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Abstract

Chickpea production may be seriously threatened by Fusarium wilt, a disease caused by

the soil-borne fungus Fusarium oxysporum f. sp. ciceris. F. oxysporum race 5 is the most

important race in the Mediterranean basin. Recently, the region responsible for resistance

race 5 has been delimited within a region on chromosome 2 that spans 820 kb. To gain a

better understanding of this genomic region, we used a transcriptomic approach based on

quantitative real-time PCR to analyze the expression profiles of 22 selected candidate

genes. We used a pair of near-isogenic lines (NILs) differing in their sensitivity to Fusarium

race 5 (resistant vs susceptible) to monitor the transcriptional changes over a time-course

experiment (24, 48, and 72 hours post inoculation, hpi). Qualitative differences occurred

during the timing of regulation. A cluster of 12 genes were induced by the resistant NIL at 24

hpi, whereas a second cluster contained 9 genes induced by the susceptible NIL at 48 hpi.

Their possible functions in the molecular defence of chickpea is discussed. Our study pro-

vides new insight into the molecular defence against Fusarium race 5 and demonstrates

that development of NILs is a rich resource to facilitate the detection of candidate genes.

The new genes regulated here may be useful against other Fusarium races.

Introduction

Chickpea (Cicer arietinum L.) is the second grain legume cultivated in the world with a total

cultivated area of 14.5 million hectares [1]. It is mainly used for human consumption and is an

essential constituent of the Mediterranean diet. Chickpea is a good and cheap source of protein

and for this reason this crop is cultivated in the five continents.

One of the major biotic stresses limiting chickpea yield is its susceptibility to fungal dis-

eases. Among these, Fusarium wilt caused by Fusarium oxysporum f. sp.ciceris (Foc) is a soil-

borne disease widespread in most of chickpea growing areas. Foc is a saprophytic fungus that

may survive in soil or debris up to six years causing big yield losses in years of severe outbreaks

of the disease [2]. The fungus penetrates the plant via roots, the germ tube penetrates the
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epidermal cells of plants and later the hyphae extend to root cortical region and colonizes the

xylem vessels, thus, preventing the upward translocation of water and essential solutes, result-

ing in wilt [3–5]. F. oxysporum f. sp. ciceris is pathogenic only on Cicer spp. [6] but can also

invade root tissues of other grain legumes such as faba bean (Vicia faba), lentil (Lens culinaris),
pea (Pisum sativum) and pigeonpea (Cajanus cajans) without causing external symptoms [5].

Eight physiological races of the pathogen (0, 1A, 1B/C, 2, 3, 4, 5 and 6) have been reported

to infect chickpea. Fusarium race 5 (Foc5) is one of the main problem in the Mediterranean

area. In chickpea, resistance reaction inheritance to different races has been reported to be

monogenic or oligogenic depending on the race or source of resistance [7,8]. Several studies

reported that resistance to Foc5 is controlled by a single gene located on linkage group 2

(LG2) of the chickpea genetic map [9,10]. This gene is clustered with other genes conferring

resistance to races 0, 1, 2, 3 and 4. The STMS (sequence tagged microsatellite site) marker

TA59 has been widely reported as the most associated with that cluster, and hence it has being

used in marker assisted selection [11,12]. A deeper knowledge of this genomic region could

provide new markers useful for breeding purposes as well as a better understanding of resis-

tance mechanisms. The recognition and defense by a host plant to its fungal pathogen and the

ability of the pathogen to overcome the plant defences, implies a very complex molecular net-

work. In the plant-pathogen interaction four phases can be highlighted: pathogen perception,

penetration, colonization and disease establishment [13]. In the last decade, numerous tran-

scriptome, metabolome and proteome studies have been carried out on chickpea-Foc interac-

tion to unveil the hidden clues behind the defense pathways, but all of them focused on Foc

race 1. In general, these studies reported that molecular changes in carbon and nitrogen

metabolism, in reactive oxygen species (ROS), in primary metabolites (amino acids and sug-

ars), in lignification and in phytoalexins are related with resistant reactions [13–22]. Neverthe-

less, as far as we know, there are not molecular studies reporting candidate genes for resistance

to Foc5.

