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Simple Summary: Malaria fever kills millions of people annually in the tropical and subtropical
countries of Africa and Asia. Because there is no effective vaccine, malaria prevention is exclusively
dependent on avoiding human-vector interaction. The interaction of Vitex negundo essential oil
constituents with Anopheles gambiae Odorant Binding Proteins (OBP), as well as its compositional
variation, repellent efficacy, and toxicity profile, are investigated in this work. The oils were sub-
jected to GC-MS analysis, a mosquito behavioral test, OBP-ligand interactions, Anopheles species
authentication, and toxicity profile. Docking protocol validation was achieved by redocking the
co-crystallized ligands and root mean square deviation (RMSD) calculation. The oil yields and
compositions are climate–soil dependent with ≈71.39% monoterpenes and ≈16.32% sesquiterpene.
Optimal repellency is achieved at 15 min at ED50 0.08–0.48% v/v while the RMSD was estimated
to be within 0.24–1.35 Å. Strong affinities, −6.4 to −5.4 kcal/mol, were demonstrated by α-pinene,
citronellal, linalool, and myrcene for OBP1, OBP7, OBP4, and OBP. respectively. The hydrophobic
interactions involve Leu17, Cys35, ALA52, Leu73, Leu76, Ala88, Met91, Lys93, Trp114, Phe123, and
Leu124 receptors on α-helixes 1–7 within the binding cavities, and may block the olfactory receptors
resulting in disorientation. α-pinene, linalool, and myrcene are safe and suitable for use in the
development of green and innovative repellents because their ligand efficiency metrics, ADME/tox,
and repellency screening are all within the threshold values.

Abstract: (1) Background: Malaria fever affects millions of people yearly in Africa and Asia’s
tropical and subtropical areas. Because there is no effective vaccine, malaria prevention is solely
dependent on avoiding human-vector interaction. (2) Aim: This study examines the interaction
between the constituents of Vitex negundo essential oil and Anopheles gambiae Odorant Binding Proteins
(OBP) as well as the compositional variation, repellent efficacy, and toxicity profile. (3) Methods:
The oils were subjected to GC-MS and mosquito behavioral analysis. OBP–ligand interactions,
Anopheles species authentication, and the toxicity profile were determined by molecular docking,
PCR assay and in silico ADME/tox tool. Docking protocol validation was achieved by redocking
the co-crystallized ligands into the protein binding pocket and root mean square deviation (RMSD)
calculation. (4) Results: The oil yields and compositions are climate–soil dependent with ≈71.39%
monoterpenes and ≈16.32% sesquiterpene. Optimal repellency is achieved at 15 min at ED50

0.08–0.48% v/v while the RMSD was estimated to be within 0.24–1.35 Å. Strong affinities were
demonstrated by α-pinene (−6.4 kcal/mol), citronellal (−5.5 kcal/mol), linalool (−5.4 kcal/mol),
and myrcene (−5.8 kcal/mol) for OBP1, OBP7, OBP4, and OBP; respectively. The hydrophobic
interactions involve Leu17 (α-helix 1), Cys35 (α-helix 2), ALA52 (α-helix 3), Leu73, Leu76(α-helix 4),
Ala88, Met91, Lys93, Trp114 (α-helix 5), Phe123 (α-helix 6), and Leu124 (α-helix 7) receptors within
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the binding cavities, and may cause blocking of the olfactory receptors resulting in disorientation.
(5) Conclusion: The ligand efficiency metrics, ADME/tox and repellency screening are within the
threshold values; hence, α-pinene, linalool, and myrcene are safe and fit-to-use in the development
of a green and novel repellent.

Keywords: mosquito; repellent; V. negundo; molecular docking; odorant binding proteins; ligand
efficiency metric; essential oil; Anopheles gambiae

1. Introduction

Malaria has been and continues to be one of the world’s leading causes of mortality.
Despite the fact that the disease has been eradicated in the United States, it remains a
global health threat. Malaria affects an estimated 300 to 500 million people worldwide
each year, resulting in 1.5 to 2.7 million fatalities. Sub-Saharan Africa, on the other hand,
accounts for about 90% of all malaria cases worldwide [1], followed by the World Health
Organization (WHO) South-East Asia Region (3.4%) and Eastern Mediterranean Region
(2.1%). Nearly 85% of the worldwide malaria burden was carried by 19 nations in Sub-
Saharan Africa and India. Nigeria (25%), the Democratic Republic of the Congo (12%),
Uganda (5%), Côte d’Ivoire (4%), Mozambique (4%), and Niger (4%) accounted for more
than half of all malaria cases globally [2]. In addition, one to two million people suffering
from malaria die from the disease, the majority of whom are children under the age of
five and pregnant women [3]. Unfortunately, 90% of malaria deaths occur in Sub-Saharan
Africa, where approximately 3000 people die each year. The Nigerian situation is consistent
with the global trend, as malaria is the leading cause of death among pregnant women in
the country, accounting for one out of every ten deaths [4,5].

Malaria is caused by a species of Plasmodium which is vectored by the adult female
Anopheles mosquito that thrives in hot and humid climates around the world [6]. The
Anopheles gambiae complex consists of at least seven morphologically similar but six geneti-
cally and behaviorally distinct mosquito species from the genus Anopheles. The complex
contains the most important malaria vectors in Sub-Saharan Africa, especially those that
transmit Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, Plasmodium falciparum,
and Plasmodium knowlesi [7]. A. gambiae is more than just a pest and a nuisance; it is also
responsible for the spread of malaria and other deadly diseases across Africa.

Quinoline-based drugs were the mainstay of malaria treatment and prevention for
decades. Unfortunately, the emergence of drug-resistant Plasmodium species as a result
of mutation has rendered conventional therapeutic treatment ineffective [8,9]. WHO,
on the other hand, has approved insecticides, fumigation, air shields, ultrasonic rays,
pesticide spraying, insecticidal treated nets, and insecticidal-treated clothing as malaria
prevention measures [10]. For a variety of reasons, insect repellents such as lotions, coils,
mosquito-treated nets, and liquidators have limited efficiency [11,12]. However, con-
sumers have recently become more interested in cheap plant-based commercial repellents,
which are frequently considered as “safe” when compared to synthetic repellents; this is
not always the case depending on the secondary metabolites present [13]. Plant-based
metabolites have been shown to be an effective mosquito control alternative to synthetic
insecticides or when used in conjunction with other pesticides as part of an integrated
vector control strategy [14].

Several plant extracts have been reported to have mosquitocidal growth regulator
activity, as well as insecticidal properties in the elimination of larval or adult mosquitos
or as mosquito repellents to protect against mosquito bites [13,15,16]. Vitex negundo L.
(Verbenaceae) is a well-known medicinal herb [17–20], which has been linked to a vari-
ety of pharmacological properties, including enzyme inhibition [21,22], antifeeding [23],
larvicidal [24], and mosquito repellent activities [15].



