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Abstract

The role of microglia in retinal inflammation is still ambiguous. Branch retinal vein

occlusion initiates an inflammatory response whereby resident microglia cells are acti-

vated. They trigger infiltration of neutrophils that exacerbate blood–retina barrier

damage, regulate postischemic inflammation and irreversible loss of neuroretina. Sup-

pression of microglia-mediated inflammation might bear potential for mitigating func-

tional impairment after retinal vein occlusion (RVO). To test this hypothesis, we

depleted microglia by PLX5622 (a selective tyrosine kinase inhibitor that targets the

colony-stimulating factor-1 receptor) in fractalkine receptor reporter mice (Cx3cr1gfp/+)

subjected to various regimens of PLX5622 treatment and experimental RVO. Effec-

tiveness of microglia suppression and retinal outcomes including retinal thickness as

well as ganglion cell survival were compared to a control group of mice with experi-

mental vein occlusion only. PLX5622 caused dramatic suppression of microglia.

Despite vein occlusion, reappearance of green fluorescent protein positive cells was

strongly impeded with continuous PLX5622 treatment and significantly delayed after

its cessation. In depleted mice, retinal proinflammatory cytokine signaling was dimin-

ished and retinal ganglion cell survival improved by almost 50% compared to non-

depleted animals 3 weeks after vein occlusion. Optical coherence tomography

suggested delayed retinal degeneration in depleted mice. In summary, findings indicate

that suppression of cells bearing the colony-stimulating factor-1 receptor, mainly

microglia and monocytes, mitigates ischemic damage and salvages retinal ganglion

cells. Blood–retina barrier breakdown seems central in the disease mechanism, and

complex interactions between different cell types composing the blood–retina barrier

as well as sustained hypoxia might explain why the protective effect was only partial.

K E YWORD S

blood–retina barrier, inflammation, ischemia, microglia, receptor tyrosine kinase inhibitor,

retinal ganglion cell, retinal vein occlusion

Joël Jovanovic and Xuan Liu have equally contributed to this study.

Received: 5 September 2018 Revised: 9 October 2019 Accepted: 10 October 2019

DOI: 10.1002/glia.23739

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2019 The Authors. Glia published by Wiley Periodicals, Inc.

574 Glia. 2020;68:574–588.wileyonlinelibrary.com/journal/glia

https://orcid.org/0000-0002-9195-2239
https://orcid.org/0000-0002-6235-1266
https://orcid.org/0000-0002-5622-114X
https://orcid.org/0000-0001-6666-2558
mailto:andreas.ebneter@insel.ch
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/glia


1 | INTRODUCTION

Retinal vein occlusion (RVO) is a frequent cause of vision loss in

elderly populations and has a prevalence of up to 2% among individ-

uals over 40 years of age (Klein, Klein, Moss, & Meuer, 2000). The

pathogenesis is believed to involve atherosclerotic changes within the

vessel walls, leading to stasis, thrombosis, and occlusion of veins.

There are two distinct types of RVO: branch retinal vein occlusion

(BRVO) and central retinal vein occlusion (CRVO). Both types can be

nonischemic or ischemic, the latter having a worse prognosis in terms

of vision and potential complications. Both forms may lead to atrophy

of the inner retinal layers, mainly affecting ganglion cells (RGCs) and

the retinal nerve fiber layer (Kim, Shin, Lee, Jo, & Kim, 2014; Rogers

et al., 2010). In patients with RVO, increased expression of inflamma-

tory proteins in the vitreous has been described (Ehlken et al., 2015).

Microglia have been recognized as key mediators of neu-

roinflammation in the brain and the retina, and have been shown to

produce cytokines such as tumor necrosis factor alpha (TNF-α) which

can induce neuronal apoptosis (Guadagno, Xu, Karajgikar, Brown, &

Cregan, 2013). Neuroinflammation is a common feature of many

acute neurological events such as stroke (Wang, Tang, & Yenari,

2007) or spinal cord injury (Fleming et al., 2006). A laser-induced

experimental BRVO (eBRVO) model has previously been established

in mice (Ebneter, Agca, Dysli, & Zinkernagel, 2015; Zhang et al., 2007)

that closely mimics the pathology, including increased vascular endo-

thelial growth factor (VEGF) expression. Previous reports have shown,

that eBRVO causes hypoxia in the inner retina, activation of resting

retinal microglia, and recruitment of blood derived monocytes into the

area of hypoxia (Ebneter, Kokona, Schneider, & Zinkernagel, 2017).

However, the influence and consequences of neuroinflammation on

RGC survival after an ischemic insult have so far not been thoroughly

investigated.

Myeloid cells, including microglia cells or macrophages and osteo-

clasts, specifically express colony-stimulating factor-1 receptor

(CSF1R) on their surface (S. Patel & Player, 2009). In the healthy cen-

tral nervous system (CNS), the CSF1R is only expressed on microglial

cells (Erblich, Zhu, Etgen, Dobrenis, & Pollard, 2011; Nandi et al.,

2012). Its ligands, CSF1 and IL-34, regulate proliferation, differentia-

tion, and survival of these cells (Gomez-Nicola, Fransen, Suzzi, &

Perry, 2013; Hume & MacDonald, 2012; S. Patel & Player, 2009). Fur-

thermore, it has been shown that mice lacking either CSF1 or CSF1R

have a diminished macrophage/microglia population in different tis-

sues (Erblich et al., 2011; Ginhoux et al., 2010). Recently, potent orally

administered selective CSF1R inhibitors have become available. These

compounds inhibit the intracellular tyrosine kinase domain of the

CSF1R and c-Kit which results in suppression of CNS microglia in

adult mice (Elmore et al., 2014), depleting up to 99% of microglia after

7 days (Spangenberg et al., 2016). This effect is reversible, with com-

plete recovery of microglia numbers after drug cessation. Recently, an

even more selective molecule (PLX5622, Plexxikon Inc., Berkeley, CA)

that has no or negligible inhibitory effects on c-Kit (Dagher et al.,

2015; Dharmarajan, Fisk, Sorenson, Sheibani, & Belecky-Adams,

2017) has been developed. This compound allows selective depletion

of CNS microglia in adult mice without affecting other cell populations

nor having relevant side effects in terms of inflammation or behavioral

changes (Dharmarajan et al., 2017; Elmore et al., 2014). Previously,

we have shown that PLX5622 permeates the blood–retina barrier

very well and significantly depletes retinal microglia (Ebneter, Kokona,

Jovanovic, & Zinkernagel, 2017). In this study, we combined the

eBRVO model with retinal microglia depletion to evaluate whether

microglia influence RGC survival in eBRVO.

