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Abstract: Volume phase transitions in polyeletrolyte gels play important roles in many biophysi-
cal processes such as DNA packaging, nerve excitation, and cellular secretion. The swelling and
deswelling of these charged polymer gels depend strongly on their ionic environment. In this paper,
we present an extension to our previous two-fluid model for ion-binding-mediated gel swelling.
The extended model eliminates the assumptions about the size similarity between the network and
solvent particles, which makes it suitable for investigating of a large family of biologically relevant
problems. The model treats the polyeletrolyte gel as a mixture of two materials, the network and
the solvent. The dynamics of gel swelling is governed by the balance between the mechanical and
chemical forces on each of these two materials. Simulations based on the model illustrate that the
chemical forces are significantly influenced by the binding/unbinding reactions between the ions
and the network, as well as the resulting distribution of charges within the gel. The dependence of
the swelling rate on ionic bath concentrations is analyzed and this analysis highlights the importance
of the electromigration of ions and the induced electric field in regulating gel swelling.

Keywords: gel swelling; modeling; simulation; electrochemistry

1. Introduction

Mucus is an entangled network of long-chain glycoproteins that is present in many
biological systems including the respiratory and gastrointestinal tracts [1]. The mucin
polymers that make up the mucus network contain numerous oligosaccharide chains
which carry (depending on sulfation) negative charge groupings [2]. Therefore, mucus
is often described as a polyelectrolyte gel. Like many polyelectrolyte gels, mucus can
exhibit varied and dramatic swelling behaviors in response to environmental factors (pH,
for example).

Measurements of the degree of swelling (relative volume change) of various polyelec-
trolyte gels show that samples can increase in volume by two to three orders of magnitude
when immersed in solvent. Often, this swelling/hydration behavior is highly dependent
on the ionic composition of the solvent. As the concentration of a monovalent salt (such as
NaCl) is increased in the solvent, the equilibrium volume of the gel typically decreases in a
continuous fashion [3]. It has been argued that the degree of swelling is often governed by a
Donnan Equilibrium [4]. In equilibrium, there can be an electric potential difference on the
order of ∼1–100 mV between the interior and exterior of the gel [3]. Thus, any quantitative
model of polyelectrolyte gel swelling dynamics must incorporate a full description of
the electrochemical potential of the network/solvent mixture. The classical description of
the “energy of mixing” seen in Flory–Huggins theory is (alone) insufficient to capture the
relevant phenomena [5,6].
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Further complicating the issue is the fact that divalent salts in the solvent (for example
CaCl2) can cause a volume phase transition in polyelectrolyte gel networks at high enough
concentrations. At a critical concentration of divalent salt, the network undergoes a
spontaneous collapse. This phase transition is reversible, with the gel network re-expanding
after a decrease in the dissolved concentration of Ca2+ ions [3]. It is thought that this
behavior is integral to mucus systems, as it allows for mucin networks to be produced and
stored at high densities in vesicles within epithelial cells, and then to rapidly expand/swell
upon exocytosis from the cells, forming a mucus layer [4]. It is believed that the collapse of
the gel is due to the divalent nature of calcium and the relatively high chemical affinity
of divalent ions with the polymeric network [2]. Thus, divalent ions allow for effective
charge shielding of the negative groups on the network, and through association with the
polymers can form transient “cross-links”, effectively altering the “mixing energy” of the
solvent and network [4].

The earliest theoretical models of (not necessarily polyelectrolyte) gels attempted to
describe thermodynamic equilibrium of network/solvent mixtures [5–7]. Later works ex-
plored non-equilibrium transient states of swelling gels [8–10]. More recently, much effort
has been devoted to extending these models to include descriptions of the various electrical
and mechanical forces which govern polyelectrolyte gel mixtures. Typically, these theoreti-
cal frameworks incorporate descriptions of the electric and chemical potentials induced by
spatial gradients in the concentration of charged polymers and dissolved ions (including
osmotic potential) [11–15]. Often the mechanical properties of the polymeric network are
described as those of an elastic continuum [11–14]. However, microrheology experiments
have indicated that mucus networks exhibit rheology more similar to a viscous fluid at
moderate pH [16]. Some models also incorporate effects due to interfacial tension that may
arise at the interface between a gel sample and the surrounding bath [13]. Many of these the-
oretical studies have primarily investigated equilibrium behavior of the network/solvent
mixture [11,13,14]. However, some have addressed dynamic swelling behavior, and indeed
a few modelling frameworks have been developed specifically to be simulated numeri-
cally [12,15]. In nearly all the extant attempts to model polyelectrolyte gel mixtures, the
energy of mixing is assumed to obey the classical Flory–Huggins theory. To date, few works
have attempted to generalize this mixing energy to account for ion/polymer chemistry or
the particular affinity that mucin networks show for divalent cations.

The work of Sircar et al. attempted to derive, from first principles, a continuum model
of a mucus-like polyelectrolyte gel that addressed these gaps in existing polyelectrolyte
models. The model captures numerous classical effects, including van’t Hoff osmotic
pressure, Donnan equilibrium potential, and Nernst–Planck motion of dissolved ions, as
well as a Flory-like interaction parameter and a standard free energy of network phase
which incorporate ionic binding chemistry (and distinguish between chemical interac-
tions with monovalent vs. divalent cations). Sircar et al. outlined the derivation of the
model and presented an equilibrium analysis of it [17]. Later work has investigated the
dynamic swelling behavior of the model by investigating linear stability of equilibrium
configurations and the near-equilibrium dynamics [18] or by performing (one-dimensional)
numerical simulations away from equilibrium in a drag dominated parameter regime (i.e.,
very low Darcy permeability of the gel) [19]. Only recently have numerical techniques
been developed to simulate the model in higher dimensions with reasonably accuracy
and efficiency [20]. However, an assumption implicit in the derivation in [17], is that the
monomeric units which make up the polymeric network are of approximately the same
volume as solvent particles (water), and can therefore be placed on the same lattice for
the purposes of statistical-mechanical calculations. This assumption is unlikely to be valid
for mucus networks. Furthermore, the model of Sircar et al. is analyzed in terms of the
electrochemical potentials acting on the various particle species which make up the poly-
electrolyte mixture (network, solvent, dissolved ions). This simplifies the presentation of
equilibrium calculations. However, the dynamic rearrangement of the network is governed
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by force densities (i.e., potential gradients), and expressing the model in terms of potentials
obfuscates various subtle effects which affect dynamic swelling behaviors.

The goal of this work is therefore threefold: (1) to re-derive (from first principles) the
equations of motion for a model of a mucus-like polyelectrolyte gel based on the work
of Sircar et al. without the assumption that network and solvent particles are of similar
size, (2) to formulate the model in terms of a balance of force densities acting on the
network and solvent phases, for clarity, and (3) to simulate and analyze a set of numerical
experiments in which a dense sample of mucus, with a high concentration of calcium, is
placed into a bath, in which monovalent sodium ions far outnumbered divalent calcium
ones, and is allowed to swell dynamically. In Section 2 we give a detailed description
of our model assumptions and a derivation of the model equations. The motion of the
network and solvent phases of the gel may be attributed to six force densities. Three of
these force densities are electrochemical in nature; the remaining three are mechanical in
nature. In Section 3, we briefly outline the numerical scheme used to simulate the model
in two spatial dimensions (for a detailed description of the numerics, please see [20]). In
Section 4, we describe our experiments which simulate a sample of dense mucus allowed
to swell in a bath of known ionic composition. We show that samples placed into baths
of differing ionic strength swell at differing rates. This variation in the swelling rate is
explained in terms of the various forces acting on the network. Broadly speaking, we can
understand the dynamic movement of the network/solvent phases as being driven by the
three electrochemical force densities, while the mechanical forces arise in response to the
motion of the two phases.

2. Mathematical Model

Following [17], we develop a model of polyelectrolyte gels built upon the “two-phase”
model framework. We consider a polymer gel which is a multi-component material made
up of polymers, water (solvent), and several distinct types of ions. The polymer is made
up of “monomeric units”, denoted M, each of which carries a single negative charge and is
capable of forming a single bond with a cation dissolved in the solvent. Ionic species may
be either positively or negatively charged. Cations may be mono- or divalent, however, for
simplicity we assume all anionic species are monovalent. In this text we refer to monovalent
cations as sodium, divalent cations as calcium, and anions as chloride, but the modeling
framework is by no means specific to these ionic species. Chloride is assumed to be unable
to participate in any binding chemistry with the polymeric network, but must be present
in the solvent as a counterion. The relevant chemical reactions are

M− + Na+ −−⇀↽−− MNa, M− + Ca2+ −−⇀↽−− MCa+, M− + MCa+ −−⇀↽−− M2Ca. (1)

Here, M– denotes a monomeric unit not bound to an ion, MNa and MCa+ denote a
monomeric unit bound to a sodium and calcium ion, respectively, and M2Ca denotes two
monomeric units cross-linked by a calcium ion. These species are all assumed to be part
of the polymeric network and move with the same velocity as the network. The species
M2Ca plays an important role in determining the dynamics of the polymer network.