Insects 2021, 12, 1061 3 of 26

Research on synthetic insect repellents has developed due to breakthroughs in our
understanding of mosquito behavior and olfactory receptors [25], but there have been insuf-
ficient studies on the safety of plant-based mosquito repellents and their interaction with ol-
factory receptors. The olfactory system of insects is made up of a number of transmembrane
odorant receptor proteins that are expressed in olfactory membrane neurons all through-
out their bodies [26]. Odorant binding proteins (OBPs) are potent mosquito biosensors,
according to Di Pietrantonio et al. [27], Sankaran et al. [28], and Possas-Abreu et al. [29].
Odorant-binding protein 1 (OBP1) (PDB ID 3N7H) and (OBP:PDB ID 2ERB), odorant-
binding protein 7 (OBP7: PDB ID 3R1O), and odorant-binding protein 4 (OBP4: PDB
ID 3Q8I) are the key olfactory proteins involved in signals for host recognition process,
repellent alarm pheromone, and diphenyl ester-specific binding protein, respectively.

More systematic research is needed to better evaluate plant-based repellents and
produce novel solutions that are safe for consumers. This study investigates the major
constituents of V. negundo essential oil in order to establish repellent efficacy, predict their
in-silico toxicity profile, and determine the interactions with Anopheles odorant binding
proteins using a molecular docking-based technique.

2. Materials and Methods
2.1. Collection Sites and Identification of V. negundo Leaves

The leaves of V. negundo were harvested in September 2020 from six states of the
North-Central Geopolitical Zone of Nigeria with the climatic condition and major soil type
presented in Table 1. Samples of the leaves were identified at the Department of Medicinal
Plant Research and Traditional Medicine, National Institute of Pharmaceutical Research
and Development (NIPRD) Idu, Abuja and voucher specimens NIPRD/Hebarium/1101
were deposited.

Table 1. Grid box information for the selection of the active pockets of the four odorant binding proteins.

Centre Dimension

Proteins Center_x Center_y Center_z Size_x Size_y Size_z

3N7H 4.552872 15.28167 −12.214 58.59585 78.51029 118.6278
3R1O 4.1755 −10.0047 18.80124 49.47825 50.92539 68.14412
3Q8I 5.995551 1.440093 14.84848 49.47825 49.98114 46.37546
2ERB 2.997585 −0.91365 −39.2475 42.39479 43.98579 64.02445

2.2. Leaf Processing and Extraction of Essential Oils

Collected fresh V. negundo leaves were washed with tap water and extracted within
12 h of collection using a 25 kg capacity fabricated Essential oil Distillation System (EDS)
based on the steam distillation principle (Figure 1). The EDS steam generator was filled
with 50 L of distilled water while the sample container was loaded to capacity and distilled
over a period of 45 min. The distillate was recovered and separated in batches using
a 2 L separatory funnel into essential oil and aqueous distillate (hydrosol), after which the
essential oils were dried over anhydrous Na2SO4 and stored for further analysis. Finally,
the oil yield was calculated relative to the fresh matter and the result presented as the
mean ± standard deviation of triplicate extractions.
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Figure 1. Schematic of the Essential oil Distillation System (EDS). 
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Figure 1. Schematic of the Essential oil Distillation System (EDS).

2.3. GC-MS Profiling of the Essential Oils

The GC-MS analyses of the essential oils were performed with a Varian CP-3800 gas-
chromatograph equipped with a HP-5 capillary column (30 mm × 0.25 mm; coating thick-
ness 0.25 µm), carrier gas nitrogen at 1.2 mL/min, and a Varian Saturn 2000 ion trap mass de-
tector. The oven temperature was programmed from 50 to 280 at 3 ◦C/min. Analytical con-
ditions: injector and transfer line temperatures were 220 and 240 ◦C, respectively. Volume
injected: 0.2 µL of 10% hexane solution, split ratio 1:30. Co-injection of the essential oil with
a solution containing a similar series of C8–C22 n-alkanes yielded linear retention indices
for all molecules. Retention indices were used to identify the individual components, which
were then compared to compounds previously reported in the literature [30,31]. Further, the
identification of the compounds was made using data of a computer library (Wiley 275L)
connected to the GC-MS, Adams library (https://b-ok.cc/book/3506611/3b1f4f (accessed
on 15 October 2021)), the NIST website (https://webbook.nist.gov/chemistry/ (accessed
on 15 October 2021)) using RI values from comparable polarity columns, and/or the
Mondello library (https://www.sisweb.com/software/wiley-ffnsc.htm (accessed on 15
October 2021)).

2.4. Sampling, Rearing, and Identification of Mosquitoes

In the months of March and April 2021, mosquito larvae were collected from selected
localities in Kaduna metropolitan located between 10◦33′ N of the equator and 07◦27′ E
of the Greenwich Meridian (Ungwan Gwari; 10◦35.71′; 07◦27.17′ Ungwan Romi 10◦25.19′;
07◦25.20′ Kamanzou 10◦46.24′; 07◦49.41′). The larvae were collected using a 7 cm diam-
eter, 5 cm deep, and 30 cm long handle plastic standard dipper from a 0.12 m × 2.5 m
deep temporary pool with grass vegetation. At the breeding sites, larvae identification
and morphological classification were carried out. The absence of a siphon, the parallel
swimming pattern on the water surface, and the morphology of the combs were used
to sort larvae into the Anophelinae and Culicinae subfamilies under a compound micro-
scope, compared to the Culex larva with a long siphon, lighter color, and “hairy” body,
as well as the identification key of Gillies and Coetzee [32]. The immature larval stages
were carefully transported in vials to the Insectary at the Biological Sciences laboratory,
Kaduna State University, Nigeria. The larvae were then placed in an open plastic container
29 cm × 21 cm × 30 cm containing 1 L of ground water and allowed to acclimate for 2 h
before being fed finely ground low-fat flour-baked food product [33].

