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Predication of oxygen requirement 
in COVID‑19 patients using 
dynamic change of inflammatory 
markers: CRP, hypertension, 
age, neutrophil and lymphocyte 
(CHANeL)
Eunyoung Emily Lee1,11, Woochang Hwang2,11, Kyoung‑Ho Song 3, Jongtak Jung3, 
Chang Kyung Kang 4, Jeong‑Han Kim5, Hong Sang Oh5, Yu Min Kang6,7, Eun Bong Lee8, 
Bum Sik Chin9, Woojeung Song10, Nam Joong Kim4* & Jin Kyun Park8*

The objective of the study was to develop and validate a prediction model that identifies COVID‑
19 patients at risk of requiring oxygen support based on five parameters: C‑reactive protein (CRP), 
hypertension, age, and neutrophil and lymphocyte counts (CHANeL). This retrospective cohort study 
included 221 consecutive COVID‑19 patients and the patients were randomly assigned randomly to 
a training set and a test set in a ratio of 1:1. Logistic regression, logistic LASSO regression, Random 
Forest, Support Vector Machine, and XGBoost analyses were performed based on age, hypertension 
status, serial CRP, and neutrophil and lymphocyte counts during the first 3 days of hospitalization. 
The ability of the model to predict oxygen requirement during hospitalization was tested. During 
hospitalization, 45 (41.8%) patients in the training set (n = 110) and 41 (36.9%) in the test set (n = 111) 
required supplementary oxygen support. The logistic LASSO regression model exhibited the highest 
AUC for the test set, with a sensitivity of 0.927 and a specificity of 0.814. An online risk calculator for 
oxygen requirement using CHANeL predictors was developed. “CHANeL” prediction models based on 
serial CRP, neutrophil, and lymphocyte counts during the first 3 days of hospitalization, along with age 
and hypertension status, provide a reliable estimate of the risk of supplement oxygen requirement 
among patients hospitalized with COVID‑19.

Since the first case in Wuhan, China, in December 2019, the novel coronavirus disease 2019 (COVID-19) has 
spread rapidly world-wide. The clinical course and outcome of COVID-19 varies markedly from asymptomatic 
and mild, to critical and lethal. While young people without underlying comorbidities tend to have asymptomatic 
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or mild disease, elderly patients and those with comorbidities (such as cardiovascular disease, diabetes mellitus, 
hypertension, chronic lung disease, cancer, and chronic kidney disease) are at an increased risk of death from 
respiratory failure and  sepsis1–4.

In the absence of effective and/or preventive treatments, the outcome for critically ill COVID-19 patients 
depends on the availability of supportive intensive medical  care5. The rapid spread of COVID-19 as a global 
pandemic has brought extraordinary challenges to the healthcare system. When the healthcare system is over-
whelmed by a massive influx of patients, mortality  increases6. In the face of limited resources, it is critical to 
reliably identify COVID-19 patients who require close monitoring and intensive care, including supplementary 
oxygen and/or mechanical ventilation, while those patients with a good prognosis can be monitored at home or 
managed at a living and treatment  center7. A prediction model that can identify patients at high risk of respira-
tory failure at an early stage will help optimal allocation of limited resources.

During the early stage of COVID-19 infection, immunologic responses differ between survivors and non-
survivors2. Since clinical and laboratory parameters (especially inflammatory markers) are subject to dynamic 
change, trends (i.e., time-series measurements) might better capture onset of a potentially lethal hyper-inflam-
matory immune response, which is associated with a severe clinical course and a poor  outcome8.