An assumption underlying the model developed in [17] is that all particles within the
gel are of roughly the same size. Thus, for statistical arguments involving lattice configu-
rations, all particles could be placed on the same lattice. In the case that the characteristic
volume of a monomeric unit M is much larger than that of a water molecule or individual
ion, this assumption may be inappropriate. To remedy this issue, we define an auxiliary
“particle” which we refer to as a “solvent aggregate”. This is defined to be a contiguous
collection of water molecules and ions which occupy a volume equal to that of a single
monomeric unit. We denote the volume of monomeric units M and solvent aggregates as
νn. The volume of an individual solvent particle or ion is denoted νs and is taken to be
equal to the volume of a water molecule.

The experiments of [21] suggest that hydrated gastric mucus may bind cations in con-
centrations on the order of 100 mM. If we assume that mucus is between 2–10% polymeric



Gels 2021, 7, 244 4 of 32

network by volume, this implies a concentration of “monomeric units” on the order of
1–5 M in pure mucus, which in turn implies that νn ≈ 10νs–50νs. However, other exper-
iments conducted on salivary mucus suggest that mucus networks exhibit binding sites
in significantly lower densities, which in turn implies νn >> 50νs [22]. Based on these
estimates, we assume γ = νs/νn << 1. We denote the (molar) concentration of monomeric
units in pure network by mtot and the (molar) concentration of water molecules in pure wa-
ter by stot (≈55.5 M) and we note that νnmtot = νsstot. The actual concentration of particles
in a solvent aggregate may deviate very slightly from stot because of binding/unbinding
of ions to the network. For ions with concentrations much lower than stot (dilute), the
number of molecules in a solvent aggregate will remain very close to νn/νs. We restrict our
attention to such dilute ion solutions, and below make the approximation that on average
there are always νn/νs molecules in a solvent aggregate, or equivalently a concentration of
stot in solvent aggregates. Note that we do not assume that the polymer is dilute.

2.1. Equations of Motion

By assumption, the polymer network and the solvent aggregates are the two phases
which partition the volume of the mixture. If Nn and Ns are the number of monomeric
units and solvent aggregates in a volume, then we may define their volume fractions θi
and number fractions φi, respectively, by

θn = φn =
Nn

Ns + Nn
, (2)

θs = φs =
Ns

Ns + Nn
. (3)

For brevity, we refer to these two volume occupying phases as the “network” and
“solvent”. When it is necessary for clarity below, we are explicit in referring to individual sol-
vent particles/molecules (which make up a large fraction, but not all of the solvent phase).
We assume that each phase is transported with its own velocity, and thus conservation of
mass yields the evolution equations

∂θn

∂t
+∇ · (unθn) = 0, (4)

∂θs

∂t
+∇ · (usθs) = 0, (5)

where un and us are the velocity of the network and solvent phases, respectively. As
θn + θs = 1, we have the “volume averaged” incompressibility constraint

∇ · (unθn + usθs) = 0. (6)

The minimum rate of work principle (sometimes referred to as the Helmholtz min-
imum energy dissipation rate principle) may be used to derive a set of force balance
equations which govern the velocity fields of the network, solvent, and individual particles
which make up the solvent aggregates.

∇ ·
(

θnσn(un)
)
− ξ

νn
θnθs(un − us)−

θn

νn
∇µn − θn∇p = 0, (7)

∇ ·
(

θsσs(us)
)
− ξ

νn
θnθs(us − un)−

θs

νn
∇µs − θs∇p +

θs

νs
∑

j
ξ̂jφ̂j(uj − us) = 0. (8)

ξ̂jφ̂j(us − uj)− φ̂j∇µj = 0, for j = 1, . . . , Nions and H2O, (9)

where Nions is the number of distinct species of ions dissolved in the solvent and j = H2O
designates water molecules. In Equations (7) and (8), σi is the viscous stress tensor of phase
i (i = s, n), ξ is the coefficient for the drag arising from relative motion of network and
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solvent, ξ̂j is the coefficient for the drag between the jth molecular species in the solvent
and the solvent as a whole, and p is the hydrodynamic pressure. The quantities φ̂j denote
the number fractions of ions and individual solvent particles which make up the solvent
aggregates. If the numbers of individual solvent particles and ions of type j contained in all
the solvent aggregates within a given volume are denoted NH2O and Nj, respectively, then

φ̂H2O =
NH2O

NH2O + ∑
k 6=H2O

Nk
, φ̂j =

Nj

NH2O + ∑
k 6=H2O

Nk
, (10)

where the sums are over all of the dissolved ion species. We note here that each molecular
species in the solvent aggregates has its distinct velocity field, which is governed by its
force balance Equation (9). In Section 2.3, we show that these equations may be used to
eliminate the individual particle velocities. The net effect is that the solvent aggregates
“feel” the forces which act on their constituent particles. See [17] for more details.

The network phase n is acted upon by the electric potential Ψ (as it may carry charge),
entropy, and short-range interactions due to the arrangement of monomeric units and
solvent aggregates. Solvent aggregates experience potentials due to the same short-range
interactions. The particles which make up the solvent aggregates are acted upon by entropy
and, in the case of ions, by the electric potential. We do not account for other interactions
between water molecules and ions because the ions are assumed to be dilute. Hence, the
chemical potentials for network, solvent aggregates, water, and ions have the form:

µn = µE
n + µS

n + µI
n, (11)

µs = µI
s , (12)

µH2O = µS
H2O, (13)

µj = µE
j + µS

j , j 6= H2O. (14)

where S, E, and I denote entropic, electrical, and short-range interaction potentials.

2.2. Potentials Acting on Particles

In this section we derive the electrochemical potentials that act on the various species.
In the interest of brevity, we refer the reader to [17] for details when necessary. In Section 2.3,
we calculate the force densities which appear in Equations (7) and (8) and show that the
equations of motion may be simplified.

2.2.1. Entropy

If the mixture contains Ns solvent aggregates and Nn monomeric units, then the
number of possible arrangements of these particles on a lattice is given by

Ωmeso =
(Nn + Ns)!

Nn!Ns!
. (15)

The number of individual solvent particles contained in all of the solvent aggregates
is denoted NH2O and the number of ions of type j is denoted Nj. The number of ways that
these particles can be arranged within all Ns solvent aggregates is given by

Ωmicro =

(
NH2O + ∑

j 6=H2O
Nj

)
!

NH2O! ∏
j 6=H2O

Nj!
(16)
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Equations (15) and (16) imply that the total number of ways to arrange particles in the
system is given by

Ω =
(Nn + Ns)!

Nn!Ns!

(
NH2O + ∑

j 6=H2O
Nj

)
!

NH2O! ∏
j 6=H2O

Nj!
, (17)

and so the entropy of the mixture is

S = kB ln(Ω) = kB

ln
(
(Nn + Ns)!

Nn!Ns!

)
+ ln


(

NH2O + ∑
j 6=H2O

Nj

)
!

NH2O! ∏
j 6=H2O

Nj!


. (18)

Here kB is the Boltzmann constant. Using Stirling’s formula (ln(N!) ≈ N ln(N)− N),
this may be simplified to

S
kB

= −Nn ln
(

Nn

Nn + Ns

)
− Ns ln

(
Ns

Nn + Ns

)

− NH2O ln

 NH2O

NH2O + ∑
k 6=H2O

Nk

− ∑
j 6=H2O

Nj ln

 Nj

NH2O + ∑
k 6=H2O

Nk

. (19)

This expression assumes that the monomeric units can be arranged arbitrarily. For
polymers which are composed of chains of Nchain monomeric units, standard arguments
result in the factor of Nn in front of the leading term being replaced by Nn/Nchain [23]. The
entropy function then becomes

S
kB

= − Nn

Nchain
ln
(

Nn

Nn + Ns

)
− Ns ln

(
Ns

Nn + Ns

)

− NH2O ln

 NH2O

NH2O + ∑
k 6=H2O

Nj

− ∑
j 6=H2O

Nj ln

 Nj

NH2O + ∑
k 6=H2O

Nk

. (20)

This is the total entropy of the mixture. Note that by the definition of νs and νn, and
the relationship νnmtot = νsstot,

Ns = γ

(
NH2O + ∑

j 6=H2O
Nj

)
, γ =

νs

νn
. (21)

Letting T be the temperature, the potential due to entropy for each particle species
k = n, j, and H2O is given by µS

k = −T ∂S
∂Nk

. The entropy of the network/polymer phase is
the simplest. Using the definition of particle fraction (see Equations (2) and (3)), we have

µS
n

kBT
=

1
Nchain

ln
(

Nn

Nn + Ns

)
−
(

1− 1
Nchain

)
Ns

Nn + Ns

=
1

Nchain
ln(φn)−

(
1− 1

Nchain

)
φs. (22)
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Using Equation (21), from which we see that ∂Ns
∂NH2O

= ∂Ns
∂Nj

= γ, a similar calculation
gives the entropic potential for each type of solvent particle:

µS
H2O

kBT
= γ

(
ln
(

Ns

Nn + Ns

)
+

(
1− 1

Nchain

)
Nn

Nn + Ns

)
+ ln

 NH2O

NH2O + ∑
j 6=H2O

Nj


= γ

(
ln(φs) +

(
1− 1

Nchain

)
φn

)
+ ln

(
φ̂H2O

)
, (23)

and

µS
j

kBT
= γ

(
ln
(

Ns

Nn + Ns

)
+

(
1− 1

Nchain

)
Nn

Nn + Ns

)
+ ln

 Nj

NH2O + ∑
j

Nj


= γ

(
ln(φs) +

(
1− 1

Nchain

)
φn

)
+ ln

(
φ̂j
)
. (24)

Here, φs is the particle fraction of solvent aggregates in the two phases, while φ̂H2O
and φ̂j are the particle fraction of solvent particles and of ions of type j within solvent
aggregates, respectively.