The larvae were batched in separate breeding containers and were reared to adults
in separate 30 cm × 30 cm wooden made net chambers for three weeks under controlled
optimum conditions of 25 ◦C, 65% relative humidity, and regulated light/dark (14/10 h)

https://b-ok.cc/book/3506611/3b1f4f
https://webbook.nist.gov/chemistry/
https://www.sisweb.com/software/wiley-ffnsc.htm
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cycle. The emerged adults were identified morphologically using taxonomic characters
such as the palps, proboscis, wing venation, and markings or tuffs on legs or abdomen
as provided by the dichotomous keys employed by Coetzee and Gillies [34]. This was
performed using the simple Olympus light microscope to genera and species level. The
adults in the cages were fed a 10% sucrose solution after eclosion from their pupal cases and
allowed to rest and mature for 2 to 3 days. Only newly emerged adult females A. gambiae
were manually aspirated into a 200 mL perforated plastic container and allowed to rest for
1 hr before exposure to the essential oils (Figure 2).
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2.5. Anopheles Species Authentication: Genomic DNA Extraction and PCR Amplification

The emerged adult mosquitoes belonging to the A. gambiae (s.l) complex were subjected
to PCR and genomic DNA assays designed for species, molecular form identification,
and molecular analysis to fully authenticate the adult Anopheles species. The molecular
analyses were conducted at the Centre for Biotechnology Research and Training, Ahmadu
Bello University, Zaria. Genomic DNA (gDNA) was extracted from 20 Anopheles adult
mosquitoes using the Quick-DNA™ Miniprep Plus Kit (D4069) product by ZYMO research
company according to the protocol of the manufacturer.
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Genomic mosquito DNA (2 µL) was extracted and placed in a 0.2 mL thin-walled Ep-
pendorf tube and 23 µL of the PCR reaction mixture containing species specific primers for
A. gambiae (GA = 5′-CTGGTTTGGTCGGCACGTTT-3′), A. Arabiensis (AR = 5′-AAGTGTCC
TTCTCCATCCTA-3′), and a unique primer for all species (UN = 5′-GTGTGCCCC TTC-
CTCGAT GT-3′) according to the protocols of Scott et al. [35] and Favia et al. [36]. Then,
deoxynucleotide triphosphates, magnesium chloride, PCR buffer, distilled water, and
recombinant Taq DNA polymerase were all added. Amplification was performed in an
initial denaturation step at 94 ◦C for two minutes, then a 30-cycle denaturation at 94 ◦C
for 30 s, annealing at 49 ◦C for 30 s and elongation at 68 ◦C for 5 min in a thermal cycler
machine. The PCR amplicons ran on a 1.5% agarose gel electrophoresis gel tank and were
viewed under the trans-illuminator UV light for the characteristic A. gambiae positive band
sizes at 390 bp.

Again, from the samples that showed base pairs of 390 band sizes (A. gambiae s.l),
seven out of a group of 20 were randomly selected and 1 µL picked and mixed in 24 µL
of PCR reaction mixture containing species specific primers for A. gambiae s.s and coluzzi.
Species identification of A. gambiae (s.l.) was performed by PCR according to Favia et al. [36].
The PCR conditions were 10 min at 94 ◦C as the initial step, followed by 30 cycles (94 ◦C
for 30 s, 53 ◦C for 30 s, and 68 ◦C for 30 s). After the last cycle, the products were finally
extended for 5 min at 68 ◦C. Primers used in the PCR were: R5 (5′-GCC AAT CCG AGC
TGA TAG CGC-3′), R3 (5′-CGA ATT CTA GGG AGC TCC AG-3′), Mop int (5′-GCC CCT
TCC TCG ATG GCA T-3′), and B/S int (5′-ACC AAG ATG GTT CGT TGC-3′). Amplified
fragments were analyzed on a 1.5% agarose gel for the characteristic band size of 475 for
A. gambiae s.s.

2.6. Mosquito Behavioral Study Repellency Y-Tube Olfactometer Test

This experiment used an olfactometer with a glass Y-tube of 1.6 cm diameter, 12-cm
base, and two 40.62 cm arms at a 45◦ angle to one another [37]. V. negundo essential
oil diluted with paraffin oil (analytical purity, Sigma-Aldrich) was added in a gradient
sequence of 0.1, 0.25, 0.5, 0.75, and 1.0% v/v to a 5 g cotton ball, which was then mounted
on the cotton ball holder of the test arm.

The cotton ball holder on the control arm of the glass Y-tube supported the negative
control cotton ball (paraffin oil without the essential oil). At a rate of 180 mL/min, fresh air
was provided by an electric air pump and filtered on a carbon and silicone base with air
flowing into the respective arm of the Y-tube.

The essential oil was combined with the purified air and went through one arm of the
Y-tube whereas purified air with no essential oil went through the opposite arm. Precisely,
100 female A. gambiae mosquitoes were discharged into the glass Y-tube, where behavioral
responses were monitored and recorded for 1800 s [38]. In addition, to establish the
mosquito behavioral activity and the degree of synergism between the pure constituents of
the essential oil, selected commercially available pure constituents based on the absorption,
distribution, metabolism, excretion, and toxicity (ADME/tox) and docking studies were
evaluated. After each investigation, the Y-tubes were air cleaned with a stream of hot
air (>60 ◦C), the cotton ball was removed, and the holder was cleaned. The olfactory
test was repeated thrice. The repellent rate was calculated according to the following
Equation (1) [39,40]:

%Mosquitoe Repelled = 100−
(

mean number of mosquitoes selecting essential oil
100−mean number of mosquitoes not selecting essential oil

)
100 (1)

The % mosquito repelled of 50% individuals (ED50) was estimated using the Probit
analysis model in the IBM SPSS v.25 statistical software.

2.7. Target Protein Selection and Preparation

The odorant binding proteins (OBPs) were selected as a target based on their applica-
tion as bio-recognition elements and biosensors for small ligands. The three-dimensional
(3D) structures of four A. gambiae OBPs; OBP 1 (PDB ID 3N7H), OBP 7 (PDB ID 3R1O),
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OBP 4 (PDB ID 3Q8I), and OBP (PDB ID 2ERB) were retrieved from the Protein Data-bank
(http://www.rcsb.org (accessed on 12 February 2021)) (Figure 3). The crystal structures
of the of OBPs were processed by removing existing ligands and water molecules while
missing hydrogen atoms were added according to the amino acid protonation state at
pH 7.0 utilizing Autodock 4.2 (Molecular Graphics Laboratory, Scripps Research Institute,
La Jolla, CA, USA). Thereafter, non-polar hydrogens were merged while polar hydrogens
were added to each protein. The process was repeated for each protein and subsequently
saved into a dockable format.
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2.8. Ligands Preparation

The 2D structures of the ligands subjected to docking investigation are presented
in Figure 4. In this study, six ligands (α-pinene (PubChem CID 6654), linalool (Pub-
Chem CID 6549), cis-sabinene hydrate (PubChem CID 101629835), citronellal (PubChem
CID 7794), verbenone (PubChem CID 29025), and bornyl acetate (PubChem CID 6448)
identified through the GC-MS analysis in all essential oils irrespective of the collection
location were retrieved from the PubChem database (www.pubchem.ncbi.nlm.nih.gov
(accessed on 12 February 2021)) in the Structure Data Format (SDF) [41–44].