2 | MATERIALS AND METHODS

2.1 | Animals

Heterozygous mice selectively expressing green fluorescent protein

(GFP) in microglia under the control of the Cx3cr1 gene were obtained

by crossbreeding wild type Balb/cAnNCrl females with male trans-

genic homozygous fractalkine receptor reporter mice (Cx3cr1gfp/gfp) on

a balb/c background (Jung et al., 2000). In such mice, homing and infil-

tration should not be significantly different from wild type mice

(Kezic, Xu, Chinnery, Murphy, & McMenamin, 2008). For all experi-

ments, mice were sex- and age-matched (between 6 and 8 weeks of

age). Mice were maintained in a temperature and humidity-controlled

animal facility in individually ventilated cages on a 12-hr light–dark

schedule. All animals had access to food and water ad libitum. This

study was approved by the local Animal Ethics Committee

(Veterinärdienst des Kantons Bern: BE 14/16) and conformed to the

Association for Research in Vision an Ophthalmology Statement for

the Use of Animals in Ophthalmic and Vision Research.

2.2 | PLX5622 administration

Six- to eight-week-old heterozygous mice were fed with chow con-

taining PLX5622 (1,200 parts per million [ppm] formulated in AIN-

76A standard rodent diet; Research Diets Inc., New Brunswick, NJ) or

identical chow without drug for control animals.

2.3 | Anesthesia

Anesthesia was used for in vivo imaging and experimental laser induc-

tion of eBRVO. Animals received an intraperitoneal injection of med-

etomidine (1 mg/kg, Dormitor 1 mg/ml, Provet AG, Lyssach,

Switzerland) and ketamine (80 mg/kg, Ketalar 50 mg/ml, Parke-Davis,

Zurich, Switzerland). At the end of investigational procedures, but ear-

liest after 30 min, medetomidine was antagonized with atipamezole

(2.3 mg/kg, Antisedan 5 mg/ml, Provet AG).

2.4 | In vivo fundus autofluorescence imaging

To visualize PLX5622-induced depletion and recovery of retinal GFP+

microglia/macrophages longitudinally, retinas of anesthetized animals

were imaged with confocal scanning laser ophthalmoscopy (SLO, Hei-

delberg Spectralis HRA + OCT; Heidelberg Engineering GmbH,

JOVANOVIC ET AL. 575



Heidelberg, Germany). Images were acquired in the blue light (488 nm)

fundus autofluorescence mode using a noncontact ultra-widefield 102�

lens (Heidelberg Engineering GmbH). Mydriasis was induced by

tropicamide 0.5%/phenylephrine 2.5% eyedrops (Hospital Pharmacy,

Inselspital, Bern, Switzerland). Hydroxypropylmethylcellulose 20 mg/ml

(Methocel 2%; OmniVision AG, Neuhausen, Switzerland) was applied

on the eyes to avoid corneal surface drying out due to loss of blink

reflex during anesthesia. Acquired images were exported as jpeg for fur-

ther analysis.

2.5 | Monitoring of retinal microglia depletion

Kinetics of retinal microglia depletion was assessed by confocal SLO

in nine sex- and age-matched (2 months of age) heterozygous

Cx3cr1gfp/+ reporter mice. All animals were imaged at the start of the

experiment to establish a mean baseline microglia count before com-

mencement of continuous PLX6522 treatment for 3 weeks. Four time

points were defined for follow-up in vivo imaging: 24 hr after onset of

PLX5622 administration and then weekly at 7, 14, and 21 days. After

de-identification, all acquired images were transferred and processed

in the ImageJ software (Version 1.51j8, National Institutes of Health)

for semi-automated cell counting. In short, pictures were converted

into 8-bit images and background subtraction was applied with a

rolling ball radius of 20 pixels. Images were then smoothed before the

“Find maxima” function was used (with the preview point selection

option turned on) to count microglia cells. Noise tolerance was

adjusted manually by the grader (JJ) in an iterative process to ascer-

tain appropriate identification of cells to be included in the count.

2.6 | BRVO model and experimental groups

In each eye, venous supply to about half of the retina was blocked by

targeting two to three major veins about two disc diameters superior

and nasal to the optic disc as previously described in Ebneter et al.

(2015). The inferotemporal half of the retina was considered non-

occluded. Briefly, after intravenous injection of 0.15 ml rose Bengal

(5 mg/ml saline; Sigma-Aldrich Switzerland, Buchs, Switzerland) into

the tail vein, eBRVO was induced by laser (532 nm) photocoagulation

(Visulas 532s; Carl Zeiss Meditec AG, Oberkochen, Germany) with a

slit lamp adapter (Iridex Corporation, Mountain View, CA) mounted on

a commercial slit lamp (BM900; Haag-Streit AG, Koeniz, Switzerland).

To visualize blood vessel occlusion during laser treatment, a 2-mm

fundus laser lens for mice (Ocular Instruments, Inc., Bellevue, WA)

was used. Hydroxypropylmethylcellulose 2% was used as viscous cou-

pling fluid between lens and cornea. The laser was set to 50 μm spot

size, 160 mW laser intensity, and exposure time was 0.8 s. Up to three

burns were necessary to achieve complete occlusion of the vessels.

Stasis of blood flow distal to the occlusion site was directly observed

by the investigator to confirm successful eBRVO.

Three different eBRVO groups were defined. Two groups were

pretreated with PLX5622 for 2 weeks before eBRVO induction,

whereas the third group received control food (no PLX5622) through-

out the whole experiment. After eBRVO induction, one of the

PLX5622 pretreated groups was continuously fed with PLX5622 for

the follow-up period of three more weeks while the other was

switched to control chow. The groups were designated BRVO

+ PLX5622 group (continuous depletion) and BRVO + Microglia Recov-

ery group (cessation of depletion after laser), respectively. The control

group (BRVO) did not get PLX5622 diet at any time.