2.2.2. Electrostatic Potential

The network contains variable concentrations of negatively charged M– units and
positively charged MCa+ units, as well as concentrations of two uncharged units, MNa
and M2Ca. We define the variables BMNa, BMCa, and BM2Ca to be the molar concentration
(per total volume) of MNa, MCa+, and M2Ca, respectively. Notice that the values of BMNa,
BMCa, and BM2Ca also represent the concentrations of bound sodium, calcium bound only
to one monomeric unit (referred to as singly-bound calcium), and calcium bound to two
monomeric units (referred to as doubly-bound calcium), respectively. The concentration
of negatively charged M– units is given by m = mtotθn − BMNa − BMCa − 2BM2Ca, where,
recall, mtot is the (molar) concentration of monomeric units (and hence negative charge)
in a sample of pure mucin. The net concentration of positive charge on the network
is BMNa + 2BMCa + 2BM2Ca − mtotθn, and the average number of (positive) charges per
monomeric unit is zm defined by

zm =
BMNa + 2BMCa + 2BM2Ca −mtotθn

mtotθn
. (25)

The electrostatic force on the network, as described in more detail below, is pro-
portional to zm, the number density of monomeric units, θn/νn, and the gradient of the
electrostatic potential Ψ. Similarly, the electrostatic force acting on ions of type j with
valence zj is proportional to zj, the number density of that type of ion, and the gradient
of Ψ.

2.2.3. Short-Range Interactions

Following the approach of [17], we envision monomeric units and solvent aggre-
gates within a volume arranged on a lattice with coordination number z. The fraction of
monomeric units which are cross-linked via calcium binding (i.e., the fraction of M which
are in state M2Ca) is denoted α, and is given by the expression

α =
2BM2Ca

m + BMNa + BMCa + 2BM2Ca
=

2BM2Ca

mtotθn
.
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We denote the pair-wise interaction energies between an adjacent pair of cross-linked
monomers, an adjacent pair of uncross-linked monomers, two adjacent monomers in the
same polymer chain, an adjacent monomer/solvent aggregate pair, and a pair of adjacent
solvent aggregates as kBTεxx, kBTεuu, kBTεpp, kBTεus, and kBTεss, respectively. Using a
standard mean-field counting argument (see [17]), the total per-particle interaction energy is
given by

U I = kBT

(
χ(α)

2
φnφs + µ0

s φs + µ0
nφn

)
, (26)

where

χ(α) = z(2εus − εuu − εss)− 2
(

1− 1
Nchain

)
(εus − εuu)− (εus − εuu)α, (27)

µ0
n(α) = εuu

z
2
+ (εpp − εuu)

(
1− 1

Nchain

)
+

α

2
(εxx − εuu), (28)

µ0
s = εss

z
2

, (29)

and φn and φs are the particle fractions defined in Equations (2) and (3). We refer to χ(α) as
the “interaction parameter”. The dependence of χ(α) and the polymer standard free energy
µ0

n(α) on α determine the relationship between the free energy of the gel mixture and the
fraction of monomers cross-linked by divalent calcium. The total short-range interaction
energy of the mixture is given by

EI = (Ns + Nn)U I , (30)

and therefore the short-range interaction potentials acting on the two phases are calcu-
lated as

µI
n =

∂EI

∂Nn
= kBT

(
χ(α)

2
φ2

s + µ0
n(α)

)
, (31)

µI
s =

∂EI

∂Ns
= kBT

(
χ(α)

2
φ2

n + µ0
s

)
. (32)

We note that in the case α = 0, Equation (30) reduces to the interaction energy found
in the standard Flory–Huggins theory [23]. However, α often varies in space and time
(discussed below), and then the interaction parameter and the standard free energy of the
network phase also vary in space and time. In particular, the standard free energy µ0

n(α)
may give rise to forces on the network. This is not a feature of many classical theories [17].

2.3. Forces Acting on the System

Before discussing the dynamics of the ion species, we first recast the equations for the
network and solvent dynamics in terms of the force densities acting on the system. This is
useful for interpreting later results and also facilitates simplifying the model equations.

First, we note that Equation (9) can be used in Equation (8) to eliminate the drag
force density resulting from relative motion between solvent aggregates as a whole and
the individual molecular species in the solvent aggregates. Doing so yields the force
balance equations

∇ ·
(

θnσn(un)
)
− ξ

νn
θnθs(un − us)− θn∇p− θn

νn
∇µI

n −
θn

νn
∇µS

n −
θn

νn
∇µE

n = 0, (33)

∇ ·
(

θsσs(us)
)
− ξ

νn
θnθs(us − un)− θs∇p− θs

νn
∇µI

s −
θs

νs
∑

j
φ̂j(∇µS

j +∇µE
j ) = 0. (34)

for the network and solvent phases, respectively. The sum in Equation (34), is over j = H2O
and j = 1, . . . , Nions. For j = H2O, µE

j = 0.



Gels 2021, 7, 244 9 of 32

2.3.1. Entropic Forces

Evaluating the force densities which arise from the entropic potentials given in Equa-
tions (22)–(24), we have

fS
n = − θn

νn
∇µS

n

= − kBT
νn

(
1

Nchain
+

(
1− 1

Nchain

)
θn

)
∇θn, (35)

fS
H2O = − θsφ̂H2O

νs
∇µS

H2O

= − kBT
νs

[
γφ̂H2O

((
1

Nchain
− 1
)

θs∇θs +∇θs

)
+ θs∇φ̂H2O

]
, (36)

fS
j = −

θsφ̂j

νs
∇µS

j

= − kBT
νs

[
γφ̂j

((
1

Nchain
− 1
)

θs∇θs +∇θs

)
+ θs∇φ̂j

]
. (37)

From Equation (34), the total force density (due to entropy) acting on the solvent phase
is given as the sum of the force densities fH2O and fj, j = 1, . . . , Nions. Using Equations (36)
and (37) to compute this sum and, using the fact that φ̂H2O + ∑

j 6=H2O
φ̂j = 1, we can express

the total entropic force density on the solvent phase as

fS
s = fS

H2O + ∑
j 6=H2O

fS
j

= − kBT
νs

[
γ

((
1

Nchain
− 1
)

θs∇θs +∇θs

)]

= − kBT
νn

((
1

Nchain
− 1
)

θs∇θs +∇θs

)
. (38)

Equation (38) implies that entropy due to rearrangements of individual solvent/ion
particles within the solvent aggregates does not produce any net forces on the solvent
phase. Only rearrangements of network particles and solvent aggregates lead to forces
on these two phases and contribute to driving their dynamics. Further, it follows from
Equations (35) and (38), and the identity θn + θs = 1, that fS

s + fS
n = 0 everywhere. This sim-

plifies calculations (and numerical simulations) greatly. Finally, we note that Equations (35)
and (38) recapitulate standard expressions for forces due to entropy in a two-species
polymer solution [23].

2.3.2. Electric Force Densities

From Equation (34) we can express the force density that the solvent phase experiences
due to the electric potential gradient acting on dissolved ions as

fE
s = − θs

νs
∑

j
φ̂j∇µE

j = − θs

νs
∑

j
φ̂jzjkBT∇Ψ, (39)
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where the sum is over j = 1, . . . , Nions since∇µE
H2O ≡ 0. Using the definition of the number

fraction φ̂j from Equation (10) we have

fE
s = − θs

νs

NNa + 2NCa − NCl
NH2O + NNa + NCa + NCl

kBT∇Ψ. (40)

Dividing the numerator and denominator by Avogadro’s number times the total
volume of the solvent aggregates (NANsνn), Equation (40) becomes

fE
s = − θs

νs

CNa + 2CCa − CCl
CH2O + CNa + CCa + CCl

kBT∇Ψ

= − θs

νs

CNa + 2CCa − CCl
stot kBT∇Ψ, (41)

where the variables Cj denote concentrations of the respective ions and CH2O is the con-
centration of water molecules. These concentrations are calculated in a volume where no
polymer/network exists, and thus they correspond to “moles of ion per unit of solvent
volume”. The equations of motion for Cj are discussed in more detail below. Since the
overall material is electrically neutral,

BMNa + 2BMCa + 2BM2Ca −mtotθn + θs(CNa + 2CCa − CCl) = 0, (42)

it follows that the force densities due to electric potential gradients on the two materials
must be equal and opposite. We can verify that this is true as follows. The electric force
density on the network is

fE
n = − θn

νn
∇µE

n = − θn

νn

BMNa + 2BMCa + 2BM2Ca −mtotθn

mtotθn
kBT∇Ψ. (43)

and, from Equation (41), the electric force density acting on the solvent aggregates is

fE
s = − θs

νs
∇µE

n = − θs

νs

CNa + 2CCa − CCl
stot kBT∇Ψ. (44)

Hence,

fE
n + fE

s = −
[

θn

νn

BMNa + 2BMCa + 2BM2Ca −mtotθn

mtotθn
+

θs

νs

CNa + 2CCa − CCl
stot

]
kBT∇Ψ. (45)

Since νnmtot = νsstot, this simplifies to

fE
n + fE

s = − 1
mtotνn

(
BMNa + 2BMCa + 2BM2Ca−mtotθn + θs(CNa + 2CCa− CCl)

)
∇Ψ, (46)

which vanishes because of the electroneutrality condition Equation (42). Note that Equa-
tions (43) and (44) can be written as fE

n = − θn
νn

zmkBT∇Ψ and fE
s = − θs

νs
zskBT∇Ψ, respec-

tively, where zm, given in Equation (25), is the average charge per monomeric unit of
network and zs =

CNa+2CCa−CCl
stot is the average charge per particle in a solvent aggregate.