An additional six major ligands with percentage composition ≥10% were also se-
lected as potential repellent agents: α-phellandrene (PubChem CID 7460), α-terpinene
(PubChem CID 7462), sabinene (PubChem CID 18818), β-pinene (PubChem CID 440967),
myrcene (PubChem CID 31253), and p-cymene (PubChem CID 7463). N,N-diethyl-3-
methylbenzamide (DEET) (PubChem CID 4284) was selected as a positive control in this
study since it is widely used as a chemical repellent against a variety of insects [45,46]
and has strong electrophysiological responses [47]. This is reinforced by DEET’s spatial
repellence, acting as a “confusant” and “stimulus” to insects, interfering with odorant de-
tection within the olfactory receptor neurons (ORNs) or odorant receptors (ORs), resulting
in avoidance behavior [48].

http://www.rcsb.org
www.pubchem.ncbi.nlm.nih.gov
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2.9. Molecular Docking Studies

Molecular docking was carried out using PyRx-Python Prescription 0.8 software
(Hangzhou, Zhejiang, China). The input file was in the form of PDB code of the receptor
or PDB file format and the molecules were in PDB file format. The output file was a
docking report. The docked image was viewed by “BIOVIA Discovery Studio Visualizer”
software (Waltham, MA, USA) to review the interactions between ligands and proteins,
and the length of the interaction along with amino acids. The ligands were imported into
PyRx 0.8 through the OpenBabel plug-in tool for each docking phase, with the Universal
Force Field (UFF) as the energy minimization parameter, and conjugate gradient descent
as the optimization algorithm. Table 1 shows the coordinate of the active sites of the
four A. gambiae odorant binding proteins as determined by the grid boxes utilized in the
docking studies.

The inhibition constant and ligand efficiency metrics were quantitatively estimated
using Equations (2)–(7) [49–53].

Inhibition constant (ki) = exp(δBinding Energy (BE)/RT) (2)

Ligand Efficiency (LE) =
−BE
HA

(3)

Ligand Efficiency Scaled (LEscale) = 0.873e−0.026(HA) − 0.064 (4)
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Ligand Lipophilic Efficiency (LLE) = −(logki + logP) (5)

Fit Quality (FQ) =
LE

LEscale
(6)

Ligand Efficiency Lipophilic Price(LELP) =
Log P

LE
(7)

2.10. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME/tox) Investigation

The ADME/tox filtering analysis of all selected ligands for docking including the phys-
iochemical were predicted using the ADMETlab 2.0 webserver (https://admetmesh.scbdd.
com/service/evaluation/index (accessed on 15 October 2021)). The canonical SMILES of
the ligands downloaded from the PubChem Database were used for the calculation of the
ADME/tox parameters in default mode.

3. Results and Discussion
3.1. V. negundo Essential Oil Yields, Climate and Soil Type of the Six States

Table 2 indicates the general soil types, climatic conditions, temperature, and annual
rainfall range of the collection sites, as reported in previous literature [54–59], and essential
oil yield of the six states. Ferralsols and hydromorphic tropical soils were the predominant
soil type of Kwara, while the soils of the Plateau are poorly drained sandy clay loam
surfaces with clay subsurface. The Niger, Nasarawa, and Benue are dominated by sandy
loamy soil types with a clay subsoil as well, except for Kogi soil which is richly sandy
and loamy.

Table 2. V. negundo essential oil yields (%), climatic per annum and soil types of the study sites.

States * Essential Oil Yield (%w/w) Coordinate Rainfall Range (mm) Temp. Range (◦C) Major Soil Texture

Kwara 0.13 ± 0.01 8◦30 N 5◦00′ E 50.8–2413.3 30–35 Ferralsols and hydromorphic
tropical soil

Kogi 0.03 ± 0.01 7◦30 N 6◦42′ E 1200.0–1300.0 15–38 Sandy loamy

Benue 0.29 ± 0.02 7◦20 N 8◦45′ E 100.0–200.0 21–37 Sandy loamy with sandy clay
in the subsoil

Nasarawa 0.15 ± 0.04 8◦32 N 8◦18′ E 100.1–308.9 14–38 Sandy clay loam and clay
loam to clay subsurface.

Plateau 0.18 ± 0.02 9◦10 N 9◦45′ E 1317.5–1460 12–22
Deep, poorly to very poorly

drained sandy clay loam
surfaces over clay subsurface

Niger 0.48 ± 0.10 10◦00 N 6◦00′ E 59.9–274.2 14–38
Loamy sand surface horizons

over sandy clay to clay
subsurface horizons

* Values are presented as mean of triplicate determination.

The oil yields were generally high for all sampled states; however, V. negundo from
Niger and Kogi produced the highest and lowest essential oil yields, respectively. Besides,
there was no significant difference (p > 0.05) in the yields from Nasarawa, Plateau, and
Kwara. In accordance with the findings of Tirillini et al., [60], the essential oil yield and
composition were influenced by Ca2+ and K+ concentrations, percentage of organic matter,
and temperature. The high yields in Niger, Nasarawa, Benue, Kwara, and Plateau may be
attributable to their proximity to a region with a moderately low to low annual rainfall,
low temperature, and predominant loamy soil with clay substructure with significant
concentrations of K+, Na+, and Ca2+ [61]. However, the significantly high yield obtained
in Niger is justifiably due to the low annual rainfall (59.9–274.2 mm) compared to other
regions with the same soil substructure (Table 2). On the other hand, the low yield recorded
in the Kogi sample may be directly linked to the lack of clay minerals in the soil.

https://admetmesh.scbdd.com/service/evaluation/index
https://admetmesh.scbdd.com/service/evaluation/index
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3.2. Chemical Composition of V. negundo Essential Oils

Table 3 shows the results of the V. negundo essential oils GC-MS analysis collected
from six states and the chromatograms are presented as Supplementary Figures S1–S6.
The essential oil from the various collection sites showed compositional variation. Niger,
Kwara, Benue, Plateau, Kogi, and Nasarawa oil, respectively, contained 16, 18, 30, 24, 15,
and 28 identified compounds. Monoterpenes made up the majority of the constituents
of the essential oils across all study states with about 74.65–96.23%, followed by about
0.75–16.32% sesquiterpene content. The rest were other compounds of about 3.55–10.88%.
Essential oils from Niger, Kwara, and Kogi had more than 90.04% monoterpene while
oils from Plateau, Nasarawa, and Benue demonstrated the highest sesquiterpene content
(7.63–16.32%). Sesquiterpene content was found to be quite low in Niger and Kwara
(0.75–1.23%), with sesquiterpene completely absent in the Kogi sample. The observed
compounds are in consonant with the reports of Hebbalkar et al. [17], Huang et al. [62],
and Kumar et al. [63].