2.7 | Retinal thickness measurements

Spectral domain optical coherence tomography (Spectralis SD-OCT,

Heidelberg Engineering GmbH) was performed to visualize structural

and thickness changes of the retina using a 55� lens. SD-OCT volume

scans were centered on the optic nerve head and acquired in auto-

matic real-time mode, averaging nine frames per image. Images were

exported in XML format to a device-independent retinal layer seg-

mentation software (Orion, Voxeleron LLC., Pleasanton, CA). Total

thickness was measured between the inner limiting membrane and

Bruch's membrane (Figure S1). Segmentation involved manual correc-

tion for all scans (JJ, XL, AE) because the algorithm is currently opti-

mized for human samples. Nevertheless, the editing tool allows

efficient segmentation of mouse scans. For subsequent analysis, the

software calculated average retinal thickness in all quadrants of a

standard Early Treatment Diabetic Retinopathy Study (ETDRS) grid

centered at the optic nerve head.

2.8 | Transcardial perfusion fixation and enucleation

At each time point, a minimum of three animals per group were anes-

thetized for transcardial 0.9% NaCl perfusion, followed by 4% parafor-

maldehyde solution (PFA, pH 7.4) perfusion for tissue fixation using a

peristaltic pump (PLP 380, Dülabo Laborgeräte, Germany). Pentobar-

bital (Esconarkon, 300 mg/ml, Streuli Pharma AG, Uznach, Switzer-

land) was diluted with 0.9% NaCl for a 100 mg/ml stock solution.

Pentobarbital 150 mg/kg body weight was intraperitoneally injected

for terminal anesthesia. After perfusion, right eyes were harvested for

whole mount immunohistochemistry and left eyes for paraffin embed-

ding. A conjunctival suture was applied to left eyes before enucleation

for orientation during paraffin embedding and sectioning.

2.9 | Retinal whole mount preparation and
immunohistochemistry

Right eyes were fixed by immersion in 4% PFA for 10 min followed by

removal of cornea and lens under the binocular microscope using sur-

gical micro-scissors. An established staining protocol (Nadal-Nicolas

et al., 2009) was followed with slight modifications. In brief, the sclera

and choroid were carefully removed before retinas were incubated

once more in 4% PFA for 50 min. Fixed retinas were washed four

times in 0.5% Triton X-100 phosphate buffer saline (PBS-T) for

10 min. Washed retinas were placed in blocking buffer (5% normal

donkey serum [NDS] in 0.2% PBS-T) for 30 min at room temperature

on a shaking plate before incubation with a rabbit polyclonal anti-Iba1

antibody (1:250; 016-20001, Wako Chemicals, Osaka, Japan) to
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visualize retinal microglia/macrophages and a goat polyclonal anti-

Brn3a (C-20) antibody (1:250, Santa Cruz Biotechnology, Dallas, TX)

for visualization of retinal ganglion cells, diluted in 1.0% PBS-T and

2% NDS at 4�C for 24 hr on a shaker. Next, retinas were rinsed with

0.5% PBS-T four times for 10 min. The secondary antibodies Alexa

Fluor 488 donkey anti-rabbit IgG (A-21206, Invitrogen, Waltham, MA)

and Alexa Fluor 593 donkey anti-goat IgG (A-11058, Invitrogen) were

diluted 1:250 in 0.5% PBS-T. Retinas were incubated with secondary

antibodies for 2 hr at room temperature, followed by three 0.5% PBS-

T washes of 15 min each and a final rinse in PBS. To flatten the ret-

inas, four radial cuts were made before whole mounting on glass slides

(Menzel SuperFrost, Thermo Fisher Scientific, Waltham, MA) with

ganglion cells facing up. Whole mounts were cover-slipped with

VECTASHIELD antifade Mounting Medium (Vector Laboratories,

Burlingame, CA).

Left eyes were fixed overnight in 4% PFA and then processed for

standard paraffin embedding. A microtome (Leica, Biosystems,

Muttenz, Switzerland) was used to cut 5 μm thick sections including

the optic nerve head. Sections were mounted on glass slides (Menzel

SuperFrost) and air-dried. Two nonconsecutive sections of each eye

at the level of optic nerve were selected for further processing. For

deparaffinization and rehydration, tissue sections were processed in

regular xylene and descending ethanol steps. Endogenous peroxidase

blocking (30 min in 300 ml methanol + 5.1 ml hydrogen peroxide

30%) was performed followed by PBS washing and antigen retrieval

(Tris–EDTA, pH 9) in the microwave for 10 min. Sections were then

placed in 5% normal horse serum (NHS) blocking buffer for 30 min.

Next, sections were incubated with a rabbit polyclonal anti-Iba1 anti-

body (1:500 in 5% NHS; 016-20001, Wako Chemicals, Osaka, Japan)

overnight at room temperature. After washes with PBS, sections were

then incubated for 30 min in biotinylated goat polyclonal anti-rabbit

antibody (1:250 in 5% NHS). After another three washes in PBS, slides

were finally incubated with HRP-streptavidin-conjugate (1:1000 in 5%

NHS; Vector Laboratories) for 60 min at room temperature followed

by NovaRED visualization (Vector Laboratories).

2.10 | Microscopy

Whole mounted retinas were scanned with a confocal fluorescence

microscope (Fluorescence Olympus BX61VS, Hamburg, Germany) at

10× magnification. Z-stack intervals were 5.5 μm and the scanning

depth was adjusted until all layers containing microglia were included.

The Olympus VS-ASW software (version 2.9, Olympus Soft Imaging

Solutions GmbH, Germany) was used to create a maximum intensity

z-projection image for further quantifications. Tissue sections for

semiquantitative assessment of Iba1+ cells were directly inspected

under the microscope in bright field mode at a magnification of 10×.

2.11 | Semiquantitative assessment of Iba1+ cells on
tissue sections

For semiquantitative assessment of Iba1+ cells, two nonconsecutive

sections of each eye at the level of optic nerve were selected. An

experienced blinded grader (XL) rated the density of Iba1+ cells in

occluded and unaffected areas according to templates (Figure 6e;

0 = very low or no Iba1+ cell density; 1 = moderate Iba1+ cell density,

2 = high Iba1+ cell density). The mean rating for each retinal area was

then calculated and used for statistical analysis.