2.3.3. Short-Range Interactions

For completeness, we note here that the forces exerted on the respective network and
solvent phases due to short range interactions are given by the gradient of the correspond-
ing potential

fI
n = − θn

νn
∇µI

n = −kBT
θn

νn
∇
(

χ(α)

2
θ2

s + µ0
n(α)

)
, (47)
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fI
s = −

θs

νn
∇µI

s = −kBT
θs

νn
∇
(

χ(α)

2
θ2

n + µ0
s

)
. (48)

Based on all of the chemical forces defined above, we rewrite the force balance equa-
tions for the network and solvent as:

∇ ·
(

θnσn(un)
)
− ξ

νn
θnθs(un − us)− θn∇p + fE

n + fI
n + fS

n = 0, (49)

∇ ·
(

θsσs(us)
)
− ξ

νn
θnθs(us − un)− θs∇p + fE

s + fI
s + fS

s = 0, (50)

where the various forces are defined by Equations (35), (38), (41), (43), (47), and (48).

2.4. Chemical Evolution

In this section, we present the equations of motion for the bound and dissolved ionic
species. As previously stated, the concentration (per total volume) of bound sodium,
singly bound calcium, and doubly bound calcium are denoted BMNa, BMCa, and BM2Ca,
respectively. We denote the concentration of unbound monomeric particles M as m. Then,
conservation of monomeric particles implies

m = mtotθn − (BMNa + BMCa + 2BM2Ca). (51)

The concentrations of dissolved sodium, dissolved calcium, and dissolved chloride
(measured per unit of solvent volume) are denoted CNa, CCa, and CCl, respectively.

We may use Equation (9) to solve for each of the ion velocities and then use the result
to obtain the expression

Jj = Cjuj = Cj

(
us −

1
ξ̂j
∇µj

)
. (52)

for the flux of dissolved ion j. The total potential acting on the jth dissolved ionic species is
given by

µj

kBT
= zjΨ + γ

(
ln(φs) +

(
1− 1

Nchain

)
φn

)
+ ln

(
φ̂j
)
. (53)

Since γ = νs/νn << 1, we can express the ion flux, to leading order, as

Jj = usCj − Dj
(
∇Cj + zjCj∇Ψ

)
, (54)

where Dj = kBT/ξ̂j. Equation (54) is equivalent to a classical Nernst–Planck flux. Conser-
vation of mass for ion j may be expressed as

∂

∂t
(
θsCj

)
+∇ ·

(
θsJj
)
= Rj, (55)

where Rj is the rate of change of dissolved ion j’s concentration per total volume due to
all chemical reactions which produce/remove these ions. We assume that the chemical
reactions which affect ion j are binding to and dissociation from the binding sites present on
the network. These reactions are governed by the law of mass action, scaled appropriately
with the heterogeneous volume in which the species are dissolved (see [17])

Rj = Roff
j − Ron

j = koff
j BMjθ

2
s − kon

j mθsCj, (56)

where m is given in Equation (51). kon
j and koff

j are the binding and unbinding rate coeffi-
cients for ion j. Equation (55) together with Equation (5) gives (after some rearrangement)
the transport equation
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∂Cj

∂t
+∇ ·

(
usCj

)
=

1
θs
∇ ·

(
θsDj

(
∇Cj + zjCj∇Ψ

))
− kon

j mCj + koff
j BMjθs. (57)

In a system with dissolved ions Na, Ca, and Cl (where Cl anions are assumed to be
unable to bind/unbind with the network) this yields the equations

∂CNa

∂t
+∇ · (usCNa) =

1
θs
∇ ·

(
θsDNa(∇CNa + CNa∇Ψ)

)
− kon

NamCNa + koff
NaBMNaθs, (58)

∂CCa

∂t
+∇ · (usCCa) =

1
θs
∇ ·

(
θsDCa(∇CCa + 2CCa∇Ψ)

)
− kon

CamCCa + koff
CaBMCaθs, (59)

∂CCl
∂t

+∇ · (usCCl) =
1
θs
∇ ·

(
θsDCl(∇CCl − CCl∇Ψ)

)
. (60)

The bound ionic species are assumed to advect with the network velocity and to not
diffuse. The electrical forces acting on the charges in the network contribute to determining
the network velocity un as seen in Equation (33). Then, conservation of mass gives the
following equations for the evolution of the bound ion concentrations

∂BMNa

∂t
+∇ · (unBMNa) = kon

NamCNaθs − koff
NaBMNaθ2

s , (61)

∂BMCa

∂t
+∇ · (unBMCa) = kon

CamCCaθs − koff
CaBMCaθ2

s + 2koff
CaBM2Ca −

1
2

kon
CamBMCa, (62)

∂BM2Ca

∂t
+∇ · (unBM2Ca) = −2koff

CaBM2Ca +
1
2

kon
CamBMCa. (63)

Details regarding the reaction rate scalings are given in [17].
Electroneutrality ensures that the concentrations of charged species (measured in

moles per total volume) sum to zero. This may be expressed as

BMNa + 2BMCa + 2BM2Ca −mtotθn + θs(CNa + 2CCa − CCl) = 0. (64)

The electric potential gradient ∇Ψ does not have a constitutive equation, but may
rather be viewed as a Lagrange multiplier whose role is to enforce the algebraic constraint
Equation (64).

3. Solution Strategy

Equations (4)–(6), (49) and (50), and (58)–(64) represent the model equations we solve
numerically. These equations form a coupled nonlinear system of PDEs (of mixed type)
with algebraic and incompressibility constraints. All spatial derivative terms are discretized
using finite-difference approximations. A fractional step scheme is used for time iteration
from tk to tk+1 as follows:

1. For given ion concentrations, electrical potential Ψ and volume fractions (θs and θn)
at time level tk, compute all chemical forces appearing in (49) and (50). Solve the
discretized version of (49) and (50), together with the incompressibility condition (6)
to obtain the velocities for the network and solvent un and us at tk.

2. Extrapolate un and us to the half time step tk+1/2 from their values at tk−1 and tk.
Based on the extrapolated velocities, solve the discretized version of (4) to get the
updated values for θn and θs at tk+1. Similarly, update all ion concentrations to account
for their advective transport using a discretized version of (58)–(63).

3. Update the concentrations of bound ions at tk+1 to account for all reaction terms in
discretized versions of (61)–(63).

4. Update the concentrations of dissolved ions and the electric potential Ψ at tk+1 to
account for the diffusive transport, electromigration, and reaction in discretized
versions of (58)–(60) and (64).
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A MAC-type staggered computational grid is used for the spatial discretization, where
scalars are located at the grid centers and vectors are located at the centers of grid edges.
In step 1, all spatial derivatives in the equations are approximated using second-order,
centered difference formulas. The discrete equations form a large, sparse nonsymmetric
linear system of saddle point type. The system is solved by a GMRES solver, which is
preconditioned by a multigrid scheme [24]. In step 2, the advective terms are discretized
using the second-order, unsplit Godunov Scheme, as described in [25]. In step 3, all reaction
terms are discretized implicitly. The resulting 3× 3 linear system for each grid cell is solved
directly. Finally, in step 4, the sparse linear system from the discretization is solved by
a multigrid-preconditioned GMRES solver. Details about the algorithm can be found
in [20]. In our simulations of gel swelling, the network volume fraction is zero in parts
of the domain. To avoid a degenerate network Equation (49), numerical regularization as
proposed in [26] is used for the solution of fluid velocities in step 1.

4. Results
4.1. Problem Setup

The values of model constants are list in Table 1.

Table 1. Simulation Parameters. εus, εuu, εss, εxx, and εpp are the interaction energies nondimension-
alized by kBT.