Table 3. Compositional variation in the essential oils of V. negundo from the six study locations.

Plateau Nasarawa Niger Benue Kwara Kogi

RT % % % % % % Compounds RIExp RILit

4.711 0.69 α-thuiene 928 924
5.750 40.2 39.83 20.09 27.94 28.76 16.01 α-pinene 934 931
6.789 0.81 camphene 946 943
7.271 1.68 1.28 1.43 sulcatone 965 960
7.800 12.21 11.31 5.99 8.38 4.72 sabinene 983 975
8.255 0.89 1.21 7.94 42.04 β·pinene 988 988
8.289 16.78 myrcene 994 993
8.296 34.65 20.27 α-phellandrene 1005 1002
8.384 8.10 1.44 α·3-carene 1012 1010
8.391 20.36 α-terpinene 1020 1017
8.615 8.57 16.47 p-cymene 1023 1022
8.744 0.69 0.68 β-phellandrene 1025 1025
8.805 0.86 0.65 (E)-β-ocimene 1032 1029
8.812 1.04 y-terpinene 1047 1041
9.060 9.192 trans-sabinene hydrate 1054 1054
9.192 9.11 8.09 4.75 6.72 4.78 Cis-linalool oxide 1088 1086
9.633 0.94 0.92 0.88 trans-linalool oxide 1098 1092
9.708 1.2 0.82 terpinolene 1100 1100
9.776 1.12 1.38 0.77 1.16 0.79 0.67 linalool 1105 1102
9.871 1.31 1.35 0.74 1.03 0.67 0.6 cis-sabinene hydrate 1178 1174
10.47 4.03 2.64 pelargonaldehyde 1193 1186
10.76 1.81 camphor 1318 1316
11.01 1.39 2.01 0.59 2.06 1.79 1.25 citronellal 1395 1389
11.61 2.04 2.42 5.2 2.41 borneol 1414 1409
11.79 0.64 terpinen-4-ol 1425 1417
11.96 1.05 α-terpineol 1445 1437
12.07 1.89 1.00 2.85 1.52 2.84 0.12 verbenone 1456 1452
12.52 0.67 n-decanal 1459 1454
12.61 1.86 1.07 1.72 citronellol 1466 1460
12.61 1.79 1.03 2.87 geraniol 1491 1489
13.01 5.11 3.95 linalyl acetate 1494 1492
13.47 5.65 1.62 2.06 1.94 2.12 1.04 bornyl acetate 1499 1498
13.86 3.47 3.71 4-terpinenyl acetate 1526 1522
14.24 1.19 0.92 1.16 1.2 0.73 α-terplnyl acetate 1552 1548
14.62 0.65 α-cubebene 1561 1561
14.93 3.8 0.67 0.97 0.6 α-ylangene 1574 1574
15.56 2.23 1.23 0.82 α-copaene 1578 1576
15.99 1.09 0.94 0.63 β-bourbonene 1589 1582
16.14 1.96 0.7 0.67 β-elemene 1599 1592
16.56 1.04 0.75 0.77 α-gurjunene 1610 1608
16.68 1.71 1.65 0.64 β-caryophyllene 1637 1638
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Table 3. Cont.

Plateau Nasarawa Niger Benue Kwara Kogi

RT % % % % % % Compounds RIExp RILit

17.10 1.83 0.68 trans·α·bergamotene 1643 1649
17.19 1.63 α-guaiene 1657 1652
17.20 1.76 α-humulene 1660 1658
17.67 1.59 germacrene D 1871 1880
18.12 1.8 1.92 0.82 β-selinene 1889 1889
18.59 1.97 1.83 0.67 ledene 1891 1890

1.53 1.06 1.44 1.33 1.14 0.34 Unknown
Monoterpenes 76.5 74.65 90.04 80.16 94.08 96.232
Sesquiterpenes 16.32 14.09 0.75 7.63 1.23 0

Others 5.65 10.2 7.77 10.88 3.55 3.68

RT: Retention Time (min), RIExp: Experimental retention index, and RILit: Literature retention index.

Major components (≥10%) such as α-phellandrene were found in Niger (34.65%) and
Kwara (20.27%), sabinene in Plateau (12.21%) and Nasarawa (11.31%), β-pinene (42.04%)
and p-cymene (16.47%) in Kogi, and myrcene (16.78%) in Benue. As a result, the predomi-
nant monoterpenes (≥10%) present in V. negundo essential oil throughout the six states were
α-phellandrene (20.27–34.65%), sabinene (11.31–12.21%), β-pinene (42.04%), p-cymene
(16.47%), and myrcene (16.78%). In the chemotaxonomical classification of V. negundo,
unique compounds such as α-pinene, linalool, cis-sabinene hydrate, citronellal, verbenone,
and bornyl acetate found in all samples irrespective of the collection site could be used in
the fingerprint of the essential oil. Several factors, including growth conditions, tempera-
ture, altitude, soil type, agricultural methods and practices, developmental stage, plant part
extracted, and harvesting period, are strong factors that determine the presence and absence
of certain terpenes, according to Moghaddam and Mehdizadeh [64]. Few monoterpenes
and sesquiterpenes reported by Issa et al. [65] and Khokra et al. [31] were noticeably absent
across all six states; however, compounds such as p-cymene [66], α-terpinolene [67], and
citronellal [68] with reported potent insecticidal properties were present in the oils.

3.3. PCR Confirmation of Anopheles Gambiae s.s

The PCR amplicons viewed under the trans-illuminator UV light showed positive
band sizes of 390 bp characteristic for A. gambiae while band size of 315 indicates A. arabiensis
(Figure 5).
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After conditioning the PCR, samples 1 to 7 of randomly picked A. gambiae s.l showed
DNA band sizes of 475 bp, authenticating the species to be A. gambiae s.s (Figure 6)
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3.4. Mosquito Behavioural Study

The exposure of adult female A. gambiae to the essential oil from all six states and
N,N-diethyl-3-methylbenzamide (DEET) for a period of 30 min at doses ranging from
0.1–1% v/v was investigated and reported in Figures 7 and 8.