Here, we aimed to construct a prediction model that identifies COVID-19 patients at high risk of develop-
ing respiratory failure. Based on our previous findings, we a priori selected five parameters: CRP, hypertension 
status, age, and neutrophil and lymphocyte counts (CHANeL). We hypothesized that the pattern of CRP, and 
neutrophil and lymphocyte counts during the first 3 days of hospitalization are predictive of the type (e.g., 
hyper-inflammatory) of inflammatory response likely to occur during the course of infection. We constructed 
several prediction models including a logistic regression, logistic LASSO regression, a Random Forrest model, 
a Support Vector Machine, and XGBoost. We found that the logistic LASSO regression model showed high 
sensitivity and specificity for identifying patients with COVID-19 who are at high risk of respiratory failure 
during hospitalization.

Results
Baseline characteristics. Between January 24, 2020 and July 10, 2020, 280 consecutive patients with 
COVID-19 were enrolled. After excluding patients with an unclear diagnosis (n = 3) and missing data (n = 56), 
221 patients were assigned randomly to a training set (n = 110) or a test set (n = 111) (Fig. 1). The mean age of 
the patients in the training and test sets was 56.0 and 55.0 years, respectively, and 58.2% and 65.8%, respectively, 
were male. The clinical characteristics of the patients in the training and test sets at the time of admission are 
shown in Table 1. There was no difference in baseline pulse oximetric saturation/fraction of inspired oxygen 
 (SpO2/FiO2) ratio and other clinical and laboratory features between the groups. The prevalence of hypertension, 
diabetes and chronic kidney disease were similar in the training set and the test set (Table 1.) Forty-six patients 
(41.8%) in the training set and 41 (36.9%) in the test set required supplementary oxygen during hospitalization. 
The patients received supplementary oxygen therapy when clinically indicated  (SpO2 < 92% or any shortness of 
breath on room air). The mode of oxygen administration was subject to change based on the patient’s condition 
as described in Supplementary Table S2.

Prediction models. We developed multivariate risk prediction models to assess the primary outcome (i.e., 
requirement of supplementary oxygen during hospitalization) based on five variables. All five models showed a 
high AUC > 0.9 for the training set and test set. Among them, the logistic LASSO regression model showed the 
highest AUC for the test set (Fig. 2A,B).

Sensitivity and specificity of the prediction models. The probability cut-off for each model was set 
at 0.3 to increase the sensitivity (at the cost of specificity). Sensitivity, specificity, predictive values, and accuracy 
of the predictor models for both the training and test set were high (Table 2 and Fig. 2C,D). Among the test 
models, the logistic LASSO regression model showed the highest sensitivity (0.927) and specificity (0.814) for 
the test set. All models had a high negative predictive value (NPV). When the probability cut-off value was set 
to > 0.4, the specificity (for the training and test set) and accuracy (for the training set) improved, but the sensi-
tivity decreased.

Estimated predictive value of the CHANeL parameters. The individual contribution of each of the 
five predictors was estimated (Supplementary Table S1). In the logistic LASSO regression model, the CRP value 
on Day 3 had the highest impact in all five models, whereas the CRP level on Days 1 and 2 played less of a role. 
In the Random Forest model, variables of the first 3 days were important.

Construction of a calculator. An online calculator based on the logistic LASSO regression model and the 
Random Forest model using the CHANeL predictors was developed to calculate the risk score for a hospitalized 
patient with COVID-19 requiring supplementary oxygen during hospitalization (http:// 166. 104. 118. 164: 3838/ 
chanel/) (Fig. 3).

http://166.104.118.164:3838/chanel/
http://166.104.118.164:3838/chanel/
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Discussion
To the best of our knowledge, this study was the first attempt to include pattern of the routine inflammatory 
markers during the early stage of disease in model to predict requirement for supplementary oxygen (i.e., res-
piratory failure) among hospitalized patients with COVID-19. All models based on CHANeL (age, hyperten-
sion, serial CRP, and neutrophil and lymphocyte counts during the first 3 days of hospitalization) showed high 
accuracy.