Parameter Value

network viscosity ηn 100 Poise [27]

solvent viscosity ηs 0.01 Poise

diffusion coefficient Dj 2.5× 10−5 cm2/s [28]

drag coefficient ξ/ν 2.5× 109 g/(cm3 · s)
εus − εuu −18.0

εus − εss 10.0

εxx − εuu −0.5

εpp − εuu 0

number of monomers in a chain N 6

network charge density mtot 0.1 Molar

size of monomer νn 1.661 × 10−8 µm3

coordination number z 6

In the table, νn is computed based on the monomer molarity mtot = 0.1 M. The drag
coefficient is set to ξ/ν = ηs

L2
0

[29], where L0 = 40 nm is the characteristic pore size of a

mucin gel [30]. We choose the values of the interaction energy so that the Flory–Huggins
parameter χ(α) is an increasing linear function of the cross-link fraction α. Based on this
choice, a fully cross-linked network with α = 1 has χ = 0, so short-range interactions
make no contribution to swelling. For a network without any cross-links and α = 0,
χ = −18 and the interaction energy promotes rapid swelling. We choose εpp − εuu = 0
and εxx − εuu = −0.5 so that εxx is only slightly lower than εpp and εuu. A more negative
value of εxx − εuu tends to drive deswelling of the gel, which is not the focus of this study.
Our simulation setup is intended to mimic the swelling of a blob of highly cross-linked gel
immersed in a fluid solvent of known dissolved ion composition.

As shown in Figure 1a, the computational domain is the two-dimensional region
(x, y) ∈ [−20 µm, 20 µm]× [−20 µm, 20 µm]. At t = 0, there is a circular region at the
center of the domain with an appreciable amount of network. We refer to this region as
the “gel”. We refer to the rest of the domain as the “bath”. Typical initial profiles of θn,
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and the concentrations of dissolved and bound ions along the positive x-axis are shown in
Figure 1b–d. For a specific model variable, its initial value inside the gel is set to a constant
in the bulk of the gel. This uniform profile of the variable in the gel transitions smoothly
but sharply to a different uniform profile in the bath.
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Figure 1. The two-dimensional computational domain and the initial distributions of model variables.
(a) Initial distribution of θn. (b) Profile of θn at t = 0 along the positive x-axis. (c) Profiles of the
concentrations for dissolved ions at t = 0 along the positive x-axis. (d) Profiles of the concentrations
of bound ions at t = 0 along the positive x-axis.

To construct the initial conditions for the ion concentrations in the gel region, we
prescribe uniform values for θn, mtot and the total concentrations (bound plus dissolved)
of sodium, calcium, and chloride ions in that region. These concentrations are chosen
so that net charge at each point is zero. We then determine the bound and dissolved
ion concentrations by computing the steady-state solution of the ODEs that result from
Equations (58)–(63) when the spatial profiles are assumed to be uniform so that all of the
transport terms vanish. These solutions are the initial concentrations we use within the gel.
For most of the bath region, θn = 0; there is a sharp but smooth connection at the edge of the
gel between the value of θn in the bulk of the gel and the zero values in most of the bath. We
specify the concentrations of dissolved ions in the bath and set the concentration of bound
ions there to zero. By the way that we select the initial concentrations, there is a separate
chemical equilibrium in the bulk of the gel and in the bulk of the bath. In this paper, we
set kon

Na and 106 M−1 s−1, koff
Na = 103 s−1, kon

Ca = 5× 106 M−1 s−1, and koff
Ca = 5× 102 s−1.

Defining the dissociation constant of ion j as KD
j = koff

j /kon
j , we have KD

Ca < KD
Na and thus

calcium binding to the network is chemically preferred.

4.2. Observed Swelling Dynamics

The initial conditions are given in Table 2. We choose total ion concentrations so
that chemical equilibrium within the gel gives the cross-link fraction α ≈ 0.92. We vary
the value of CNa in the bath to see the effects on swelling dynamics. In Figure 2a,c,e and
Figure 2b,d,f, we plot the distributions at times t = 0.16, 0.32, and 0.64 ms of θn and un
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for the sodium bath concentrations, C∗Na = 0.001 M and C∗Na = 0.05 M, respectively. The
velocity field is roughly radially symmetric and the largest magnitude network velocities
occur along the edge of the gel and decrease monotonically towards the gel center. The
maximum velocity decreases with time for both sodium bath concentrations, and it does so
more rapidly in the high-sodium case. Relative to the initial profile shown in Figure 1a, θn
in Figure 2 becomes progressively more homogeneous in space as time advances and the
network moves out from the center of the domain. The simulation with the higher value of
C∗Na has a more uniform network distribution at the final time pictured.

Table 2. Initial values of model variables in the gel and bath.

Variable Gel Bath

θn 0.5 0

CNa 3.9912× 10−4 M variable (C∗Na)

CCa 1.1414× 10−4 M 1.0× 10−3 M

CCl 3.2× 10−3 M variable

BMNa 8.0× 10−4 M 0 M

BMCa 2.2891× 10−3 M 0 M

BM2Ca 2.2954× 10−2 M 0 M

The distributions of CNa and us at t = 0.16, 0.32, 0.64 ms for the two simulations are
shown in Figure 3. For both the low-sodium case (Figure 3a,c,e) and the high-sodium one
(Figure 3b,d,f), we can see significant inward movement of the solvent. The magnitude of
the solvent velocity varies non-monotonically with distance from the gel center at x = 0.
At each time, it is highest at a distance roughly midway between the center and edge of the
gel. At the edge of the gel, the magnitude of us is much smaller than that for un because
θn � θs at that location. At the final time shown, the solvent velocity is also not radially
symmetric because of the no-slip boundary conditions that hold on the domain boundary.
The inward movement of solvent carries dissolved sodium ions from the bath into the gel
and contributes to an increase of CNa there.

We seek a concise measure of swelling extent, and apply it to simulations done with
three different values of C∗Na, namely, C∗Na = 0.001 M, C∗Na = 0.01 M, and C∗Na = 0.05 M,
which for brevity we refer to as the ‘low-sodium’, ‘medium-sodium’, and ‘high-sodium’
cases, respectively. Because of the approximate radial geometry of the gel, its swelling is
not adequately conveyed by plots of the distribution of θn along a line. To better quantify
the extent of gel swelling, we define the cumulative network volume fraction function.

β(r) =

∫
Ω1(r)

θndS∫
Ω θndS

. (65)

Here r is the radial distance from the origin, Ω1(r) is the disk of radius r centered
at the origin, and Ω is the whole computational domain. The value of β(r) represents
the fraction of the total network that is inside the disk of radius r. In Figure 4, we show
plots of β(r) at t = 0.32 ms and t = 0.56 ms for simulations with different C∗Na. The latter
time is chosen as the moment when the edge of the gel approximately reaches the domain
boundary for all three simulations. In the plot, the dashed black curve is the profile of β(r)
at t = 0. The dashed red curve shows β(r) if the network were uniformly distributed over
the disk with radius 20 µm. From the plots at t = 0.32 ms, we see that with the increase in
the sodium bath concentration, the curves of β(r) become closer to that for the uniform
distribution. In other words, the gel has expanded more and become more homogeneous
in space the larger the value of C∗Na. Comparison of the plots in Figure 4b for t = 0.56 ms
with those at t = 0.32 ms in Figure 4a shows the progression of swelling. At t = 0.32 ms,
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β(r) reaches very close to 1 by r ≈ 15 µm which indicates that essentially all of the network
is contained inside a disk of radius 15 µm, while for the later time it is not until r is close to
20 µm that β(r) approaches 1. At the later time, the differences in the extent of swelling for
the different values of C∗Na becomes clearer. The right parts of Figure 4a,b show blowups of
portions of the β(r) curves, and from them we can see clearly the monotonic increase in
overall swelling speed as C∗Na is increased.

(a) t = 0.16 ms, ||un||max = 2.67 cm/s. (b) t = 0.16 ms, ||un||max = 2.72 cm/s.

(c) t = 0.32 ms, ||un||max = 2.6 cm/s. (d) t = 0.32 ms , ||un||max = 2.53 cm/s.

(e) t = 0.64 ms, ||un||max = 2.2 cm/s. (f) t = 0.64 ms, ||un||max = 2.05 cm/s.

Figure 2. The distribution of the network volume fraction θn and the network velocity field un at
different times for (a,c,e) C∗Na = 0.001 M and (b,d,f) C∗Na = 0.05 M. All vectors have the same scale.
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(a) t = 0.16 ms, ||us||max = 0.25 cm/s. (b) t = 0.16 ms, ||us||max = 0.26 cm/s.

(c) t = 0.32 ms, ||us||max = 0.11 cm/s. (d) t = 0.32 ms, ||us||max = 0.13 cm/s.

(e) t = 0.64 ms, ||us||max = 0.53 cm/s. (f) t = 0.64 ms, ||us||max = 0.56 cm/s.

Figure 3. The concentration of dissolved sodium ions CNa and the solvent velocity field us at different
times for (a,c,e) C∗Na = 0.001 M and (b,d,f) C∗Na = 0.05 M. All vectors have the same scale.