2.12 | Quantification of RGC density on retinal
whole mounts

Z-projections of retinal whole mount images were quantified using

the software ImageJ (Version 1.51j8, National Institutes of Health).

Borders between occluded areas and unaffected parts of the retina

were traced along major vessels adjacent to occluded veins to sepa-

rate each retina in parts with ischemia and normal perfusion

(Figure S2). The images were converted into 8-bit images and back-

ground was subtracted (rolling bar radius: 18 pixel) before a binary

mask was created using the same threshold for both areas (occluded

vs. nonoccluded). The RGC density for both areas was measured using

the “Measure” plugin after defining the borders of the flat mount

using the lasso tool. The RGC survival index was calculated by dividing

the RGC density in the occluded area by the RGC density in the non-

occluded area (Figure S2).

2.13 | Quantitative cytokine expression
measurement in the retina

From the literature it is known that several diseases in the CNS, like

stroke or BRVO, early induce increased expression of various pro-

and anti-inflammatory cytokines that seem related to disease pro-

gression (Berti et al., 2002; Clausen et al., 2008; Ebneter, Kokona,

Schneider, et al., 2017; Lambertsen, Meldgaard, Ladeby, & Finsen,

2005; Sun, Li, He, Zhang, & Tao, 2013). Activated microglia have

been described to be a major source of these early cytokines and

seem pivotal for initiation of inflammation and recruitment of circu-

lating inflammatory cells that might be harmful (Chen et al., 2003;

Offner et al., 2006) Therefore, two early time points (24 and 72 hr

after eBRVO) were selected for retinal cytokine quantification in all

experimental groups. For each time point and treatment group, six

retinas were pooled for protein extraction and quantification. To

determine baseline expression, three healthy naïve mice were addi-

tionally assessed. In brief, after cervical dislocation the eyes were

immediately enucleated and immersed in ice-cold PBS for whole ret-

ina dissection. Retrieved retina was quickly rinsed in ice-cold PBS

and snap frozen in liquid nitrogen. Samples were homogenized in

2 ml beat tubes for 20 s at 5,500 g (tissue homogenizer and soft tis-

sue homogenizing CK14–2.0 ml tubes, Precellys, Bertin Instruments,

Montigny-le-Bretonneux, France). Each tube contained 200 μl RIPA

buffer (Sigma-Aldrich Chemie GmbH, Buchs, Switzerland) per retina

and protease inhibitor (1 tablet/10 ml RIPA buffer; cOmplete, EDTA-

free Protease Inhibitor Tablets, Roche, Switzerland). After spinning

(4�C, 10 min at 2,000 g), 6 μl supernatant was collected and diluted

(1:5) in RIPA buffer for the Bradford assay. Next, a glass slide based

cytokine antibody microarray was used for quantitative assessment
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of cytokine expression (ab197465, Abcam, Cambridge, UK). Each

slide provided 16 incubation chambers with the same complete cyto-

kine antibody microarray each. Per array, quadruplicates of antibody

spots were provided for all target cytokines, chemokines, and growth

factors (GM-CSF, IFN-γ, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9,

IL-10, IL-12, IL-13, IL-17, KC, MCP-1, MCSF, RANTES, TNF-α,

VEGF). For simplicity, these inflammatory mediators are summarized

as cytokines in the following text.

In the quantification process, reference standard solution and

protein concentration-matched retinal tissue lysates were diluted

with sample diluent according to the manufacturer's instructions.

Per experimental group, the solution was incubated in triplicate

chambers at room temperature for 2 hr. After washing and dry-

ing steps, a glass slide scanner with a Cy3 filter was used for

fluorescence intensity detection (ScanRI Microarray Scanner,

PerklinElmer, Inc., MA). According to manufacturer's instructions,

for each triplicate, the median of the measured intensities was

calculated. Further, the mean of the triplicates was used for the

subsequent calculations of the final cytokine concentra-

tion (pg/ml).

F IGURE 1 Monitoring of retinal
microglia depletion by in vivo confocal
scanning laser ophthalmoscopy. (a) There
is quick and sustained suppression of
microglia with PLX5622 treatment.
(b) Representative images of microglia
depletion kinetics. Pictures were taken in
blue-light autofluorescence mode using a
102� ultra-widefield optic at baseline, 7d,
14d, and 21d, ****p < .0001 (Dunnett's
multiple comparison test)
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2.14 | Statistical analysis

The GraphPad Prism 7.03 software (GraphPad Software, Inc., La

Jolla, CA) was used for statistical analysis. To analyze microglia

depletion, a one-way ANOVA with Tukey's post-hoc test was used.

Additionally, 95%-confidential intervals at each time point were

calculated.

A two-way ANOVA with Tukey's post-hoc test was used for reti-

nal thickness, RGC survival index and cytokine expression analysis

with “time” and “treatment” as factors. To evaluate the effect of

PLX5622 on Brn3a+ RGCs, a one-way ANOVA with Holm-Sidak's

multiple comparisons test was used. A two-way ANOVA with Sidak's

multiple comparison test was performed to analyze semiquantitative

F IGURE 2 Schematic representation of treatment
regimen in the three experimental groups and
representative in vivo fundus images at baseline and
3 weeks after induction of eBRVO. (a) Animals in the
first group were continuously fed with PLX5622 diet
(BRVO + PLX5622). Infiltration of GFP+ cells around
the optic nerve and targeted blood vessels. (b) In the
second group, chow was switched to control diet after
induction of retinal vein occlusion (BRVO + Microglia
Recovery). In addition to changes visible in the first
group, dense repopulation of the retina is noted after
3 weeks. (c) In the third group, eBRVO was induced
and mice were continuously kept on control diet
(BRVO). Pathologic changes and density of GFP+ cells
are similar to those in the second group [Color figure
can be viewed at wileyonlinelibrary.com]
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grading of Iba1+ cells in the occluded versus nonoccluded parts of the

retina, respectively. The significance level was set at p = .05. Results

are presented as mean ± SEM.