There was an increase in the number of mosquitos repelled with time with an optimal
% repellency activity attained at approximately 15 min. All the essential oil samples
showed a significant increase in the percentage of mosquitoes repelled within the period
of investigation with no significant difference in the percentage of mosquitoes repelled
(p > 0.05) between the essential oils and the N,N-diethyl-3-methylbenzamide. As the doses
increased, the repellency activity increased to a concentration where there are no observable
changes in activity. However, the optimal concentration varies from state to state as a result
of its compositional variation (Table 3). Essential oils from Niger, Kwara, Plateau and
Nasarawa showed optimal repellency at a concentration of 0.5% v/v while Niger, Benue,
and Kogi oil samples showed an optimal effect at 0.75% v/v. On the contrary, DEET
showed no significant difference (p < 0.05) in repellency activity as the concentration
changed. This inference is in consonance with the studies of Cárdenas-Ortega et al. [69]
and Senthil-Nathan [70], which emphasize the slight variation in the repellency activities
of samples due to the presence and percentage composition of unique compounds.
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mosquito repellency per 5 min at a 30 min exposure periods.
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3.5. Effective Dose of the Essential Oils from the North-Central Geopolitical Zone

Using the Probit analysis model, the effective dose (ED50) that would repel 50% of the
mosquito population is presented in Table 4. The ED50 of the oils and positive control are
in the order of DEET > Kwara > Niger > Plateau and Nasarawa > Benue > Kogi. There is
a significant different (p < 0.05) in the repellency of the oils from Kwara, Niger, Plateau,
and Nasarawa compared to Benue and Kogi. The repellency property of the oils showed
a composition–concentration dependent activity, which is not in variance with the result
obtained in the mosquito behavioral investigation (Figures 7 and 8). However, DEET
showed very potent repellency at ED50 of 0.01%v/v compared to the oils from all states.
This observation is due to the variation in the composition.

Table 4. Effective does (%v/v) of essential oil from the six states and N,N-diethyl-3-methylbenzamide.

Essential Oil Location Effective Dose (%v/v) R-Square Values

Nasarawa State 0.14 0.8976
Benue State 0.48 0.8995
Kwara State 0.08 0.8254
Plateau State 0.14 0.9778
Niger State 0.11 0.9415
Kogi State 0.87 0.8268

DEET 0.01 0.8942
Petrolatum (Negative control) - -

DEET: N,N-diethyl-3-methylbenzamide.

3.6. Validation of Molecular Docking Protocol

According to the literature, a validated protocol must have a RMSD value < 2.0 in
the binding mode prediction, when superimposed on the crystallographic pose of the
ligand [71,72]. To establish that the conformation of the interaction between co-crystallized
ligands and OBPs can be replicated in silico to validate our docking method, the co-
crystallized ligands were redocked in the protein binding pocket and the root mean square
deviation (RMSD) data were used to evaluate the fitness of each redocked pose. Figure 9
illustrates the poses estimated in relation to the deposited PDB complexes, with the RMSD
of 0.67 Å, 0.24 Å, 0.71 Å, and 1.35 Å for OBP1, OBP 7, OBP 4, and OBP; respectively.
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3.7. Molecular Docking

The binding energies and inhibition constants of the proteins with the selected ligands
are reported in Table 5.

Table 5. Molecular docking results for the interaction between the selected ligands and the odorant binding proteins.

OBP 1 OBP 7 OBP 4 OBP

Compounds BE
(kcal/mol) Ki (mM) BE

(kcal/mol) Ki (mM) BE
(kcal/mol) Ki (mM) BE

(kcal/mol) Ki (mM)

α-pinene −6.4 0.0201 −6.7 0.0121 −5.8 0.0554 −6.2 0.0282
linalool −6.9 0.0086 −5.6 0.0777 −5.4 0.1089 −6.2 0.0282

cis-sabinene
hydrate −7.2 0.0052 −6.1 0.0334 - - −6.0 0.0395

citronellal −6.5 0.0169 −5.5 0.1528 - - −6.1 0.0334
verbenone −7.8 0.0019 −7.1 0.0062 −6.1 0.0334 −6.3 0.0238

bornyl acetate −7.5 0.0031 −7.1 0.0062 - - −6.6 0.0052
α-phellandrene −7.3 0.0044 −7.1 0.0062 - - −6.8 0.0102
α-terpinene −7.3 0.0044 −7.1 0.0062 - - −6.8 0.0102

sabinene −6.7 0.0121 −6.8 0.0102 - - −6.9 0.0086
β-pinene −6.7 0.0121 −6.2 0.0062 −5.9 0.0468 −6.1 0.0334
myrcene −6.4 0.0201 −6.2 0.0062 - - −5.8 0.0554

p-cymene −7.1 0.0062 −7.1 0.0062 - - −6.7 0.0121

BE = Binding energy, Ki = Inhibition constant, and - = No interaction between ligands.

All the selected ligands demonstrated multiplicity of binding properties and varying
degrees of interaction within the active pockets of the proteins with the exception of OBP 4
which only has affinity for α-pinene, linalool, verbenone, and β-pinene. In Table 5, α-pinene
and myrcene (−6.4 kcal/mol), citronellal (−5.5 kcal/mol), linalool (−5.4 kcal/mol), and
myrcene (−5.8 kcal/mol) demonstrated the strongest affinities for OBP1, OBP7, OBP4,
and OBP, respectively. As a result, myrcene has been identified as an inhibitor of the
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main olfactory proteins involved in the signals for host recognition processes (OBP1 and
OBP), which aid in the collection and transport of hydrophobic odorants into and through
the fluid. Repellent alarm pheromone and diphenyl ester-specific binding proteins were
inhibited by citronellal (0.1528 mM) and linalool (0.1089 mM), respectively. According to
Bohacek et al. [73] and Hughes et al. [74], a molecule with a low Ki value in the micromolar
range but less than 10−4 mM qualifies as a lead. The estimated Ki values of α-pinene and
myrcene, citronellal, linalool, and myrcene against the four targeted OBPs are within the
predicted range which qualifies them as a lead mosquito repellent agent. By implication,
the strong binding energies and inhibition constants observed for α-pinene and myrcene,
citronellal, linalool, and myrcene when compared to other investigated ligands may be
suggestive of functional blocking of the olfactory receptor coreceptor, activation of specific
odorant receptors (ORs), inhibition of specific ORs responding to attractants, and/or
modulation of multiple ORs causing olfactory confusion, according to Tsitoura et al. [46]
and Degennaro et al. [75].

3.8. Target OBPs Amino Acid–Ligand Interactions

Figure 10 illustrates the 3D images of the active pockets of the four selected OBPs
while Table 6 reports the list of the active pockets of the four selected OBPs from A. gambiae.
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The structures of OBP, OBP1, and OBP7 are made up of two monomers, with OBP and
OBP1 each having six α-helices and OBP7 having seven α-helices, with the odorant binding
pocket placed in the center of a hydrophobic tunnel that runs through the dimeric interface.
However, OBP4 is made up of a single monomer. In this investigation, the active pockets
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of odorant binding proteins were identified by removing the ligands that were previously
linked to the receptors before targeting these cavities. The experimental ligands all docked
at the same pockets as the native ligands, validating the docking protocol adopted in
this study.

Table 6. Active pockets on the four selected odorant binding proteins of A. gambiae.