In a previous study, the comparison between genetic and physical chickpea maps of segre-

gant plant material and near isogenic lines (NILs) made it possible to narrow down to 820 kb

the area of chromosome 2 (Ca2) where the resistance gene for Foc5 is located [23]. NILs pro-

vide plant material differing only in a small target region of the genome facilitating the detec-

tion of candidate genes underlying phenotypes. In chickpea, NILs have been used to produce

fine maps and targeting genomic regions associated with agronomic traits [24–26].

The aim of the present study was to determine differential expression of candidate genes

for resistance to Foc5. To achieve that goal, we selected a set of genes located within the region

of interest in LG2, and we analyzed their expression profile in a pair of NILs (resistant vs sus-

ceptible) at different time points after inoculation with Foc5.

Materials and methods

Plant material

In this study we used a pair of NILs—RIP8-94-5 resistant (R) / RIP8-94-11 susceptible (S)—

segregant to race 5 that were developed by searching residual heterozygosity in advanced RILs

(Recombinant Inbred Lines) derived from the cross ILC3279 x WR315 [11]. Line ILC3279 is a

kabuli type from the former Soviet Union maintained by ICARDA (International Center for

Agricultural Research in the Dry Area) that is susceptible to Foc5. WR315 is a desi type from

central India maintained by ICRISAT (International Crops Research Institute for the Semi-

Arid Tropics) resistant to all Foc races [27]. In addition, Cr5-9, a selection from C. reticulatum
(PI489777), susceptible to all Foc races, was included as a control.
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Fusarium oxysporum f. sp. ciceris race 5 inoculation

Seeds of each NILs were sown in trays (41 x 56 x 12 cm) filled with perlite. Plants were grown

in controlled conditions under a temperature regime of 25 and 22˚C and 12 h photoperiod

under fluorescent light. Filter papers with fungus spores provided by Dr. W. Chen (Washing-

ton State University, Pullman, USA) were added at PDB medium (potato dextrose broth, 24 g

l-1) and grown in a minitron incubator chamber at 25˚C and 100 rpm under continuous fluo-

rescent light. The liquid cultures were filtered through cheesecloth to remove the mycelium.

The spore suspension was then pelleted by centrifugation at low speed (3,000 rpm) for 3 min.

After that, the supernatant was discarded and the concentration of spores was adjusted to 1 x

106 spores ml-1. Plants at the three to four node stage were inoculated following the method

described by Bhatti [28]. After inoculation, the plants were watered daily and supplied with

nutrient solution once a week. Root samples were collected and pooled from at least 4 inocu-

lated and non-inoculated plants at 24, 48 and 72 hours post-inoculation (hpi). Samples were

frozen in liquid nitrogen immediately after harvesting and stored at −80˚C. Two biological

repetitions per time-point were performed. Ten inoculated plants remained non-harvested to

verify that the inoculation was successful.

RNA isolation, cDNA synthesis and quality controls

Total RNA from all samples was isolated using the TRISURE reagent protocol (Bioline). RNA

concentration was determined by measuring the optical density using a NanoDrop spectro-

photometer. Only the RNA samples with A260/A280 ratio between 1.9 and 2.1 and A260/

A230 greater than 2.0 were used in the analysis. To avoid any genomic DNA (gDNA) contami-

nation, ~10μg of RNA extracts were treated with TURBO DNase I (Life Technologies) before

to cDNA synthesis. Complementary DNAs was synthesized by priming with oligodT12–18 (Life

Technologies), using SuperScript III Reverse Transcriptase (Invitrogen) following the instruc-

tions of the provider. The cDNAs were diluted to a final volume of 20μl. Next, we tested the

presence of genomic DNA (gDNA) contamination in the cDNA samples using a primer

pair designed in two different exons of the NAD-dependent malic chickpea sequence