3 | RESULTS

3.1 | Kinetics of retinal microglia depletion

Kinetics of microglia depletion were assessed in heterozygous Balb/c

Cx3cr1gfp/+ mice (n = 9) by in vivo fundus autofluorescence imaging.

All animals were imaged at baseline for microglia counts before the

intervention. Using the 102� widefield lens, a mean of 1,481 ± 45.64

cells (95% CI: 1,375–1,586) were counted at baseline per field.

Twenty-four hours after initiation of PLX5622 treatment, the result

showed a highly significant (p < .0001; n = 9) reduction to

417.0 ± 27.91 cells (95% CI: 352.6–481.4). One week after continu-

ous PLX5622 treatment, the cell count had further dropped to 74.11

± 16.75 (95% CI: 35.48–112.7) cells, followed by 55.78 ± 9.46 (95%

CI: 33.96–77.59) at 2 weeks and 37.89 ± 5.46 (95% CI: 25.31–50.47)

at 3 weeks, respectively. Hence, PLX5622 depleted 95.0% of retinal

microglia cells after 1 week of treatment, 96.23% at week two and

97.44% at week three, respectively (Figure 1a,b).

3.2 | Inflammatory cells after experimental BRVO

Three weeks after experimental induction of eBRVO, accumulation of

GFP+ cells in continuously depleted mice (BRVO + PLX5622) was pri-

marily seen at the laser sites, where inflammatory cells formed vascu-

lar scars (Figure 2a), but GFP+ microglia were virtually absent in the

rest of the retina in both occluded and nonoccluded parts. The origin

of accumulating cells is difficult to determine. However, since with

continuous suppression of microglia in the BRVO + PLX5622 group

local proliferation of microglia is unlikely, these cells arguably repre-

sent monocytes/macrophages invading from systemic circulation. The

two other groups (BRVO + Microglia Recovery, BRVO), in contrast,

exhibited abundant presence of GFP+ cells both at the laser site and

in surrounding occluded retina (Figure 2b,c). We have previously

shown experiments with eBRVO suggesting that in these latter cir-

cumstances cells both invade from the systemic circulation but also

originate from proliferating residual microglia cells around the site of

injury (Ebneter, Kokona, Schneider, et al., 2017). In the nonoccluded

parts of the retina, microglia cell density was similar to baseline; how-

ever, the microglia exhibited a more amoeboid and activated

morphology.

3.3 | PLX5622 delays retinal thinning in ischemic
retina

Two-way ANOVA analysis of averaged retinal thickness in occluded

and nonoccluded areas had a significant effect on retinal thinning for

both factors “treatment” and “time” (ptreatment = .0007, ptime < .0001;

Figure 3a). Baseline thickness was measured immediately after laser

treatment. The average thickness was 247.27 ± 3.50 μm in occluded

parts and 242.47 ± 2.62 μm in nonoccluded retina. This was compara-

ble to age-matched treatment naïve Balb/c Cx3cr1gfp/+ mice (n = 4)

which had an average retinal thickness of 231.89 ± 12.05 μm. For

occluded retina, mice with exposure to PLX5622 (BRVO + PLX5622,

BRVO + Microglia Recovery) showed significantly less retinal thick-

ness reduction (around 10%) than untreated mice (25%) 7 days after

eBRVO induction (Table 1). During the second week, retinal thinning

F IGURE 3 Retinal thickness changes in (a) occluded and (b) nonoccluded retinal areas after experimental retinal vein occlusion. Thinning is
partially prevented in animals with continuous depletion. Two-way ANOVA confirms that PLX5622 treatment has a significant effect in ischemic
retina (p = .0007)
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in BRVO + Microglia Recovery mice rapidly increased and became

comparable to untreated mice (around 55%). Thinning in the BRVO +

PLX5622 group (34%) was significantly less (p = .0211 and p = .0121,

respectively) at this time point. However, 3 weeks after eBRVO induc-

tion retinal thinning was no longer statistically different between

groups. Interestingly, in nonoccluded areas retinal thinning was also

observed (ptime < .0001, two-way ANOVA; Figure 3b). However, at no

time point was there a significant difference between the different

treatment groups (Table 1).

3.4 | PLX5622 protects retinal ganglion cells against
cell death in ischemic retina

For whole mounted retinas, the relative retinal ganglion cell density

visualized by Brn3a immune-staining (RGC survival index) was calcu-

lated at all-time points. Two-way ANOVA for both factors, PLX5622

“treatment” and “time”, showed a significant effect on RGC density

(ptreatment = .0004, ptime = .0001; Figure 4).

Two weeks after eBRVO, continuously PLX5622 treated animals

had significantly higher RGC survival (p = .0053; Table 2) compared to

nondepleted animals (BRVO), translating to a 71.4% higher survival

rate of RGCs in the PLX5622 treated group (Table 2 and Figure 4). A

similar result was noted 3 weeks after eBRVO (49.2% higher survival,

p = .0434; Figure 5).

To assess whether PLX5622 directly affects Brn3a labeling, base-

line Brn3a RGC counts were determined in six whole mounted retinas

revealing a mean cell count of 43,912 ± 880 RGCs per retina (CI 95%:

41,649–46,175). This result was compared to three PLX5622 treated

retinas per group and time point at 1, 2, and 3 weeks of treatment

(data not shown). One-way ANOVA showed no significant reduction

in total RGC counts at all three time points (ptreatment = .7697),
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F IGURE 4 Retinal ganglion cells are partially salvaged in PLX5622
treated mice. Two-way ANOVA confirms that treatment affords
significant protection in the ischemic retina

JOVANOVIC ET AL. 581



suggesting that PLX5622 itself did not affect Brn3a labeling of RGCs

during the period of observation.