4.3. Analysis of the Swelling Behaviors

The different swelling behaviors, that is, the different network and solvent relative
motions, and how they are influenced by bath concentrations, seen in the experiments
are a result of changes in the relative magnitudes and directions of forces acting on the
two materials. Six types of forces act on each of the network and solvent; these include
the three chemical forces arising respectively from short-range, entropic, and electrical
interactions and the three mechanical forces due to viscosity within each material, drag
between the network and solvent, and pressure. The viscous and drag forces arise in
response to relative motions and act to dampen them. They can transfer momentum but do
not otherwise initiate movement. The pressure and electrical forces enforce, respectively,



Gels 2021, 7, 244 18 of 32

the constraints that θnun + θsus must be incompressible and that electroneutrality must
always be maintained. They arise when motions due to other forces would otherwise cause
these constraints to be violated. The main driving forces for the motions are the short-range
interaction and entropic forces, the other forces modulate the response to these forces and
thereby help shape the overall motions. In this section, we examine these forces, how they
influence and are influenced by the distribution of particles and charges, and how they are
affected by the chemistry of ion binding/unbinding with the network.

(a)

(b)

Figure 4. The cumulative network volume fraction function β(r), defined in Equation (65), for
simulations with C∗Na = 0.001 M, 0.01 M, and 0.05 M. The dashed black curve is for the initial
profile. The dashed red curve is for a uniform distribution of network in a disk of radius 20 µm.
(a) t = 0.32 ms. (b) t = 0.56 ms.

Initial chemical force densities. In Figure 5 we plot the initial chemical force density
components fI

n, fS
n, and so on, which act on the network and solvent. At this time, the

entropic and short-range interaction force densities, which are nonzero near the initial edge
of the gel, contribute to initiate swelling. The electrical force densities fE

n and fE
s are zero at

t = 0.
Total chemical and mechanical force densities. In Figure 6, we plot the variation of

the chemical force densities along the positive x-axis for the low- and high-sodium cases.
By symmetry, all of these force densities are in the x-direction. From Figure 6a,c, we see
that there is a large positive chemical force density on the network which is the driving
force for the network’s swelling. This force density is larger for the high-sodium case and
becomes progressively more so as time advances. The differences are largest close to the
center of the gel (3 < x < 6). In Figure 6b,d, we see that the total chemical force density on
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the solvent acts in the negative x-direction, and that, at t = 0.32 ms, the changes in this total
force density when the sodium bath concentration is increased, are more complicated than
is the change in the total network force density. With the increase in C∗Na, the chemical force
density on the solvent pushing it towards the center of the gel decreases in strength for
0 < x < 6 and increases in strength in the remainder of the gel, 6 < x < 15. Since there is a
local force balance in both the network and the solvent at every point, the total mechanical
force density on each of the network and solvent must balance the total chemical force
densities just described.
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Figure 5. Chemical force densities on the network and solvent at t = 0. (a) chemical force on network.
(b) chemical force on solvent.

Chemical force density components. The components of the chemical force densi-
ties on the network and solvent at t = 0.16 ms and 0.32 ms are shown, respectively, in
Figure 6e,g and Figure 6f,h. By examining these force density components and what other
changes between the low- and high-sodium cases affected them, we seek to explain the
greater swelling tendency of the high-sodium case.

Overview of chemical force components. For both sodium bath concentrations, the
short-range and entropic force densities on the network act in the positive x-direction,
consistent with the direction of gel swelling, and the electrical force density on the network
acts in the negative x-direction, thus opposing its outward motion. For the solvent, the
short-range and entropic force densities act in the negative x-direction and thus contribute
to swelling by allowing solvent to displace network within the gel. The electrical density
force acts in the positive x-direction and thus opposes swelling. For x < 6, the larger
chemical force density on the network for the high-sodium case is due to a combination of
a larger positive short-range interaction force density and a smaller magnitude negative
electrical force density, as well as to a somewhat less positive entropic force density for
x < 8. For 6 < x, the larger chemical force density on the network is due primarily to a
less negative electrical force density. For the solvent, the higher sodium bath concentration
results in the short-range interaction force density and the entropic force density on the
solvent becoming less negative for x < 7 while they are largely unchanged for larger x. The
positive electrical force density on the solvent decreases throughout the gel (0 < x < 15).
The net effect is a less negative total chemical force density on the solvent for small x and
the more negative one for large x shown in Figure 6d.
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Figure 6. Network and solvent chemical force densities along the positive x-axis. Total chemical
force densities on network and solvent at (a,b) t = 0.16 ms and (c,d) t = 0.32 ms. Components of the
network and solvent chemical force densities for C∗Na = 0.001 M (solid) and C∗Na = 0.05 M (dashed)
at (e,f) t = 0.16 ms and (g,h) t = 0.32 ms.
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Entropic force density. The entropic forces are the easiest to understand. The entropic
force density on the network given in Equation (35) always pushes the network down
the gradient of the network volume fraction and has magnitude that increases with the
magnitude of ∇θn and with the value of θn itself. Hence, the lower value of θn for x < 7
and the less steep gradient in θn for x < 8, shown in Figure A1a for the high-sodium case
explains the smaller entropic force on the network in that case. For x > 8, the profiles of
θn are very similar for the two simulations and the corresponding entropic force densities
on the network are almost the same. The entropic force density on the solvent is equal
and opposite to that for the network and therefore changes in it are also always equal and
opposite to those on the network.

Network short-range force densities. As seen in Figure 6e,g, the short-range interac-
tion force densities on the network are large and positive for both sodium bath concentra-
tions, and significantly larger near the gel’s center for the high-sodium case at t = 0.32 ms.
From Equation (47), we calculate the short-range interaction force density acting on the
network to be

fI
n = − kBT

νn

{
χ(α)θnθs∇θs + θn

(
1
2

θ2
s χ′(α) + (µ0

n(α))
′
)
∇α
}

, (66)

where ′ indicates differentiation with respect to α. From this formula, we see that the
short-range interaction forces depend on the magnitudes of the network volume fraction
θn and the cross-link fraction α as well as their respective spatial gradients. Using the
parameter values from Table 1, we find that χ′(α) = 18 and (µ0

n)
′(α) = −1/4, and so we

can write
fI

n =
kBT
νn

{
χ(α)θn(1− θn)∇θn − θn

(
9θ2

s − 1/4
)
∇α
}

(67)

where χ(α) ranges from 0 for α = 1 to−18 for α = 0. There is a contribution in the direction
opposite that of ∇θn and another contribution in the direction of lower values of α (unless
θ2

s < 1/36). The first of these contributions has magnitude which grows rapidly with the
decreases of α that occur when cross-links break, and progressively decreases as θn moves
from 1/2 toward 0, that is, as swelling proceeds. The second contribution has magnitude
proportional to the local network volume fraction and to the magnitude of the gradient of α.
In the setting of our experiments, both terms contribute to push the network toward larger
values of x, that is, to swell. In Figure A1a we see that both θn and the size of its gradient
are smaller for the high-sodium case for x < 7, and from Figure A1b, we see that α is lower
and decreases more rapidly with x for high sodium. The differences in the behavior of
the cross-link fraction α, including a significantly more negative value of χ(α) in the first
term in the expression for fI

n in Equation (67) and the larger gradient in the second term,
more than compensate for the changes in θn to produce a greater short-range force for the
high-sodium case.

Dynamics of α and the bound ions. The reasons for the different dynamics of the
cross-link fraction α for the different sodium bath concentrations can be traced to differences
in the dissolved and bound ion distributions shown in Figures A2 and A3, respectively.
With the higher sodium bath concentration, there is a much larger flux of sodium ions from
the bath into the gel. This greatly increases CNa within the gel, and also leads to a large
increase in the concentration of network-bound sodium ions BMNa. The relative size of the
dissolved sodium ion and dissolved calcium ion concentrations in the high-sodium case
allows for greater binding of sodium to the network even though we have assumed that
calcium binds more tightly to the network than does sodium, i.e., KD

Ca < KD
Na. As a conse-

quence of the greater sodium binding, the concentration of unoccupied binding sites on
the network m (Figure A3g,h) is greatly reduced and this reduces the opportunities for dis-
solved calcium and singly-bound calcium ions to bind to the network. Because of this, the
density of doubly-bound calcium ions is lower for the high-sodium case (see Figure A3e,f),
which results in the lower network cross-link fraction that we discussed above.
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Solvent short range force. The short-range interaction force densities on the solvent
are shown in Figure 6f,h. Those in the high-sodium case are smaller in magnitude for
1 < x < 8 and elsewhere approximately the same compared to the force densities for the
low-sodium case. From Equation (48), and using the parameter values from Table 1, we
find that

fI
s =

kBT
νn

{
− χ(α)θn(1− θn)∇θn − 9θ2

n(1− θn)∇α
}

. (68)

In the first term, χ(α) < 0 and ∇θn < 0, so this term contributes a force on the solvent
towards the center of the gel, while the second term contributes a force in the direction
of lower α, that is away from the gel’s center. As a result of the opposing effects of these
two terms of fI

s , the effects of the short-range interaction forces on the solvent’s motion
are complex.