XM_004510782 (gDNAF, 5’-GTTGATACCAGCAGCAGCAAC-3’; gDNAR, 5’-TTAGTGCC
AAAGACAAAGGGGA-’3’). The primer pair was designed to amplify a product of 555 bp

using gDNA as template or 180 bp using cDNA as template. In our tests for gDNA contamina-

tion, the 555 bp band was not amplified from any of the samples. To infer the integrity of the

total RNA and assess the quality of the reverse transcriptase reaction we used a 3‘:5’ amplifica-

tion ratio assessment [29]. This assay aimed at measuring the integrity of the NAD-dependent

malic sequence (XM_004510782). For this assay, we designed two primer pairs (malic_5’F,

5‘-CGACCGTTGTCTGATTTTGTG-3’; malic_5’R, 5‘-GGCCATTTTCAGAACCCCTAA-3’;

and malic_3’F, 5‘-GCTTCGAGCAGCAGTTGAAGA-3’; and malic_3’R, 5‘-CTTTTGACAT
GTGTGCAAGTT-3’) to amplify two cDNA fragments, one from the 5’ end (81 bp) and

one from the 3’ region (80 bp) of the malic gene. The fragments are 1,180 and 460 bp,

respectively, from the 3’ end of the cDNA. The 3‘:5’ amplification ratio of the malic cDNA

fragments was calculated using the comparative Cq method [30]. The average ratio was

1.18 ± 0.59 (mean, sd). All ratios were < 1.5-fold. Only if ratios were > 4.4-fold would RNA

quality be deemed inadequate [31]. Therefore, the cDNAs were judged to be suitable for qPCR

analysis.

Primer design and quality controls

Primer sequences were designed to amplify 19 candidate genes within a genomic region of

interest delimited between the markers TA59 and CaGM07922, covering 2 Mb, based on the
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genetic fine-mapping of Foc5 susceptibility loci [23]. We also included three genes previously

reported to be involved in molecular defence against Fusarium wilt obtained from a chickpea

transcriptome upon Foc1 infection [32]. All PCR primers were tested for specificity using

NCBI’s BLAST software. Primers were designed using the following criteria: Tm of 60 ± 1˚C

and PCR amplicon lengths of 80–100 bp, yielding primer sequences with lengths of 19–23

nucleotides and GC contents of 40–80%. For predicting the secondary structure of the ampli-

cons, we used MFOLD version 3.4 software with default settings of minimal free energy, 50

mM Na+, 3 mM Mg2+, and an annealing temperature of 60˚C [33]. We chose primers that

would yield amplicons with minimal secondary structures and melting temperatures that

would not hamper annealing (S1 Fig). Designed primers were synthesized by Integrated DNA

Technologies (Leuven, Belgium). Table 1 shows the primer sequence and the overall mean

real-time PCR amplification efficiency of each primer pair (E) estimated from the data

obtained from the exponential phase of each individual amplification plot and the equation

(1+E) = 10slope using LinReg software and the criteria of including three-five fluorescent data

points with R2�0.998 to define a linear regression line [34].

Real-time qPCR assays

PCR reactions were carried out in a CFX Connect Real-Time System thermal cycler (Bio-Rad,

Hercules, CA, USA) iTaq Universal SYBR Green Supermix (Bio-Rad) to monitor dsDNA syn-

thesis. Reactions contained 1.5 μl of the diluted cDNA as a template and 0.2 μM of each primer

in a total volume reaction of 10 μl. Master mix was prepared and dispensed into individual

wells using electronic Eppendorf Xplorer1multipipettes (Eppendorf AG, Germany). The fol-

lowing standard thermal profile was used for all PCRs: polymerase activation (95˚C for 3 min),

amplification and quantification cycles repeated 40 times (95˚C for 3 s, 60˚C for 30 s). The

specificity of the primer pairs was checked by melting-curve analysis performed by the PCR

machine after 40 amplification cycles (60–95˚C) and is shown in S2 Fig. Fluorescence was ana-

lyzed using Bio-Rad CFX Manager analysis software v2.1. All amplification plots were analyzed

using a baseline threshold of 75 relative fluorescence units (RFU) to obtain Cq (quantification

cycle) values for each gene-cDNA combination.