The unique strength of the CHANeL prediction models is the hypothesis-driven a priori selection of the five 
predictors. We showed previously that a hyper-inflammatory immune response, characterized by high CRP 
levels, high neutrophil counts, and low lymphocyte counts, was associated with a requirement for supplemen-
tary oxygen support and a worse outcome, whereas a normal inflammatory response, characterized by minimal 
elevation of CRP, a normal neutrophil count, and a normal lymphocyte count, was associated with an excellent 
 outcome8. The inflammatory markers were similar on day of admission and started to differ between patients 
who required supplementary oxygen and those who did not in the first few days of illness. The difference become 
prominent in the second week of hospitalization. Thus, the dynamic changes (i.e., patterns) in common inflam-
matory markers (CRP, and neutrophil and lymphocyte counts) in early disease course were strongly associated 
with overall inflammatory response and clinical severity of  COVID198. A retrospective study of 136 COVID-
19 patients showed that initial clinical and laboratory characteristics at admission were not predictive of this 
deterioration, further supporting that parameters measured at a single time point might not be sensitive enough 
to identify patients at  risk9. To increase the model accuracy, we included two known demographic risk factors 
(age and hypertension), which have been identified consistently as demographic characteristics associated with 
a worse  outcome2,5.

Numerous laboratory parameters have been suggested as risk factors for a worse outcome of COVID-19 
disease; these include increased neutrophil counts, decreased lymphocyte counts (and, thus, the neutrophil/

Figure 1.  Study design and patient flow. *National Medical Center (n = 128), Seoul National University Hospital 
(n = 46), Armed Forces Capital Hospital (n = 41), Myongji Hospital (n = 40), and Seoul National University 
Bundang Hospital (n = 25). ALC, absolute lymphocyte count; ANC, absolute neutrophil count; CRP, C-reactive 
protein.
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lymphocyte ratio), elevated CRP levels, and elevated d-dimer  levels2,4,10–13. Others identified serum hydrogen 
sulfide and soluble urokinase plasminogen activator receptor as potential predictors for severe pneumonia in 
COVID-1914,15. Furthermore, blood levels of interleukin (IL)-1, IL-6, IL-8, and tumor necrosis factor (TNF) are 
associated with severity and prognosis of COVID-1916. TNF and IL-6 drive hepatic synthesis of CRP, whereas IL-8 
increases neutrophil recruitment. Therefore, the levels of these cytokines are reflected indirectly by CRP levels 
and neutrophil counts in the CHANeL model. Liang et al. developed a clinical risk score to predict the probability 
of developing a critical illness. The score system was based on ten variables measured at admission, all of which 
were selected from an initial 72  candidates17. Similarly, the other prediction models for severe COVID-19 such 
as CANPT score or CMR tool are based on scoring of numerous parameters at  admission18,19. By contrast, the 
CHANeL model is based on the hypothesis that the inflammatory response ultimately determines the clinical 
course of COVID-19. Since clinical manifestations such as hemoptysis, dyspnea, chest X-ray abnormalities, and 
mental status change, and laboratory parameters are considered to be the result (not the cause) of a systemic 
inflammatory response to viral infection, they were not included. Despite, or because of, its simplicity, the 
performance of the CHANeL-based prediction models was high; all models had an AUC of > 0.9 (Fig. 1). The 
five different models were indirectly compared with regards to sensitivity, specificity, positive predictive value, 
negative predictive value and accuracy, and the logistic LASSO model and the Random Forrest Model showed 
the best sensitivity and specificity (Table 2, Fig. 2C); therefore, they were used to develop a risk calculator for 
bedside use (Fig. 3). Interestingly, in the logistic LASSO model, day 3 level of the CRP (among the first 3 days 
values) had the highest impact. However, in other models, the values on day 1–3 (the “trend” over the first 3 days) 
were important (Supplementary table S1), emphasizing the different algorithms used in the 5 prediction models.