Balance between chemical and mechanical forces. Since there is a local force balance
in both the network and the solvent individually at every point, the total mechanical
force density must balance the sum of the chemical force densities just described. From
Figure 7a,c, we see that all of the components of the mechanical force on the network are
negative. These forces are dominated by the drag forces which change little between the
simulations with low and high sodium. The pressure forces on the network are very small
and also differ little for the two sodium bath concentrations. The viscous forces are also
very small except for the interval 6 < x < 10 for both sodium bath concentrations at
t = 0.16 ms and for the interval 8 < x in the low sodium case, and in this interval as well
as and the interval 2 < x < 6 for the high-sodium case at t = 0.32 ms. In Figure 7b,d, we
see that, at both t = 0.16 ms and t = 0.32 ms, there is a large positive drag force on the
solvent which changes little with the sodium bath concentration, there is an extremely small
viscous force, and there is a moderately large and negative pressure force which becomes
significantly more negative for x < 7 as the sodium bath concentration is increased.

Electrical force densities and electromigration. As discussed above, in the case of
the higher sodium bath concentration, the larger influx of sodium into the gel leads to a
faster decrease in the cross-link fraction α and thereby to larger short-range interaction
forces that promote faster swelling. The larger sodium influx also leads to substantially
different distributions of ions within the solvent and different net charges on each of the
network and solvent. These affect the magnitude of the electrical force densities which act
on the network and solvent and also influence the magnitude, distribution, and nature of
the electromigration fluxes of dissolved ions needed to maintain electroneutrality.

The difference in ion distributions can be seen in the plots of dissolved ion concentra-
tions in Figure A2 and bound ion concentrations in Figure A3. The left and right columns
of Figure A2 show the variations along the positive x-axis of the total concentrations θsCj
(amount per total volume) of sodium, calcium, and chloride ions initially and at times
t = 0.32 ms and t = 0.64 ms for the low- and high-sodium cases, respectively. Comparing
the concentrations in the high-sodium case with the corresponding ones in the low-sodium
case, we see that (i) all of the dissolved ion concentrations are higher, with those of sodium
and chloride being much higher, and (ii) the gradients of the concentrations are much larger,
in particular in the center of the gel (0 < x < 6). In Figure A3, we plot the concentrations
of ions bound to the network and the concentration m of unoccupied negatively charged
sites on the network. In Figure A3e,f we see that BM2 Ca is lower for the high-sodium case
than for the low one, consistent with the greater decrease in the cross-link fraction α, and
the larger short-range interaction force in the high sodium case. We also see that BMCa
is somewhat lower in the high-sodium case, which lowers the positive charge carried by
the network. Most striking, however, is the much larger bound sodium concentration
BMNa and the correspondingly much lower unoccupied site concentration m, especially for
3 < x, as a result of dissolved sodium binding to the network. The occupation of sites that
would otherwise contribute a negative charge to the network pushes the net charge on the
network to be much more positive in the high-sodium case and, simultaneously, makes the
net charge on the solvent much more negative. These changes in the charge distribution
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between network and solvent have a strong effect on the electrical force densities fE
n and fE

s .
When combined with the relative motion of the network and solvent, the change in charge
distribution also has major implications for the need for electromigration and the way that
those needs are met.
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Figure 7. Components of the network and solvent mechanical force densities along the positive
x-axis for C∗Na = 0.001 M (solid) and C∗Na = 0.05 M (dashed) at (a,b) t = 0.16 ms and (c,d) t = 0.32 ms.
Here fV

i , fP
i , and fD

i represent the densities of viscous force, pressure force, and drag force on phase i
(i = s, n), respectively.

Expressions for the electrical force density on the network, and the equal and opposite
electrical force density on the solvent, are given in Equations (43) and (44). The electrical
force densities along the positive x-axis on the solvent and network at t = 0.16 ms and
t = 0.32 ms are shown in Figure 6e–h, respectively, and they both oppose swelling for both
sodium bath concentrations. As is evident from that figure, these force densities are much
larger for the low-sodium case and thus are a greater hindrance to swelling in that case.
The electrical force densities are proportional to the net amounts of charge carried by the
network and the solvent, as well as to the induced electric field −∇Ψ. As we have just
discussed, the net negative charge on the solvent is greater in the high-sodium case, but,
perhaps paradoxically, the electrical force density is much smaller in magnitude in that
case, and, consequently, the electrical forces oppose swelling much less in the high-sodium
case (compare Figure 6e,g with Figure 6f,h). While both a higher short-range force density
and a lower magnitude electrical force density contribute to the larger total chemical force
on the network for x < 6, it is predominantly the lower-magnitude electrical force density
that is responsible for the larger total positive chemical force on the network for 6 < x < 15.

To understand why the electrical forces oppose swelling more strongly in the low-
sodium case, we examine the distribution of charges on the network and in the solvent as
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well as the factors contributing to alter and maintain the charge balance at each location.
To that end, we define the net charge density at any location as

P =
(

BMNa + 2BMCa + 2BM2Ca −mtotθn
)
+ θs

(
CNa + 2CCa − CCl

)
, (69)

in which the charges on the network and the solvent appear in the first and second
parenthetical terms on the right hand side, respectively. The value of P is affected by
the spatial transport of all charged species by advection, diffusion, and electromigration,
but is not directly affected by the reactions in which ions bind to or unbind from the
network. These reactions shift charge between the phases, but not from one spatial location
to another. The value of P must always be zero and so the contributions to its rate of change
must sum to zero. To examine these contributions, we define the advection, diffusion, and
electromigration charge flux vectors as

JA = un
(

BMNa + 2(BMCa + BM2Ca)−mtotθn
)
+ usθs

(
CNa + 2CCa − CCl

)
, (70)

JD = −θs
(

DNa∇CNa + 2DCa∇CCa − DCl∇CCl
)
, (71)

and
JEM = −θs

(
DNaCNa + 4DCaCCa + DClCCl

)
∇Ψ. (72)

JA describes the net flux of charge due to the movement of the network and the solvent,
and JD and JEM describe analogous charge fluxes from diffusion and electromigration
of dissolved ions, respectively. Each of these fluxes is calculated by multiplying the
corresponding particle flux by that particle’s valence.

Each of these fluxes J contributes the quantity −∇ · J to the rate of change of P. The
contribution from advection is

RA = −∇ · JA = −∇ ·
(

un
(

BMNa + 2BMCa + 2BM2Ca)−mtotθn
)
+ usθs

(
CNa + 2CCa − CCl

))
, (73)

and the contributions made by diffusion and electromigration of ions in the solvent are

RD = −∇ · JD = ∇ ·
(

θs
(

DNa∇CNa + 2DCa∇CCa − DCl∇CCl
)
,
)

, (74)

and
REM = −∇ · JEM = ∇ ·

(
θs
(

DNaCNa + 4DCaCCa + DClCCl
)
∇Ψ

)
, (75)

respectively. We further decompose JEM and REM into portions connected with the dis-
solved sodium, calcium, and chloride ions separately.

REM
Na = −∇ · JEM

Na =
(

θsDNaCNa

)
∆Ψ +∇

(
θsDNaCNa

)
· ∇Ψ, (76)

with similar expressions for JEM
Ca , REM

Ca , JEM
Cl , and REM

Cl .
The distributions of charge density on the network and the solvent at t = 0 ms and

t = 0.32 ms are plotted in Figure 8a,b for the low- and high-sodium cases. As the gel swells,
the charge distributions for both simulations are much extended in space relative to their
initial profiles. For the reasons discussed above, there is greater charge polarity between
the network and solvent in the high-sodium case, that is, there is a larger positive charge
on the network and a larger magnitude negative charge on the solvent in that case. The
distributions of RA and RD from the two simulations are plotted in Figure 8c,d. We see
that for both sodium bath concentrations, the advective transport makes a much larger
magnitude contribution to the rate of local charge accumulation than does diffusion. Since
the positively charged network is moving out, i.e., in the positive x-direction, while the
negatively charged solvent is moving in the opposite direction toward the center of the
gel, their motion, if not compensated for, would contribute to an accumulation of negative
charges near the center of the gel and an accumulation of positive charges close to the gel’s
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edge. Further, because the positive charge on the network (and equal negative charge on
the solvent) is larger for the high-sodium case, relative motion of the network and solvent
would lead to greater charge accumulations in that case. The relative motions of network
and solvent would lead to violation of the electroneutrality condition.

To maintain the electroneutrality condition, the local charge accumulations from
advection and diffusion must be counterbalanced by the electromigration of the dissolved
ions. In Figure 8e,f, the dashed curves show the contribution to charge accumulation due
to the combination of advective and diffusive transport and we see the greater shifts of
charge for the high-sodium case than for the low-sodium case. The solid curves show the
local charge accumulation due to the electromigration flux. These plots show that for both
simulations, the sum of the contributions to the charge accumulation is very close to zero,
indicating that the electroneutrality condition is maintained by the electric fields induced
in each simulation. For the high-sodium simulation, a more rapid charge accumulation
from electromigration fluxes is required to counterbalance the more than two-fold larger
value of RA + RD.