Reference genes selection and qPCR data analysis

For optimal normalization of data, we evaluated the stable gene expression of four references

in our dataset. Two candidates encoding a phosphatase protein (PP2A), and pentatricopep-

tide repeat-containing protein (PPR) were chosen based on previous reports [35]. We also

tested the expression of a transcription factor initiation IIA (TFIIA) which had happened to

be one of the most stable genes under a variety of conditions [36]. Finally, we also designed

primers to amplify a chickpea sequence (Ca4g26410) ortholog to an Arabidopsis gene that

had showed high stability values across developmental series in cross-species experiments

[37,38]. To evaluate the stability of the reference genes, we used the geNorm algorithm and

the coefficient of variation (CV) of normalized relative quantities based on the equations

defined by the qBase framework [39,40]. Calculations were performed using the advanced

quantification model with efficiency correction, multiple reference genes normalization

and use of error propagation rules described by Hellemans [40]. The open-source interface

for the statistics software R, RStudio (http://www.rstudio.com/), was used to perform

exploratory data analysis and build clusters. To gain insights into the biological roles of

genes used, we performed a search of Gene Ontology (GO) categories using the UniProt

database [41].
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Table 1. Primers for RT-qPCR. Chickpea identifiers, annotation NCBI, primer sequences, amplicon size and chromosome position. Primer PCR efficiency and PCR

product Tm data represent mean values ± sd. PCR efficiencies (E) calculated according to the equation (1 + E) = 10slope.

Chickpea ID

NCBI

Annotation Primer Sequence (5‘-3’) PCR product

size (bp)

Chr position PCR E PCR product

Tm (˚C)

LOC101503802 kinesin-like protein FRA1 F-TGCTTCCATTCCACCGAAGCCTG 82 Ca2: 23082299–

23082381

2.02 ± 0.09 75.77 ± 0.25

R-TTGCTTTTGCATGGCCCGTGGT

LOC101505941 serine/threonine-protein kinase CTR1 F-CGCCTGAGTGGATGGCTCCAGA 98 Ca2: 23219419–

23219517

1.99 ± 0.07 78.06 ± 0.16

R-GGTCACGAGTTCCCACAGGATCA

LOC101506693 GATA transcription factor 25-like F-AGGATTCTGGGCAGGACGACAG 85 Ca2: 23277155–

23277240

1.94 ± 0.05 78 ± 0

R-CGCCGCATCATTGGGGTCGATT

LOC101507659 E3 ubiquitin-protein ligase UPL1-like F-AGTGCTGCATCGCCAGTTATCCA 73 Ca2: 23441535–

23441608

1.95 ± 0.08 77.88 ± 0.29

R-GCCGAGCCTTGTCCTCCTTGCT

LOC101508507 probable rhamnogalacturonate lyase C F-CCAACGGGGTAGCGTTTGTGGT 108 Ca2: 23463108–

23463216

1.96 ± 0.07 77 ± 0.11

R-GCATCTCCTGGTGGTGCCAATCC

LOC101509037 XIAP-associated factor 1-like F-GGTGTCCGACGACGAAGG 80 Ca2: 23476846–

23476926

1.98 ± 0.09 77.5 ± 0

R-ACAGCAATACCGGTGATGGC

LOC101509359 MADS-box transcription factor 23-like F-ACGGTTTGTTGAAGAAGGCGAAGG 116 Ca2: 23551043–