Identifying patients with a hyper-inflammatory immune response early during the disease course may enable 
timely treatment of those at risk of high mortality. This is of particular interest since progression to acute respira-
tory distress syndrome or sepsis often marks the “point of no return”, where most treatment options (including 
high dose glucocorticoids) become  ineffective20. Therefore, targeted blockade of additional detrimental hyper-
inflammatory responses using early glucocorticoid and/or a monoclonal antibody (neutralizing proinflammatory 
IL-6) therapy might prevent  exacerbation21,22. This can, optimally, facilitate allocation of limited resources during 

Table 1.  Clinical characteristics of the patients in the cohort. Normally distributed values are expressed as the 
mean (standard deviation), and non-normally distributed values are expressed as the median [interquartile 
range].

Training set (n = 110) Test set (n = 111) P-value

Male, n (%) 64 (58.2) 73 (65.8) 0.306

Age (years) 56.0 [37.0; 68.0] 55.0 [34.5; 67.5] 0.751

Comorbidities, n (%)

 Hypertension 25 (22.7) 21 (18.9) 0.595

 Diabetes 21 (19.1) 12 (10.8) 0.124

 Chronic kidney disease 5 (4.5) 3 (2.7) 0.497

Time from symptom onset to admission (days) 5.0 [1.0; 10.0] 5.0 [2.0; 10.0] 0.292

SpO2/FiO2 ratio 457.1 [339.3; 466.7] 461.9 [447.6; 461.9] 0.408

Laboratory parameters

 White blood cell count (4.0–10.0)  (103/µL) 5.6 [4.1; 7.6] 5.3 [ 4.1; 6.7] 0.367

 Neutrophils (50–75) (%) 69.2 [59.0; 77.6] 65.1 [52.9; 73.4] 0.040

 Lymphocytes (20–40) (%) 20.5 [13.6; 30.2] 24.5 [16.6; 34.5] 0.029

 Absolute neutrophil count (1,500–8,000) (/µL) 3612.0 [2511.6; 5859.7] 3535.2 [2252.8; 4935.7] 0.112

 Absolute lymphocyte count (1,000–4,800) (/µL) 1080.3 [773.8; 1498.1] 1140.3 [875.0; 1660.1] 0.097

 Hemoglobin (g/dL) 13.3 [12.1; 15.2] 14.1 [12.6; 15.4] 0.080

 Platelet  (103/µL) 207.0 [166.0; 269.0] 212.5 [169.0; 255.0] 0.922

 C-reactive protein (0–0.5) (mg/dL) 1.8 [0.2; 6.3] 1.0 [0.2; 5.8] 0.220

 Aspartate transaminase (IU/mL) 31.0 [24.0; 47.0] 28.0 [22.0; 40.0] 0.165

 Alanine transaminase (IU/mL) 23.5 [15.0; 39.5] 26.0 [17.0; 37.0] 0.754

 Blood urea nitrogen (mg/dL) 12.9 [9.0; 16.0] 13.0 [9.0; 16.5] 0.795

 Creatinine (mg/dL) 0.8 [0.6; 0.9] 0.8 [0.7; 0.9] 0.823

 Prothrombin time (INR) 1.0 [1.0; 1.1] 1.0 [1.0; 1.1] 0.624

 Activated partial thromboplastin time (s) 35.6 [33.3; 40.0] 35.8 [33.4; 39.9] 1.000

 Albumin (g/dL) 4.0 [3.6; 4.5] 4.2 [3.8; 4.7] 0.097

Supplement oxygen during hospitalization, n (%) 46 (41.8) 41 (36.9) 0.545

 High flow nasal cannula 17 (15.5) 11 (9.9) 0.300

 Invasive mechanical ventilation 13 (11.8) 6 (5.4) 0.144

 Extracorporeal membrane oxygenation 3 (2.7) 2 (1.8) 0.683

Death, n (%) 2 (1.8) 4 (3.6) 0.683
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a pandemic (and prevent the collapse of the healthcare system); patients at a low risk can be discharged from 
hospital safely after 3 days of observation to self-quarantine at home or in a living and treatment  center7, whereas 
patients at a high risk should remain in hospital for close monitoring and intensive treatment. Further studies are 
needed to investigate whether implementing the CHANeL model will save more lives and/or shorten hospital stay.

