − x2 . The OU process is a well-known process and its properties can be easily found in the litera-
ture (see, e.g.13). Thus, most of current research work on decision making has focused on choices between two 
alternatives. It is obvious that in this OU process the leakage parameter κ and inhibition parameter β cannot 
be calibrated separately for the OU process depends upon their difference only. Likewise, in order that the cur-
rent models of decision making are of relevance to real life decisions, they must be applicable to understanding 
decisions among more than two alternatives. Accordingly, it is the aim of this communication to propose a new 
reformulation of the LCA model such that not only the positive-definiteness of evidence accumulation can be 
fulfilled automatically but also the N-dimensional joint p.d.f. can be derived in closed form.

First of all, by drawing a similarity between evidence accumulation and population growth, we propose to 
model the evidence accumulation by a generalization of the stochastic version of the Gompertz law of popula-
tion growth. If y(t) is the size of the cell at time t, the Gompertz law models the cell growth by the equation14–17:

where A1 , the intrinsic growth rate of the cell, is a parameter related to the initial mitosis rate and A2 , the growth 
deceleration factor, is related to the antiangiogenic processes. However, it should be stressed that quite often 
discrepancies exist between clinical data and theoretical predictions, due to more or less intense environmen-
tal fluctuations. Thus, a better model is needed to reflect the external randomness that affects the cell growth 
behaviour. The simplest stochastic version of the Gompertz law can be derived via assuming that the growth 
deceleration factor A2 does not change while the variability of environmental conditions induces fluctuations in 
the intrinsic growth rate A1

18. By assuming that the intrinsic growth rate varies in time according to

where A1 is the constant mean value of θ(t) , σ is the diffusion coefficient, and ε(t) is a Gaussian white noise 
process, the proposed stochastic version of the Gompertz law is defined by the s.d.e.:

where dW denotes the standard Wiener process. By Ito’s lemma, this s.d.e. implies that the exponent x ≡ ln y 
follows the OU process:

with the long term mean 
{

A1 − (1/2)σ 2
}

/A2 . It is obvious that the positive-definiteness of the size y of the cell is 
automatically fulfilled. This stochastic Gompertz model has been popularly applied to model tumour cell growth 
and similate the effects of a therapy recently19–23. In addition, this model is commonly known as the Schwartz 
model for modelling the mean-reverting stochastic behaviour of commodity prices in finance24. Beyond ques-
tion, one can readily recognise that Eq. (6) is identical to the s.d.e. describing the evidence accumulation of 
each alternative in the absence of inhibition by the other accumulators. As a consequence, the complementary 
approach of letting xi in Eq. (1) represent the logarithm of evidence accumulation yi of accumulator i rather than 
the evidence accumulation presents a simple way to deal with the positive-definiteness of evidence accumulation. 
By Ito’s lemma, the corresponding set of s.d.e.’s which govern the evidence accumulation of each accumulator 
are thus given by

for Ĩi ≡ Ii + (1/2)ξ 2 and i = 1, 2, 3, . . . ,N.
Next, we propose a new method, namely the Lie-algebraic approach, to tackle the modified LCA model with 

multiple alternatives. By exploiting the Lie symmetry of the backward Kolmogorov equation (or Fokker–Planck 
equation) assoicated with the model and applying the Wei–Norman theorem (see Appendix A;25), we have suc-
ceeded in deriving the N-dimensional joint p.d.f. and marginal p.d.f. for each alternative in closed form. Then, 
a likelihood function can be constructed and model-fitting procedures become feasible. More importantly, the 
instability problem in parameter recovery is completely solved.

This paper is organized as follows. In second section the Lie-algebraic approach is applied to tackle the prob-
lem of the modified LCA model with N alternatives. Both the N-dimensional joint p.d.f. and marginal p.d.f. for 
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each alternative are obtained in closed form. In “Numerical analysis” section some calibrated results based upon 
the Monte Carlo simulated time series are discussed and the final section presents the conclusion.

Lie‑algebraic approach
To derive the joint p.d.f. P({xi}, t; {xi0}, t0) of the stochastic variables {x1, x2, x3, . . . , xN } described by Eq. (1) 
without the restriction that xi � 0 for i = 1, 2, 3, . . . ,N  , we need to solve the associated multi-dimenstional 
backward Kolmogorov equation:

subject to the condition P({xi}, t; {xi0}, t0 → t) =
∏N

i=1 δ(xi − xi0) , where

Introducing the backward time τ ≡ t − t0 , Eq. (8) can be rewritten as

with P({xi}; {xi0}, 0) =
∏N

i=1 δ(xi − xi0) . It is not difficult to show that the operators 
{

L̂i

}

 are the generators of 
a closed Lie algebra defined by the non-vanishing commutation relations:

The formal solution of the backward Kolmogorov equation is given by

In accordance with the Wei–Norman theorem25, the exponential operator can be disentangled into the product 
form:

where the functions {bi(τ )} are determined by solving a set of six coupled nonlinear ordinary differential equa-
tions with the conditions: bi(0) = 0 for all i (see Appendix A). After some simple algebra we obtain
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The corresponding closed-form joint p.d.f. is then given by

where

Here the N × N matrix �(τ ) is defined by its elements as follows:

and �−1(τ ) is its inverse.
Moreover, the marginal p.d.f. pi(xi; {xi0}, τ) for the stochastic variable xi can be obtained from the joint p.d.f. 