Proteins Active Pockets

OBP 1 ALA62, LEU73, LEU76, SER79, HIS85, ALA88, MET89, GLY92, LYS93, ARG94, TRP114, PHE123;
OBP 7 PRO13, LEU17, CYS35, ILE75, PHE120, LEU124
OBP 4 THR2, GLN5, HIS29, LYS33, ALA52
OBP GLU14, ALA18, LEU58, ALA62, SER79, MET84, ALA88, MET89, MET91, ARG94, GLN116, PHE123

Figures 11–14 depict the 3D interaction between OBPs and ligands, whereas Table 7
provides the active residues and ligand interaction types. In general, the proteins in-
teract with their ligands primarily through hydrophobic interactions such as π-alkyl
and alkyl interactions (Figures 11–14). The interaction of the ligands revealed that they
bind to at least one receptor in the pocket cavity of the OBPs. The OBPs demonstrated
varying affinity for certain ligands as well as variation in the number of residues in-
volved in the interactions. The crystallographic structure of OBP7 was favorably bound
to citronellal (−5.5 kcal/mol) and myrcene (−6.2 kcal/mol) through residues in the
binding cavity; Leu17 (α-helix 1), Phe120, Leu124 (α-helix 7). and Cys35 (α-helix 2)
(Figure 11). Similarly, linalool (−6.2 kcal/mol), citronellal (−6.1 kcal/mol), and myrcene
(−5.8 kcal/mol) favorably interacted with OBP through residues Ala88, Met91 (α-helix 5),
and Phe123 (α-helix 6) (Figure 12). In the case of OBP1 linalool (−6.2 kcal/mol), citronellal
(−6.1 kcal/mol), α-phellandrene, and myrcene (−5.8 kcal/mol) Leu73, Leu76 (α-helix 4),
Ala88, Met89, Lys93(α-helix 5), Trp114 (α-helix 5) (Figure 13) while OBP4 favorably in-
teracted with α-pinene, linalool, verbenone, and β-pinene through ALA52 (α-helix 3) at
a binding energy of ≈ −6.2 kcal/mol (Figure 14).
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Table 7. The number and type of bonds for the OBD–ligand complexes.

Interacting Amino Acids in the Active Pockets

Ligands OBP 1 OBP 7 OBP OBP 4

α-pinene Leu76, Trp114, Phe123 Phe120, Leu124 Ala88, Met89 Ala52

linalool Leu73, Leu76, Ala88, Met89, Lys93, Trp114 Cys35, Phe120 Ala88, Met91, Met 89 Ala52

cis-sabinene hydrate Leu73, Ala88 Phe120 Phe123 Nil

citronellal Leu73, Leu76, Ala88, Arg94, Trp114 Leu17, Phe120, Leu124 Ala88, Met91, Phe123 Nil

verbenone Met89, Lys93, Arg94, Phe120 Phe123 Ala52

bornyl acetate Trp114, Phe123 Cys35, Phe120 Phe123 Nil

α-phellandrene Leu73, Leu76, Met89, Lys93, Trp114 Phe120 Ala88 Nil

α-terpinene Leu73, Met89, Lys93 Phe120 ALA88 Nil

sabinene Leu73, Ala88, Trp114 Cys35, Phe120 Met89, Met91 Nil

β-pinene Leu73, Ala88, Met89, Lys93 Cys35 Met91, PHE123 Ala52

myrcene Leu73, Leu76, Ala88, Met89, Lys93 Cys35, Phe120, Leu124 Ala88, Met91, Phe123 Nil

p-cymene Leu73, Leu76,Ala88, Trp114 Phe120 Ala88, Met91 Nil
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Interestingly, all major ligand interactions with the OBP, OBP1, OBP4, and OBP7
involve similar residues (Table 7) but differ in the number of interactions as well as distance
(Figures 11–14). The observed OBP–linalool/citronellal interaction with Ala88 and Met91
involves the 3,7-dimethyl groups of as well as a π-alkyl of the 6-enal interaction on Met
89 at 4.79 Å and on Phe 123 at 2.01 Å; accordingly. OBP-Myrcene complex was formed at
the active cavity around Met91 (4.09 Å), Phe123 (4.02 Å), and Ala88 (4.22 Å) (Figure 12).
OBP 7 inhibitions were as a result of the following interactions: citronellal: (alkyl, 5.11 Å,
Leu17), (pi-alkyl, 4.90 Å, Phe120), (alkyl, 4.20 Å, Leu124), myrcene: (alkyl, 4.13 Å, Csy35),
(pi-alkyl, 5.00 Å, Phe120), (alkyl, 5.10 Å, Leu124) (Figure 11). In the case of OBP 4 the
inhibitions due to α-pinene (4.11 Å), linalool (3.57 Å), verbenone (3.12 Å), and β-pinene
(4.53 Å) were focused at the Ala52 due to alkyl interaction (Figure 14). Consequently, these
strong ligand–OBP interactions may result in a functional mutation causing inhibition.

The mechanisms of interaction between the various ligands differ and will most likely
result in a variety of activities ranging from functional blocking of the olfactory receptor
coreceptor due to repression of Leu73 in OBP1, inhibition of specific ORs responding to
attractants, and/or modulation of multiple Ors causing disorientation, as reported by
Murphy et al. [76]. A strong affinity of OBP7 for citronellal and myrcene, according to
Sun et al. [77], could create disturbance in the insect’s chemical information decoding
potential. These rare interactions of α-pinene, linalool, verbenone, and β-pinene with OBP4
are strongly associated with their spatial orientation of the dialkyl and π-alkyl groups; with
the likelihood of blocking the olfactory receptor coreceptor and modulate OBP4, resulting
in the susceptibility of A. gambiae to these molecules in the repellent.

3.9. Efficiency Metrics of Selected Ligands

Supplementary Tables S1–S4 show the ligand efficiency metrics of the selected ligands,
which were calculated using Equations (3)–(7). Ligand Efficiency (LE), Ligand Lipophilic
Efficiency (LLE), and Fit Quality (FQ) are expected to have threshold values of 0.3, 3, and
0.8 for a molecule to be classified as a hit quantitatively [78]. During lead discovery, the
Ligand Efficiency Lipophilic Price (LELP) is estimated to be between −10 and 10 [79]. The
ligand efficiency metrics against the four OBPs are within the criteria, qualifying them as
a possible odorant binding protein repellent lead.