This study has several limitations. First, this study included only hospitalized Korean patients. External vali-
dation of the CHANeL models in different ethnic groups is required. Second, the mortality in this cohort was 
2.7% whereas the current mortality of COVID-19 is 1.6% in  Korea23. As the patients in this cohort only included 
hospitalized patients, the mortality was expected to be significantly higher than that in the general population, 
indicating that the relatively mild COVID-19 cases were included (58.2% of patients in the training set and 
63.1% in the test set did not require any oxygen supplementation). This is, in part, due to the low incidence of 
COVID-19 in Korea, allowing the many patients with mild COVID-19 being treated as inpatients. The higher 
proportion of the non-O2 requirement, however, help to build the model better. Third, information on arterial 
blood gas analysis or  PaO2/FiO2 (PF) ratio was not available in all patients. Instead, we utilized  SpO2/FiO2 ratio 
which correlates with PF  ratio24. Last but not the least, the primary aim of the study was to identify high risk 
patients who require more intensive monitoring and treatment (i.e. oxygen requirement as a surrogate marker 
for more severe disease). Therefore, an ideal study population would be patients who are just diagnosed with 

Figure 2.  Receiver operating characteristic curve (ROC) and radar plot showing the performance of five 
different prediction models. (A) ROC curve for the training set. (B) ROC curve for the test set. (C) Radar plot 
for the training set. (D) Radar plot for the test set. AUC, area under the curve; NPV, negative predictive value; 
PPV, positive predictive value.
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COVID-19. Accordingly, the prediction models need to be validated in a prospective cohort of patients who are 
diagnosed with COVID-19.

In conclusion, CHANeL prediction models based on serial measurements of CRP, ANC, and ALC during first 
3 days of hospitalization, along with age and hypertension, provide an accurate estimate of the risk of supple-
ment oxygen requirement among hospitalized patients with COVID-19. Further studies are needed to examine 
whether implementing this model at bedside can improve outcomes and shorten hospital stays.

Table 2.  Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the models 
for the training and test set (probability cut-off =  > 0.3, > 0.4, or > 0.5). NPV, negative predictive value; PPV, 
positive predictive value; Se, sensitivity; Sp, specificity.

Training set Test set

Se Sp PPV NPV Accuracy Se Sp PPV NPV Accuracy

Cutoff > 0.3

 Logistic regression 0.870 0.797 0.755 0.895 0.827 0.854 0.814 0.729 0.905 0.829

 Logistic LASSO regression 0.870 0.766 0.727 0.891 0.809 0.927 0.814 0.729 0.905 0.829

 Support Vector Machine 0.913 0.844 0.808 0.931 0.873 0.829 0.800 0.708 0.889 0.811

 XG Boost 0.870 0.797 0.755 0.895 0.827 0.829 0.829 0.739 0.829 0.829

 Random Forest 0.783 0.906 0.857 0.853 0.855 0.902 0.743 0.673 0.929 0.802

Cutoff > 0.4

 Logistic regression 0.804 0.891 0.841 0.864 0.855 0.781 0.829 0.727 0.866 0.811

 Logistic LASSO regression 0.804 0.891 0.841 0.864 0.855 0.829 0.871 0.791 0.897 0.856

 Support Vector Machine 0.783 0.906 0.857 0.853 0.855 0.829 0.871 0.791 0.897 0.856

 XG Boost 0.804 0.891 0.841 0.864 0.855 0.781 0.857 0.762 0.870 0.829

 Random Forest 0.717 0.938 0.892 0.822 0.846 0.854 0.814 0.729 0.905 0.829

Cutoff > 0.5

 Logistic regression 0.783 0.938 0.900 0.857 0.873 0.781 0.886 0.800 0.873 0.847

 Logistic LASSO regression 0.696 0.906 0.842 0.806 0.818 0.805 0.929 0.868 0.890 0.883