23551159

1.95 ± 0.06 77.43 ± 0.17

R-TGATCTCATGCTGGTGCTAGCGAA

LOC101510206 serine hydroxymethyltransferase,

mitochondrial-like

F-GGCTCGAGGGTTGAGAAGGTGT 94 Ca2: 23674613–

23674707

1.99 ± 0.07 77.16 ± 0.23

R-TGCCCCCAGGAACCATAGCAGA

LOC101510544 26S protease regulatory subunit 8

homolog A-like

F-GCCAGGGAGCATGCACCATCAA 105 Ca2: 23699688–

23699793

1.97 ± 0.07 78.52 ± 0.10

R-GCGCTGCACCTCACTATCACCA

LOC101511605 CBL-interacting serine/threonine-

protein kinase 8

F-TGCTTCGGACAACTTGCGGGAC 98 Ca2: 23829711–

23829809

1.97 ± 0.05 76.74 ± 0.23

R-CCCACACGACCAAACATCCGCT

LOC101495287 auxin-responsive protein IAA8-like F-TGAGAGGCCTCCTGGTGTCTGTG 92 Ca2: 23950935–

23951027

1.97 ± 0.07 76.71 ± 0.25

R-CCTGTGCCTTGGTAGCTGGTGC

LOC101495941 MATE efflux family protein 5-like F-GGTGGGGTGGCAATAGCAATGGT 109 Ca2: 24038256–

24038365

1.94 ± 0.06 74.09 ± 0.21

R-AGCTTGGTGGGACCCATGATTGT

LOC101496824 sucrose transport protein SUC4 F-ATCTGGCTTTGCGGCCCAGTTT 88 Ca2: 24044382–

24044470

1.93 ± 0.06 79.64 ± 0.14

R-GTCGACCGAATCGGCTTTGGCA

LOC101497351 bidirectional sugar transporter N3-like F-ATGCATGGTTCCCTTCGAGTCCA 89 Ca2: 24085883–

24085972

1.96 ± 0.08 76.84 ± 0.25

R-GCCACAATGCATAGAGGTGCTGC

LOC101497678 glycerol-3-phosphate dehydrogenase

[NAD(+)] 2, chloroplastic

F-AACCGGTCTGTCAGGAACTGGAG 93 Ca2: 24092611–

24092704

1.96 ± 0.07 76.7 ± 0

R-TCGCCTGATCCAAGACGCACAC

LOC101502928 WRKY transcription factor 55 F-AGCACCATTATCATATCCACCAC 80 Ca2: 24128013–

24128093

1.96 ± 0.06 68.87 ± 0.10

R-ACAATTGGGGAGAAATGGTGGT

LOC101499218 E3 ubiquitin-protein ligase SHPRH F-CAACACGTGGTCCTTGTTGAGCC 80 Ca2: 24209104–

24209184

1.91 ± 0.07 77.7 ± 0.14

R-TGTCCAATCCGATGTACGCGACT

LOC101501552 probable inactive receptor kinase

At5g58300

F-GGTGGGTGAAGTCTGTGGTTTCTGA 108 Ca2: 24365119–

24365227

1.95 ± 0.10 76.29 ± 0.16

R-TCTGAAGCATCTGCACCATCTCCTC

LOC101510320 pathogenesis-related protein 5 F-GCTGCACATTTGATGCAACGGGA 89 Ca2: 24740222–

24740311

1.93 ± 0.05 76.88 ± 0.24

R-TGGAGCTGCACCATTCCCATCAC

LOC101499873 TMV resistance protein N-like F-TGACCTTACGTGGCACCGCTAT 126 Scaffold 1.97 ± 0.06 76.74 ± 0.22

R-GCTGCGGATCATTTGACAACCCA

LOC101490851 20 kDa chaperonin, chloroplastic-like F-CCAGGGTCTGTGGATGAGGAAGG 99 Ca7: 3352808 -

3352906

1.96 ± 0.06 74.91 ± 0

R-GCCCTTGAAGTCATTCCCCGCA

LOC105852647 MLP-like protein 28 F-TGGTGGAGATATTGATGAGCACT 80 Ca7: 45480380 -

45480459

1.97 ± 0.08 72.19 ± 0.25

R-CGGAAGCACTACCATCAGCC

https://doi.org/10.1371/journal.pone.0224212.t001
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Results and discussion