3.5 | Spatiotemporal microglia distribution in
occluded and nonoccluded retina

Semiquantitative retinal section analysis showed for occluded and

nonoccluded areas the highest microglia density in PLX5622 naïve

animals (BRVO), while microglia were absent at all time points in the

BRVO+PLX5622 group and intermediate in the BRVO + Microglia

Recovery group (Figure 6a,b). Hence, in both areas, two-way ANOVA

with factors PLX5622 “treatment” and “time” showed overall a signifi-

cant effect for PLX5622 treatment (occluded area: ptreatment < .0001;

nonoccluded area: ptreatment < .0001). Further, in the occluded area,

Tukey's multiple comparison showed significant microglia/

macrophage density differences between the BRVO and the BRVO

+ Microglia Recovery group at the first and second week after eBRVO

(p1week = .0015, p2weeks = .0037). In the latter group, at the latest time

point of observation, microglia recovery reached almost the microglia

density of the BRVO group and did not show any significant differ-

ence anymore (Figure 6a). In nonoccluded areas, microglia recovered

faster and the difference to the BRVO group was only significant at

time point 1 week (p1week = .0011; Figure 6b).

The difference of microglia density between areas (occluded

vs. nonoccluded) within the same treatment groups was not signifi-

cant (Figure 6c,d). Although in the BRVO + Microglia Recovery group

the two-way ANOVA test showed global significance (parea = .0090,

ptime = .0011), in post-hoc multiple comparisons the individual differ-

ences were not statistically significant (Figure 6c). Intriguingly,

microglia density seemed at all-time points higher in nonoccluded

TABLE 2 The retinal ganglion cell (RGC) survival index was defined as the relative density of Brn3a+ RGCs in the occluded area relative to the
nonoccluded area of retinal flat mounts after experimental branch vein occlusion

RGC survival index

BRVO + PLX5622
BRVO + microglia
recovery BRVO

BRVO + PLX5622
versus BRVO +
microglia recovery

BRVO + PLX5622
versus BRVO

BRVO + microglia
recovery versus BRVO

RGC survival index p-Value p-Value p-Value

1w 0.762 ± 0.031 0.600 ± 0.101 0.690 ± 0.079 .0294* .6425 .5511

2w 0.725 ± 0.093 0.574 ± 0.048 0.423 ± 0.070 .1147 .0053** .1714

3w 0.643 ± 0.056 0.508 ± 0.081 0.431 ± 0.138 .1695 .0434* .6647

Note: Two-way ANOVA with factors “treatment” (groups) and “time” was used (see Figure 4 for results). This table shows actual RGC survival indices and

p-values for post-hoc analysis using Tukey's multiple comparison between groups at each time point. Results are given as mean ± SEM, *p < .05, **p < .01.

F IGURE 5 Representative examples of retinal whole mounted retinas stained for retinal ganglion cells (Brn3a) in (a) continuously depleted
mice (BRVO + PLX5622) and (b) control mice (BRVO) at baseline, 7d, 14d, and 21d after eBRVO induction. Scale bars, 500 μm [Color figure can
be viewed at wileyonlinelibrary.com]
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areas in both the BRVO + Microglia Recovery and the BRVO group,

although not statistically significant (Figure 6c,d).

3.6 | Microglia/macrophage depletion reduces
inflammatory cytokines in ischemic retina

To evaluate changes of retinal cytokine expression, a quantitative

cytokine microarray including 20 cytokines was performed 24 and

72 hr after eBRVO. PLX5622 treatment led to significant changes for

all cytokines evaluated (Table S1).

The graphic representations with multiple comparisons of the

most relevant proinflammatory (IFN-γ, TNF-α, IL-1β, IL-6, VEGF, IL-

12, MCP-1) and anti-inflammatory cytokines (IL-4, IL-10, IL-13) are

shown in Figure 7a,b, respectively.

All selected proinflammatory cytokines (Figure 7a) with exception

of IL-12 were significantly decreased in the BRVO + PLX5622 group

compared to the BRVO group (pIFN-γ = .0205; pTNF-α = .0055;

pIL-1β < .0278; pIL-6 < .0001; pVEGF < .0001; pIL-12 = .3777; pMCP-1

< .0001) 24 hr after eBRVO induction. Except for IL-6, VEGF, and IL-12,

cytokine levels were in fact similar to baseline expression measured in

naïve control mice. Suppression of cytokine levels in BRVO + PLX5622

mice was even more pronounced 72 hr with levels significantly below

baseline, except VEGF (pIFN-γ < .0001; pTNF-α < .0001; pIL-1β = .0002; pIL-

6 = .0013; pIL-12 < .0001; pMCP-1 < .0001).

For both time points, proinflammatory cytokine levels were com-

parable between the BRVO + Microglia Recovery group and the

BRVO group. The only exceptions were IL-6, IL-12, VEGF, and MCP-1

at the 24 hr time point, when for IL-6, VEGF, and MCP-1 levels were

close to expression in the microglia-depleted group (BRVO

+ PLX5622) and, thus, significantly decreased compared to the BRVO

group (pIL-6 < .0001; pVEGF = .0001; pMCP-1 < .0001). At the 24 hr time

point, IL-12 was highly upregulated in the BRVO + Microglia Recovery

group compared to the BRVO + PLX5622 (pIL-12 = .0022) and the

BRVO group (pIL-12 = .0261), respectively.

IL-4, IL-10, and IL-13 are involved in microglia/macrophage-

dependent anti-inflammatory signaling, and IL-10 in addition has an

autocrine effect that strongly downregulates the proinflammatory

cytokine burst (Anderson & Mosser, 2002; Gordon, 2003). Two-way

F IGURE 6 Semiquantitative grading of microglia repopulation in (a) occluded and (b) nonoccluded retina. (c) Analysis for all animals with
cessation of treatment at time of laser (BRVO + Microglia Recovery) and (d) control mice. Templates used for grading are shown in (e). P-Values
are shown for two-way ANOVA with factors “treatment” and “time.” *p < .05, **p < .01, p < .001, ****p < .0001 [Color figure can be viewed at
wileyonlinelibrary.com]
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ANOVA showed for all three cytokines significant differences for the

factor “treatment” (pIL-4 = .0003; pIL-10 < .0001; pIL-13 < .0001). Pro-

tein levels of the anti-inflammatory cytokines IL-4, IL-10, and IL-13

were close to baseline in the continuously depleted BRVO + PLX5622

group 24 hr after eBRVO, and even fell lower at 72 hr (Figure 7b).

Multiple comparison revealed that protein levels of IL-4 and IL-10 in

the BRVO + PLX5622 group were not even significantly different

from the BRVO group 24 hr after eBRVO induction, whereas IL-13

was significantly lower (pIL-4 = .3827; pIL-10 = .1243; pIL-13 = .0033).