3.10. In Silico ADMET Properties of the Ligands against the Odorant Binding Proteins
3.10.1. ADMET Properties

The ADMET properties of all selected ligands were carried out to determine the
molecules as safe potential OBP inhibitors and the results are presented in Tables S5–S16.
Even though cis-sabinene hydrate, citronellal, sabinene, and verbenone failed the human
oral bioavailability test (values were 0.7–1.0), this pharmacokinetic parameter is less of
a concern regarding skin sensitization and eye irritation for dermally applied products
such as repellent lotion or aerosols. In this investigation the empirical decision for skin
sensitization and eye irritation tests for linalool, cis-sabinene hydrate, citronellal, sabinene,
verbenone, α-terpinene, bornyl acetate, β-pinene, and α-phellandrene are >0.8, which is
within the rejection zone because such molecules could induce allergic contact dermatitis,
cornea, and conjunctiva tissue damage [80]. Furthermore, citronellal and α-phellandrene
have been discovered to be respiratory and human hepatotoxicants, respectively, with high
morbidity and mortality potential [81]. The plasma protein binding and blood-brain barrier
penetration of cis-sabinene hydrate, α-phellandrene, and α-terpinene were found to be
greater than 90%, indicating that these compounds have a low therapeutic index [82]. The
metabolic profile of the ligands indicated that they are all either substrates or inhibitors of
human cytochrome P450 based on chemical biotransformation reactions [83].

3.10.2. In-silico Environmental Toxicity

To estimate the environmental impact of the essential oil, and the bioconcentration
factor (BCF), the concentration of the selected ligands in water in mg/L that causes 50%
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growth inhibition of Tetrahymena pyriformis after 48 h (IGC50), 50% of fathead minnow to
die after 96 h (LC50), and 50% of Daphnia magna to die after 48 h (LC50DM) were evaluated.
The result of the analysis is presented in Table 8.

Table 8. In-silico environmental toxicity profile of the selected ligands.

Ligands BCF (L/kg) IGC50 ((mg/L)/(1000 ∗MW)) LC50 ((mg/L)/(1000 ∗MW)) LC50DM ((mg/L)/(1000 ∗MW))

α-pinene 2.986 4.327 5.287 5.948
linalool 1.347 2.192 3.547 5.056

cis-sabinene
hydrate 2.745 3.547 3.657 4.233

citronellal 1.233 3.174 4.168 5.454
verbenone 0.553 3.166 3.989 4.187

bornyl acetate 2.166 3.737 4.334 4.720
α-phellandrene 2.360 3.080 3.674 4.176
α-terpinene 2.246 3.064 4.331 4.538

sabinene 2.874 3.776 4.337 4.400
β-pinene 3.003 4.675 5.624 5.587
myrcene 2.021 4.471 5.331 5.450

p-cymene 2.874 3.776 4.337 4.400

Bioconcentration factors range from 0.553–3.003 L/kg, reflecting the very low potential
for the ligands to bioaccumulate in the environment. Citronellal, verbenone (with high
human oral bioavailability) (Tables S10 and S12), linalool, and myrcene demonstrated the
lowest BCF compared to β-pinene, p-cymene, sabinene, α-pinene, and cis-sabinene hydrate
(Table 8). The IGC50, LC50, and LC50DM of the selected molecules are 3.080–4.675 (mg/L)/
(1000 ∗MW), 3.547–5.624 (mg/L)/(1000 ∗MW), and 4.176–5.948 (mg/L)/(1000 ∗MW), re-
spectively. All studied ligands demonstrated very low ecotoxicological profiles against
Tetrahymena pyriformis after 48 h, fathead minnow after 96 h, and Daphnia magna after 48 h [84].

3.11. Repellence Study of the Pure Selected Ligands

Pure α-pinene, linalool, and myrcene could be employed as a safe active ingredient in
the development of a new mosquito repellent, according to ADME/tox and docking studies.
Exactly 1.0% v/v of pure α-pinene, linalool, myrcene, equivalent mixture of α-pinene,
linalool, myrcene (PLM), and N-diethyl-3-methylbenzamide (DEET) were evaluated for
repellent activities and reported after exposure for 30 min (Figure 15).
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Figure 15. Percentage mosquito repellence test of commercially available main ligands, PLM, and 
DEET after exposure for 30 min. 

The pure linalool and myrcene demonstrated above 50% mosquito repellency activ-
ity except for α-pinene. This repellence activity is comparatively lower than the observed 
activity of the essential oil after 30 min exposure (Figure 7). However, there is a significant 
difference in the mosquito repellence activity of DEET (100%) compared to the pure lig-
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The pure linalool and myrcene demonstrated above 50% mosquito repellency activity
except for α-pinene. This repellence activity is comparatively lower than the observed
activity of the essential oil after 30 min exposure (Figure 7). However, there is a significant
difference in the mosquito repellence activity of DEET (100%) compared to the pure ligands
(42–60%). Despite the strong interactions of the ligands with the OBPs the observed
repellency activity of the essential oil is significantly synergistic in nature. The synergistic
activity was validated by comparing the repellence activity of PLM (73%) with DEET
(100%) after 30 min of exposure.

4. Conclusions

The essential oils of V. negundo from six states in the North Central Geopolitical Zone
were found to have composition-dependent mosquito repellent efficacy against A. gambiae.
In comparison to the other states, the essential oil derived from Niger, Kwara Plateau,
and Nasarawa demonstrated substantial repellency with an ED50 of 0.14–0.08% v/v. α-
phellandrene, sabinene, β-pinene, p-cymene, and myrcene were the most common terpenes
found in the essential oil throughout the six states. Regardless of the collection site, all
essential oils contained α-pinene, linalool, cis-sabinene hydrate, citronellal, verbenone,
and bornyl acetate. Linalool, α-pinene, verbenone, β-pinene, myrcene, and citronellal had
the strongest affinity for OBPs, while -pinene, citronellal, linalool, and myrcene inhibited
strongly by creating hydrophobic interactions at the binding pocket. The LE, LLE, FQ,
and LELP values were all within the predicted ranges, indicating that the ligands are
quantitatively hit and so qualify as a potential odorant binding protein repellent lead.
Linalool, cis-sabinene hydrate, citronellal, sabinene, verbenone, α-terpinene, bornyl acetate,
α-pinene, and α-phellandrene all had a low ecotoxicological profile, while linalool, cis-
sabinene hydrate, citronellal, sabinene, verbenone, and α-terpinene did not. According
to ADME/tox and docking results, α-pinene, linalool, and myrcene could be used as
safe active components in the development of an environmentally friendly new mosquito
repellent. Commercial standards of α-pinene, linalool, and myrcene were themselves active
in mosquito repellent assays, and a mixture containing these compounds in equivalent
proportions was found to be as significantly active as DEET, suggestive of a synergistic
activity itself. Docking showed that these ligands bind to OBPs and may play an important
role in blocking the olfactory receptor (ORs) coreceptor and inhibition of specific ORs
causing disorientation and confusion in A. gambiae.
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