by integrating out the other N − 1 variables:

It should be noted that the marginal p.d.f. pi(xi; {xi0}, τ) satisfies the backward Kolmogorov equation subject 
to the condition pi(xi; {xi0}, 0) = δ(xi − xi0) . Thus, a more efficient way to derive pi(xi; {xi0}, τ) is to solve the 
backward Kolmogorov equation with the condition pi(xi; {xi0}, 0) = δ(xi − xi0) directly as follows:

Consequently, the closed-form joint p.d.f. P({xi}; {xi0}, τ) enables us to construct a likelihood function for the 
modified LCA model with multiple alternatives so that maximum-likelihood analyses can be performed to 
calibrate the parameters of the model.

As a final remark, it should be noted that the joint p.d.f. of the stochastic variables {xi} can also be derived 
from solving the associated multi-dimensional Fokker–Planck equation. The details are shown in the Appendix B.

Numerical analysis
The Monte Carlo method based upon the strong order 1.5 Taylor scheme26 is employed to generate the time 
series of the LCA model. That is, the simulation of evidence accumulation of the ith accumulator is performed 
in accordance with the following discretized version of the s.d.e. given in Eq. (1):
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where

and xti  denotes the logarithm of evidence accumulation of the ith accumulator at time t. Here Ui,1 and Ui,2 are 
uncorrelated random numbers drawn from a normal distribution with zero mean and unit variance whilst �Zi 
is normally distributed with zero mean, variance E((�Zi)

2) = 1
3 (�t)3 and covariance E(�Zi�Wi) = 1

2 (�t)2 . 
In order to simulate that the initial value of evidence accumulation is sufficiently close to zero, xt=0

i  is always set 
equal to −5 in this study. For illustration, we have examined three different cases, namely the two-, three- and 
ten-alternative case, in each of which 128 simulated time series are generated. For each time series there are 20, 
000 data points with �t = 0.01.

With the closed-form joint p.d.f., maximum likelihood analyses are then applied to calibrate the model param-
eters and check whether the actual values can be recovered. The global maximum of the log-likelihood function 
is determined by the Nelder–Mead simplex algorithm, and the implementation is performed by means of the 
“‘fminsearch” function of the MATLAB. To ensure convergence, we iterate the estimation until the discrepancy 
between the guess and estimated value is smaller than 10−6 in magnitude. Table 1 tabulates the average elapsed 
time for the maximum likelihood estimation per time series for the three illustrative cases. In fact, the calibration 
can be completed within a minute even for a large number of alternatives. The calibration is carried out using a 
4.7 GHz Intel Core i7-10700K PC.

In Table 2 the input model parameters and the calibrated values (based upon 128 simulated time series) are 
presented for the case of two alternatives. The corresponding standard errors and z-scores of the calibrated values 
are tabulated, too. It is obvious that the calibrated values are in good agreement with the exact values. Tables 3 and 
4 present the same set of informations for the three- and ten-alternative case respectively, and the same observa-
tion can be made. As a result, it is beyond question that the calibration of parameters is both effcient and accurate.

Conclusion
Based upon the stochastic Gompertz law of population growth, we have reformulated the LCA model with 
multiple alternatives such that the positive-definiteness of evidence accumulation is automatically satisfied. By 
exploiting the Lie symmetry of the backward Kolmogorov equation (or Fokker–Planck equation) assoicated 
with the modified model and applying the Wei–Norman theorem, we have also succeeded  in deriving the 
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Table 1.   The average elapsed time of calibration from 128 time series.

N Data points Average elapsed time of calibration per time series (s)

2 20,000 1.3783

3 20,000 1.7902

10 20,000 11.592

Table 2.   Calibrated results for the case of two alternatives.

κ β I1 I2 ξ

Exact value 4 1 0.9 1.1 0.25

Calibrated value 4.01 0.97 0.894 1.095 0.24998

Standard error 0.10 0.10 0.026 0.026 0.00089

z-score 39.7 9.7 33.9 41.4 280.1

Table 3.   Calibrated results for the case of three alternatives.

κ β I1 I2 I3 ξ

Exact value 4 1 0.9 1.1 0.98 0.25

Calibrated value 3.963 0.998 0.894 1.094 0.978 0.24991

Standard error 0.088 0.051 0.023 0.023 0.023 0.00073

z-score 45.0 19.6 38.8 47.2 42.9 342.5
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N-dimensional joint p.d.f. and marginal p.d.f. for each alternative in closed form. With the joint p.d.f., a likeli-
hood function can be constructed and thus model-fitting procedures become feasible and efficient. We have also 
demonstrated that the calibration of model parameters based upon the Monte Carlo simulated time series is 
indeed both efficient and accurate. Moreover, it should be noted that the proposed Lie-algebraic approach can 
also be applied to tackle the modified LCA model with time-varying parameters.
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