However, all three proteins were significantly decreased at the 72 hr

time point (pIL-4 = .0006; pIL-10 < .0001; pIL-13 < .0001). The protein

levels of IL-10 and IL-13 in the BRVO + Microglia Recovery group

were at both time points similar to the BRVO group. Of note, 24 hr

after eBRVO onset, the protein level of IL-4 in the BRVO + Microglia

Recovery group was increased compared to the BRVO group,

although not significantly (pIL-4 = .0533).

4 | DISCUSSION

Microglia have been shown to have ambiguous effects on retinal

pathologies and are capable of producing both pro- and anti-

inflammatory mediators upon activation. In this study, we investigated

whether PLX5622-induced microglia depletion has an impact on reti-

nal damage after eBRVO.

We were able to show that CSF1R-mediated depletion of

microglia resulted in a diminished proinflammatory innate immune

response and in a delay of retinal thinning that was associated with

greater RGC survival. Of note, PLX5622 cessation at the time of

experimental vein occlusion resulted in only minimal RGC protection.

It has been shown in retinas with eBRVO, that the presence of

activated microglia and bone marrow-derived invading macrophages

is significantly increased early, lasting for at least 4 weeks (Ebneter,

Kokona, Schneider, et al., 2017). This increased presence of activated

microglia and/or macrophages is consistent with the higher number of

GFP+ cells observed in our in vivo SLO images of non-PLX5622

treated or recovering animals (Figure 2b,c). In line, we have also

shown that several potent proinflammatory cytokines such as IFN-γ,

TNF-α, IL-1β, IL-6, IL-12, and MCP-1 are greatly increased in non-

PLX5622 treated ischemic retinas. On the other hand, microglia-

depleted retinas did not only show a decrease in GFP+ cells but also in

proinflammatory cytokine expression. In our previous study, we also

have shown that INF-γ and TNF-α peak early after eBRVO (Ebneter,

Kokona, Schneider, et al., 2017). INF-γ directly increases TNF-α pro-

duction in microglia or macrophages (Welser-Alves & Milner, 2013),

while TNF-α itself has an autocrine activation mechanism on microglia

via a positive feedback loop (Kuno et al., 2005). In the CNS, activated

F IGURE 7 Results from mouse cytokine antibody microarray for a selection of (a) proinflammatory and (b) anti-inflammatory proteins.
Significance levels: *p < .05, **p < .01, ***p < .001, ****p < .0001; ♦: expression level below detection threshold (0.1 pg/ml)
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microglia cells and macrophages are one of the major sources of TNF-

α and other proinflammatory mediators like IL-1β, IL-6, reactive oxy-

gen species, and nitric oxide (NO; Mantovani et al., 2004; Natoli et al.,

2017; A. R. Patel, Ritzel, McCullough, & Liu, 2013; Rivera et al., 2013;

Welser-Alves & Milner, 2013). Nakazawa et al. demonstrated in a

glaucoma model that ocular hypertension increase TNF-α levels in the

retina following microglia activation. Subsequently, oligodendrocytes

in the optic nerve die and leave vulnerable demyelinated RGC axons

behind. Proinflammatory mediators damage these free axons causing

death to the corresponding RGCs. Interestingly, microglia deficient

mice showed no RGC loss after induction of ocular hypertension or

after TNF-α injection, suggesting that microglia and TNF-α playing a

key role in RGC death (Nakazawa et al., 2006; S. Patel & Player,

2009). Another experimental glaucoma study used Etanercept, an

inhibitor of TNF-α and TNF-β, showing that inhibition of microglia

activation resulted in mitigation of axonal degeneration and RGC loss

(Roh et al., 2012). In accordance with these findings, we postulate that

part of the protection of RGCs in microglia-depleted animals results

from reduced secretion of proinflammatory cytokines and harmful

mediators like TNF-α or IL-1β.

Other studies reported findings similar to outcomes of our experi-

ments with increased RGC survival after microglia suppression. Two

studies demonstrated reduced microglia activation using low-dose

minocycline in a retinal ischemia–reperfusion injury mouse and rat

model of BRVO, respectively; both studies found reduced RGC loss

(R. Huang, Liang, et al., 2018; Sun et al., 2013). A third study by

Takeda et al. showed increased RGC survival in minocycline and

PLX5622 treated mice after NMDA injection causing excitotoxicity in

RGCs (Takeda et al., 2018). The proposed neuroprotective mechanism

of minocycline, a broad-spectrum tetracycline antibiotic, and

PLX5622 is that by inhibition of microglia the secretion of

proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 is dimin-

ished (Plane, Shen, Pleasure, & Deng, 2010; Stirling, Koochesfahani,

Steeves, & Tetzlaff, 2005; Takeda et al., 2018). The first two studies

demonstrated not only protection against RGC loss but also some

preservation of signals in electroretinograms, indicating preservation

of function in minocycline treated retinas. Since PLX5622 ablates

microglia almost completely in the CNS and retina (Elmore et al.,

2014; Hilla, Diekmann, & Fischer, 2017; Takeda et al., 2018), and our

findings corroborate a decrease in several proinflammatory cytokines,

it is plausible that the mentioned neurodegenerative processes

involve activated microglia that are significantly altered in PLX5622

treated retinas. Reduced influx of inflammatory cells from the circula-

tion might be among the reasons for increased RGC survival in

PLX5622 treated animals. It is worth mentioning that it is not yet clear

why some microglia “escape” CSF1-R inhibition, but this observation

has been made by several groups (Acharya et al., 2016; Hilla et al.,

2017; Y. Huang, Xu, et al., 2018; Takeda et al., 2018), and depletion is

not complete. Some authors speculate that escaping cells are a sub-

population of microglia that do not express nor depend on CSF1R sig-

naling (Paschalis et al., 2018; Unger, Schernthaner, Marschallinger,

Mrowetz, & Aigner, 2018). However, after 2 weeks of PLX5622 treat-

ment (time point of eBRVO), apparent microglia density was only

about 3% of baseline. Despite some residual microglia, we consider

this meaningful depletion with relevant biological effects.