In the present study, we compared the expression patterns of 22 potential defence-related

genes in response to Foc5 inoculation by a real-time qPCR-based strategy. Over the past two

decades, our laboratory has been working towards increasing the genetic variability of the cul-

tivated chickpea species using a combination of inter- and intra-specific crosses that are evalu-

ated for complex traits of agronomic importance, such as resistance to Fusarium wilt. Foc is

the major soil-borne fungus affecting chickpeas globally and may cause important yield losses

under favourable conditions [8]. Particularly, Foc0 and Foc5 races are present in Mediterra-

nean basin, being Foc5 the most virulent. We have previously reported DNA markers targeting

Foc0 and Foc5 resistance through linkage analyses, but those were not highly saturated areas

[26,42–47]. Recently, we saturated a region located on Ca2, which is likely implicated in resis-

tance to Foc5. That region is delimited by SNP markers and includes twenty-six genes [23]. In

the present study we selected nineteen annotated genes within this genomic region. We also

included three genes beyond the target region that have been related with chickpea resistance

against Fusarium races 1, 2 and 4 in previous reports [32]. We selected a pair of NILs differing

in their sensitivity to Foc5 to monitor the gene expression patterns during a time-course of 24-

48-72 hours following the pathogen inoculation.

Disease development

We considered the experiment suitable for further molecular analysis when the susceptible

genotype NIL (RIP8-94-11) and the positive control (Cr5-9) started developing a distinct over-

all yellow coloration, as compared to the normal appearance in non-inoculated plantlets about

two weeks after inoculation with Foc5. Nearly five/six weeks after inoculation, the susceptible

plants showed complete wilting, while the resistant inoculated NIL RIP8-94-5 and the non-

inoculated plants showed normal healthy growth. Over the course of the experiment, the root

length of non-inoculated samples was similar in both, resistant and susceptible lines. On the

contrary, related to the inoculated plants, the resistant genotype increased the lateral root

development, while the susceptible NIL showed a dark brown, and eventually, dead root sys-

tem. Cross-sectioned stems of these samples revealed the xylem colonization by the pathogen,

while resistant plants showed normal development (Fig 1).

qPCR assays

Before quantifying the transcript accumulation of the candidate genes, we paid close attention

to the preparative stages, which were performed in compliance with the MIQE guidelines [48].

Thus, the main factors of the qPCR workflow that could affect the reliability of the data, such

as RNA quality, DNAse treatment, two-step RT-qPCR, use of the same RT master mix that

generated one cDNA batch, primer sequences avoiding secondary structures in the amplicon,

and PCR efficiency correction, were carefully controlled during the experiment. Additional

PCRs were also performed using chickpea genomic DNA as template and gene-specific prim-

ers confirming the absence of introns in the amplicon region. Reference genes selection was

also a critical step in our analysis and we setup a pilot study to assess the best references to use

as internal controls for the broad physiological and cellular changes that are expected to occur

during the disease development. The pilot study indicated that Ca4g26410 and TFIIA were the

most stable reference genes with stability values lower than the threshold of M< 0.5 and

CV< 0.25 as defined for acceptable reference genes [40] (S3 Fig). PCR efficiency (E) of the ref-

erences was respectively: E = 1.987 ± 0.095, E = 1.943 ± 0.071 (mean ± sd). To validate the sta-

ble expression of the references in our material, we calculated the mean of their normalized
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relative quantities. Maximum expression difference between samples for Ca4g26410 and

TFIIA was 1.64-fold (S4 Fig).

Analysis of the interaction time course

We aimed to identify changes in expression levels related to the differential responses of the

two NILs (S5 Fig). To best organize our findings, we first show the candidate genes changing

in expression levels related to the differential responses against the Fusarium infection. This

may be labelled as ‘treatment-dependent regulation’. Next, we show the candidate genes that

showed different levels between inoculated plants (resistant vs susceptible NIL; ‘genotype-

dependent regulation’). Their potential functions are also further discussed in the second part

of this section.