 Support Vector Machine 0.674 0.938 0.886 0.800 0.827 0.781 0.914 0.842 0.877 0.865

 XG Boost 0.717 0.938 0.892 0.822 0.846 0.781 0.900 0.821 0.875 0.856

 Random Forest 0.630 0.953 0.906 0.782 0.818 0.805 0.857 0.767 0.882 0.838

Figure 3.  CHANeL prediction model.
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Methods
Patients and data collection. This retrospective cohort study included COVID-19 patients who were 
treated at five medical centers designated for treatment of COVID-19 by the South Korean government. A diag-
nosis of COVID-19 was confirmed by a positive SARS-CoV-2 real-time reverse transcriptase–polymerase chain 
reaction result from a respiratory sample; RT-PCR was performed at the participating institutions or at the Korea 
Centers for Disease Control and Prevention. The cohort included 280 consecutive patients with COVID-19, all 
of whom were admitted to one of the five hospitals from January 24, 2020 through July 10, 2020. After excluding 
patients with incomplete information about medications, the patients were assigned randomly to a training set 
and a test set in a ratio of 1:1. Of note, the patients included in this study were the same as the patients included 
in our prior  study8.

Demographic and laboratory data were obtained from electronic medical records. The study was conducted 
in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice guidelines. The study 
was approved by the institutional review board of each participating center (NMC, SNUBH, SNUH, Armed 
Forces Capital Hospital, Myongji hospital). The institutional review board of each participating center (NMC, 
SNUBH, SNUH, Armed Forces Capital Hospital, Myongji hospital) waived informed consent because the study 
involved a minimum risk to the patient and no identifiable information was used.

Outcome. The primary outcome was a requirement for supplementary oxygen during the hospitalization 
period. Supplementary oxygen requirement, ranging from nasal prongs to mechanical ventilation, is a marker of 
COVID-19 severity and an important indication for close monitoring and treatment. A previous study showed 
that all patients with COVID-19 who did not require supplementary oxygen had a mild disease course and a 
good  prognosis8.

Selection of CHANeL predictors. Two demographic variables (age and history of hypertension) were 
selected a priori; both of these are known risk factors for severe COVID-19  disease25. In addition, three routine 
inflammatory markers (CRP, absolute neutrophil count (ANC), and absolute lymphocyte count (ALC)) dur-
ing the first 3 days of hospitalization were selected. Predictor selection was based on the previous observation 
that longitudinal patterns of CRP, ANC, and ALC are highly associated with a particular type of inflammatory 
response and clinical outcome, including oxygen requirement and  death8.

Missing values were imputed using linear interpolation between the non-missing values immediately before 
and after the missing time point, with a calculated variation that follows the shape of the population’s average 
 trajectory26. Patients for whom missing data could not be imputed reliably were excluded.

Construction of prediction models. Logistic regression, logistic LASSO regression, Random Forest, Sup-
port Vector Machine, and XGBoost analysis were tested using the five CHANeL predictors. The ability of each 
model to predict supplementary oxygen requirement was assessed by calculating the area under the receiver-
operator characteristic curve (AUC). A training set and a test set was used to test each model for sensitivity 
(proportion of oxygen requirement cases predicted correctly), specificity (proportion of no-oxygen requirement 
cases predicted correctly), and accuracy (proportion of cases predicted correctly).

Statistical analysis. Continuous variables and categorical variables were compared using t-tests or the 
Mann–Whitney U-test, or the Chi-squared test or Fisher’s exact test, as appropriate. Statistical analysis was 
performed using RStudio (version 1.2; Boston, MA, USA) and SPSS (IBM SPSS Statistics for Windows, Version 
25.0). A P-value < 0.05 was considered statistically significant.
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