Evidence from brain pathology after hypoxic insults indicate

another potential mechanism. Infiltrating lymphocytes, especially γδT

cells play a crucial role in the secondary progression of brain injury

after infarction (Iadecola & Anrather, 2011; Shichita et al., 2009). This

subpopulation of T cells does not need stimulation by the antigen-

specific T-cell receptor to be activated and to secret (as the main

source in CNS) the cytotoxic cytokine IL-17. In fact, γδT cells are

directly activated by IL-23, which is mostly secreted by infiltrating

macrophages and activated microglia (Shichita et al., 2009). Finally,

Shichita et al. (2009) showed that deletion of γδT cells successfully

reduces infarct size. Our experiments showed efficient down-

regulation of IL-17 3 days after eBRVO in continuously PLX5622

treated mice (Table S1). However, there is evidence that activated ret-

inal microglia can also have direct protective effects on RGCs. Sap-

pington et al. (2006) have shown in vitro that microglia-derived

factors, in particular IL-6, protected RGCs against pressure-induced

apoptosis. Further, Chidlow et al. has demonstrated that osteopontin

produced by microglia protects RGCs from ischemic and excitotoxic

damage (Chidlow, Wood, Manavis, Osborne, & Casson, 2008).

Since BRVO is not primarily an inflammatory disease, vasogenic

mediators are also elevated in BRVO affected retinas. In humans suf-

fering from BRVO and macular edema, increased levels of vascular

factors were measured in the vitreous, such as VEGF, soluble intracel-

lular adhesion molecule (sICAM), IL-6, or monocyte chemotactic pro-

tein 1 (MCP-1) (Noma, Mimura, & Eguchi, 2013). In these BRVO

patients, via hypoxic inducible factor 1α (HIF-1α), retinal hypoxia leads

to upregulated secretion of VEGF in vascular endothelial cells, astro-

cytes, and Müller cells (Kaur, Sivakumar, & Foulds, 2006). Conse-

quently, VEGF increases vascular permeability of the blood–retina

barrier (Kaur et al., 2006; Mayhan, 1999), causing vasogenic edema

and an efflux of inflammatory factors into the vitreous (Noma et al.,

2013). Corroborating these findings in humans with BRVO, we also

found highly increased protein levels of VEGF, IL-6, and MCP-1 after

eBRVO (Figure 7a). To our knowledge, PLX5622 should not directly

affect secretion from other cells such as vascular endothelium or

Müller cells. These cells are known to produce VEGF and/or IL-6. This

might be the reason for lack of early downregulation to baseline

expression in PLX5622 treated animals compared to microglia specific

cytokines such as TNF-α or IL-1β that are swiftly suppressed. Thus,

deleterious effects of blood–retina barrier breakdown are not

completely abolished by microglia depletion.

Importantly, in a model of pure retrograde axonal degeneration

microglia/monocyte inhibition did not change RGC survival. Hilla et al.

(2017) showed that PLX5622-induced microglia depletion had neither

a protective nor an exacerbating effect on RGC survival after optic

nerve crush. However, reactive changes of astrocytes that are closely

related to RGC axons were not examined. Chan-Ling et al. (1991) have

shown that optic nerve crush in kitten caused reactive distribution

and morphology changes of astrocytes. Hilla et al. stated that the

removal of RGC remnants was impaired upon PLX5622 treatment and

postulated the necessity of activated microglia for this process. In the
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eBRVO model ischemia causes breakdown of the blood-retinal barrier

which is composed of endothelium, basal lamina and astrocyte end-

feet. Inhibition of microglia may not directly influence astrocyte dys-

function, which arguably contributes significantly to blood-retinal bar-

rier breakdown, but indirect interactions are complex.

A major limitation of this study is that we cannot clearly distin-

guish between activated microglia and infiltrating monocytes (macro-

phages). An approach using anti-tmem119 and anti-CD163 staining

(Zhou et al., 2017) seems not helpful in our setting since recent papers

have shown that tmem119 is quickly downregulated in activated CNS

microglia (Keren-Shaul et al., 2017; Krasemann et al., 2017; Ronning,

Karlen, Miller, & Burns, 2019). In fact, our own tests with these anti-

bodies (not shown) were not fruitful in addressing this issue. Further-

more, staining infiltrating macrophages with CD163 might even be

misleading because CD163, presumably a hemoglobin scavenger

receptor, is not only expressed on blood/derived macrophages/mono-

cytes but also on resident microglia (Lim, Hainsworth, Mohan, &

Chaurasia, 2019; Pey, Pearce, Kalaitzakis, Griffin, & Gentleman, 2014;

Poon et al., 2019; Vogel et al., 2013). Flow cytometry might provide

further insight here but was not in the scope of the current project.

Nevertheless, PLX5622 depletes microglia and, at least to our knowl-

edge, also affects infiltrated macrophages (Feng et al., 2017). More-

over, in this study, we depleted microglia/macrophages for a short

period of time. It is still controversial, whether long-term microglia/

macrophages depletion might be detrimental for synaptic integrity.

Another limitation might be a disturbed rheology in the whole retina

after laser application to specific retinal veins. Such changes might

explain retinal thinning of areas not directly in the drainage area of

occluded veins (Figure 3b). Nevertheless, in order to analyze imaging

data in a meaningful way, we had to assume that conditions were pre-

sumably stable in parts of the retina not directly involved in eBRVO,

which allowed to define the “RGC survival index.” By using this ratio,

we normalize RGC loss data using an internal reference/control, thus

eliminating general RGC damage caused by widespread rheology

changes, degeneration of the retina associated with aging, light toxic-

ity, or other unknown factors inherent to the model homogeneously

affecting the entire retina.

In summary, we found that short-term microglia depletion delays

atrophy of the inner retinal layers and reduces retinal ganglion cell loss

in the experimentally occluded retina. The protective mechanism

might be mediated by downregulation of the innate immune response

resulting in fewer activated microglia/macrophages and, thus, ham-

pered early proinflammatory cytokine release, ultimately mitigating

blood–retina barrier breakdown. Nevertheless, the protective effect

was limited. Further study is needed to elucidate the complex inter-

play between neurons, glia and inflammatory cells in the hypoxic

neuroretina.
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