Treatment-dependent regulation. Hierarchical clustering based on the expression levels

of the ratios of the inoculated/non-inoculated plants is presented in Fig 2. Visualizing expres-

sion levels through hierarchical clustering gave a sense of the coordinated regulation of genes

(Fig 2A). The analysis of their expression levels identified 2 major clusters (one gen remained

outside these two clusters). The first cluster grouped 12 genes primarily induced by the

resistant genotype at 24 hpi (Fig 2B). The pattern of these samples was similar to the profile

exhibited by the susceptible plants at 72 hpi (Fig 2A). According to their GO term-based anno-

tations, their encoded proteins are mostly connected to membranes and their integral compo-

nents (GO:0016020 and GO:0016021), and associated with signal transduction activities

(GO:0007165). The second cluster contained 9 genes mainly induced by the susceptible geno-

type at 48 hpi (Fig 2C). According to their GO term-based annotations, their proteins are

Fig 1. Cross-sectioned stems after six weeks of inoculation. (A) Resistant line to Fusarium race 5 (RIP8-94-5). (B)

Susceptible line to Fusarium race 5 (RIP8-94-11).

https://doi.org/10.1371/journal.pone.0224212.g001
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mostly connected to nucleus (GO:0005634) and are involved in the regulation of transcription

(GO:0006355).

Genotype-dependent regulation. The hierarchical expression profiling analysis revealed

not only a differential set of genes expressed under the Foc5 infection, but also a distinct tem-

poral pattern. Thus, we compared the expression profiles of inoculated plants, and found that

genes with significantly higher levels in the resistant NIL RIP8-94-5 were mostly activated at

24 hpi, whereas other distinct genes showing higher levels in the susceptible NIL RIP8-94-11

were mostly regulated at 48 hpi. This may suggest that timing of gene regulation is relevant to

pathogen recognition, so the host plant can trigger effective defense responses. The two groups

of genes are discussed next.

In the first group some genes were found to show higher expression levels in the resistant

NIL. The highest expression differences between inoculated plants—resistant vs susceptible—

over the experiment were found in the genes LOC101509359 (encoding a MADS-box tran-

scription factor), and LOC101499873 (TMV resistance protein). Both expression differences

peaked at 24 hpi (S1 Table). At this time-point, in total 5 genes had higher expression levels in

the resistant NIL (Fig 3). Three out of the five genes are located in the genomic region of inter-

est in chromosome 2 [23]. As these loci (LOC101509359, LOC101495941 and LOC101510206)

have not been previously linked to defence responses against Fusarium, we labelled them as

novel genes. The other two genes have been shown to be induced under Foc1 infection and are

located in chromosome 7 and one scaffold non-mapped to the genome [32].

Fig 2. Hierarchical clustering analysis. (A) The heatmap was constructed using the log2-transformed expression levels. Columns represent sample

comparisons, while rows represent candidate genes. Colour scale, representing log2 expression differences between inoculated/non-inoculated plants,

is shown in the bar. R and S represent resistant and susceptible NILs; 24, 48 and 72 represent hours after inoculation. (B) Expression profiles of

differentially expressed genes peaked at 24 hpi in roots of the resistant genotype. (C) Expression profiles of differentially expressed genes peaked at 48

hpi in roots of the susceptible genotype. The mean expression average of each cluster is shown in black.

https://doi.org/10.1371/journal.pone.0224212.g002
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The novel genes, LOC101509359, encodes a MADS-box transcription factor. MADS-

box genes are widely described as molecular signatures involved in developmental control and

signal transduction in eukaryotes and play many critical regulatory roles [49,50]. In the past

decade, a large set of plant MADS transcription factors has been demonstrated to function

essentially in diverse biological processes, such as root architecture establishment, gameto-

phyte differentiation, fruit ripening, flowering time regulation, and reproductive organ devel-

opment [51]. However, stress resistance-related function of MADS-box genes is still not clear

[52]. Some MADS-box genes have been found involved in stress-responsive processes beyond

growth and development related functions in Arabidopsis, Chinese cabbage, wheat, rice, maize

and tomato [53–58]. Besides, recent studies highlight that overexpression of a MADS-box

transcription factor significantly promoted lateral root development [59,60]. This result is in

agreement with the increase of lateral roots that we observed in the resistant inoculated plants.