In Figure 8g,h, we plot Ψx and ∆Ψ ≡ Ψxx + Ψyy at t = 0.32 ms for the low- and
high-sodium cases. We see that for both cases, Ψx > 0 along the positive x-axis, and that
the electric field is much weaker for the high-sodium simulation. In fact, the peak value of
Ψx in the low-sodium case is more than 4 times that in the high-sodium case. The values of
Ψx shown correspond to between ≈20 mV and ≈100 mV potential differences between the
center of the gel and the bath, consistent with values reported in the literature [3]. We see
that ∆Ψ can have either sign. It is positive between x = 0 and x ≈ 10, and negative between
there and the edge of the gel at x ≈ 14. For high sodium, ∆Ψ is large and positive only very
close to the center of the gel, while for low sodium, ∆Ψ has large positive values over a
much larger x-interval. For x < 10, ∆Ψ is larger for low sodium than for high sodium. For
10 < x < 14, the magnitude of ∆Ψ is ≈10-fold larger for low sodium than for high sodium.

To understand how the weak electric field in the high-sodium case can propel more
than 2-fold greater electromigration while also giving rise to a much smaller magnitude
electrical force, we consider the rate of change in local charge resulting from the elec-
tromigration of sodium ions as given by Equation (76), and which along the x-axis can
be written

REM
Na =

(
θsDNaCNa

)
∆Ψ +

(
θsDNaCNa

)
x
Ψx (77)

because Ψy = 0 there by symmetry. We also consider the contribution to the electric force
fE

s on the solvent from the dissolved sodium ions,

fE
s,Na = − kBT

νsstot θsCNaΨx. (78)

The two terms making up REM
Na in Equation (77) and the expression for fE

s,Na in
Equation (78) all involve products of the sodium concentration CNa or its derivative (CNa)x
with the electric field ∇Ψ = (Ψx, 0) or its divergence ∆Ψ = ∇ · ∇Ψ, but the products in
the three terms are distinct, and hence can have very different sizes depending on both the
levels and variations in ion concentrations and on both the strength of the electric field and
its divergence.
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Figure 8. Distribution of charge-related variables along the positive x-axis. (a) Initial charge distribu-
tions on the network and solvent. All other plots are at t = 0.32 ms. (b) Charge distributions on the
network and solvent C∗Na = 0.001 M and C∗Na = 0.05 M. (c,d) The rates of charge accumulation due
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(h) Ψxx + Ψyy along the positive x-axis.
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In Figure 9, we plot the two terms (θsDNaCNa)∆Ψ and (θsDNaCNa)xΨx in Equation (77)
for REM

Na and the corresponding terms in the analogous expressions for REM
Ca and REM

Cl at
t = 0.32 ms for both the low- and high-sodium simulations. In Figure 9a,c,e, we see that for
low sodium, the overall rate of accumulation of positive charge for x < 10 seen in Figure 8e
is mostly attributable to the (θsDC)∆Ψ terms for sodium, calcium, and chloride with much
smaller contributions from (θsDNaCNa)xΨx and the corresponding terms for calcium and
chloride. For high sodium, Figure 9b,d,f show that the overall accumulation of positive
charge for x < 10 seen in Figure 8f is almost entirely attributable to the (θsDNaCNa)xΨx
and (θsDClCCl)xΨx terms for the subregion 2 < x < 6, where the gradients in the sodium
and chloride concentrations are so large that they compensate for a weak electric field.
The term (θsDNaCNa)∆Ψ and the corresponding terms for calcium and chloride contribute
most to the rate of charge accumulation for x < 2 where ∆Ψ is large and in 6 < x < 10
where the sodium and chloride concentrations are high.
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Figure 9. Rates of charge accumulation due to electromigration of various ions at t = 0.32 ms. All
solid curves represent the contribution from terms containing Ψx. All dashed curves represent the
contribution from terms containing ∆Ψ.
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At the edge of the gel, 10 < x < 14, the overall rates of negative charge accumulation,
shown in Figure 8e,f for both low and high sodium are mostly due to the (θsDNaCNa)∆Ψ,
(θsDCaCCa)∆Ψ, and (θsDClCCl)∆Ψ terms, with calcium and chloride being more important
for low sodium, and sodium and chloride being more important for high sodium. The
small contributions in this region from the (θsDC)xΨx terms actually contribute to positive
charge accumulation. These latter terms are small in this region for both high and low
sodium because Ψx is small there for high sodium and (θsC)x is small there for all of the
dissolved ions for low sodium.

In terms of the relative size of the dominant contributors for the low- and high-sodium
cases, it is interesting to look at the (θsDClCCl)∆Ψ terms in the region 10 < x < 14 for both
cases. For high sodium this term is approximately 5 times its value in the low-sodium case,
even though ∆Ψ is an order of magnitude smaller for high sodium, as observed earlier.
This is possible because the small magnitude ∆Ψ is multiplied by the≈50-fold higher value
of θsCCl in 10 < x < 14 for high sodium.

5. Discussion

In this work, we have derived a model of mucus-like polyelectrolyte gels. In particular,
our model accounts for the differing chemical affinities of the network polymers for various
mono- and divalent ions, and the way in which this chemistry impacts the various forces
that govern the dynamics of swelling of the gel. Simulation of the model was carried
out using techniques that we had previously developed for a similar polyelectrolyte gel
model [20]. In our numerical experiments, we placed a sample of dense, highly cross-linked
gel containing a high concentration of calcium into a bath containing a high concentration
of monovalent sodium and a much lower concentration of divalent calcium. We quantified
the rate of swelling as a function of the bath sodium concentration. It was shown that the
rate of swelling is (at early times) an increasing function of the sodium concentration.

The dependence of swelling speed on bath sodium concentration can be understood
as a competition between several forces. Namely, as the bath concentration of sodium
is increased, sodium more readily displaces calcium ions associated with the network,
breaking cross-links and altering the short-range interaction potential, producing a larger
force density that drives swelling. However, relative motion of the network and solvent
(which both carry net charge) would lead to charge accumulation, which is prohibited by
electroneutrality. Thus, an electric field is induced that rearranges charged species (both
dissolved and associated to the network) in a way that maintains local charge balance.
This electric field produces a force density on the network (and solvent) phase that resists
swelling. Counterintuitively, in the case of high bath sodium, a relatively weak electric field
can drive a relatively strong electromigration of dissolved ions to keep the gel electrically
neutral. This in turn reduces the magnitude of the electric force density resisting relative
motion of the phases, thus allowing rapid swelling to occur. Our simulation results show
that the induced electric field is strongly affected by the swelling dynamics, the chemical
binding kinetics and the distribution of charged species.

We note here that in this investigation, we have focused on a somewhat restricted
subset of possible chemical parameters. In particular, we have assumed that the dissociation
constant of network–sodium binding is always greater than the dissociation constant of
network–calcium binding. Thus, binding with calcium is chemically preferred. There is
some indication that this is the case in mucus networks [4]. However, attempts to measure
the affinities of sodium and calcium binding with mucus have indicated that mucus
networks may exhibit multiple distinct sites to which cations can associate, and that they
may have distinct chemical characteristics [2]. Further complicating the issue, it appears
that these parameters may be pH-dependent [31]. As such, this work may be something of
an approximation to the chemistry-dependent swelling of mucus. However, the modeling
framework is by no means restricted to calcium preferred chemistry, and may be used in
future investigations of swelling behavior in chemically distinct parameter regimes.
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Finally, while the work presented here was meant to understand the swelling behavior
of a mucus-like gel, we note that neither the modeling framework, nor the simulation
techniques we have employed are restricted to mucus dynamics. Indeed the modeling
framework is extremely general, and may be employed to study a vast array of gels by
altering, for example, the ionic species included, the binding/unbinding kinetic constants,
the rheology of the network phase, or the short-range interaction energies of the solvent
and network. Thus, this framework provides a very general tool with which to study many
dynamic swelling and deswelling phenomena of polyelectrolyte gels.

The details of the numerical algorithm are discussed in [20]. Please contact jdu@fit.edu
to inquire about obtaining a copy of the code used for the simulations in this paper.
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Figure A1. Simulations with sodium bath concentrations C∗Na = 0.001 M and 0.05 M. Distributions
of the network volume fraction θn along the positive x-axis at (a) t = 0.32 ms and (b) t = 0.64 ms.
Distributions of the network cross-link fraction α at (c) t = 0.32 ms and (d) t = 0.64 ms.
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Figure A2. Simulations with sodium bath concentrations (a,c,e) C∗Na = 0.001 M and (b,d,f)
C∗Na = 0.05 M. Distribution of dissolved ions along the positive x-axis (concentrations per total
volume) at t = 0, 0.32, and 0.64 ms for (a,b) sodium, (c,d) calcium, and (e,f) chloride.
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Figure A3. Simulations with sodium bath concentrations (a,c,e) C∗Na = 0.001 M and (b,d,f)
C∗Na = 0.05 M. Distribution of bound ions along the positive x-axis (concentrations per total volume)
at t = 0, 0.32, and 0.64 ms for (a,b) sodium, (c,d) calcium bound to one network monomer, and
(e,f) calcium cross-linking two network monomers, and (g,h) unoccupied network binding sites.
Note that only calcium bound to one network monomer and unoccupied network binding sites carry
charge, a single positive or negative charge, respectively.
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