Another differential expressed novel gene on Ca2 is LOC101495941, which encodes a pro-

tein belonging to the multidrug and toxic compound extrusion (MATE) family. MATE genes

are involved in various biological activities such as leaf senescence, efflux of antibiotics, alu-

minium tolerance, vacuole sequestration of plant-derived alkaloids and flavonoids, iron

homeostasis and regulation of local auxin biosynthesis [61]. These genes are important as sec-

ondary transporters that mediate chemical efflux and play significant roles in salt tolerance in

plants [61–64]. In Arabidopsis, MATE genes have been shown to be associated with disease

resistance [65–67]. Despite some genes in the MATE family have been related to seemingly

Fig 3. Expression profile of candidate genes in roots of chickpea over the time-course experiment. Red line shows the averaged expression level in

resistant NILs, whereas blue line describes the averaged level in the susceptible NILs.

https://doi.org/10.1371/journal.pone.0224212.g003

Gene expression in chickpea against fusarium race 5

PLOS ONE | https://doi.org/10.1371/journal.pone.0224212 October 23, 2019 9 / 15

https://doi.org/10.1371/journal.pone.0224212.g003
https://doi.org/10.1371/journal.pone.0224212


important physiological functions, most of them are still uncharacterized and the roles of

MATE proteins in resistance to pathogens in legumes remains still unknown [68].

The third novel gene on Ca2 is LOC101510206, which encodes for a serine hydroxymethyl-

transferase. This enzyme is responsible for interconversion of serine and glycine and is essen-

tial for cellular one-carbon metabolism providing one-carbon units for a series of important

biosynthetic processes such as synthesis of methionine, thymidylates, and purines [69]. Arabi-
dopsis mutants defective in serine hydroxymethyltransferase activities have been described

more susceptible than control plants to infection with biotrophic and necrotrophic pathogens

and have revealed interesting roles in influencing plant defense abilities [70–74]. In legumes,

this gene class has been pointed out as responsible for resistance against the nematode Hetero-
dera glycines [75]. The expression levels of LOC101510206 is an interesting finding as another

locus from the same family mapped onto chromosome 8 has been found to be regulated in

chickpea during Foc1 attack [17].

As mentioned above, two genes described previously in the literature as related to defence,

LOC101499873 and LOC101490851, showed higher expression levels in the resistant than the

susceptible plants at 24 hpi (Fig 3). LOC101499873 is located in a scaffold in the chickpea phys-

ical map and described like TMV resistance protein, while LOC101490851, located in chromo-

some 7, encodes a chaperonin, a molecule class reported to be essential for plants during biotic

and abiotic stress conditions [76]. Despite the fact that these two genes are not located within

the region of interest controlling the resistance against Foc5 in Ca2, this is an interesting out-

come as their transcripts accumulation in early stages of the infection suggests a general net-

work of defence independently of Foc race.

The second group was characterized by a number of genes showing higher expression

levels in the susceptible NIL. Nine genes in cluster 2 (LOC101503802, LOC101505941,

LOC101506693, LOC101507659, LOC101509037, LOC101510206, LOC101510544,

LOC101501552, and LOC101502928; Fig 2C) showed significant higher expression levels in

the susceptible NILs at 48 hpi than the resistant at the same time-point. This is the result of

transcript induction by susceptible plants, whereas these genes, with the exception of

LOC101502928, were not regulated by the resistant. However, LOC101502928, which encodes

a WRKY transcription factor, was steadily down-regulated in the resistant over the course of

the experiment (S1 Table). WRKY transcription factors may control the defence signalling cas-

cade through a complicated network of genes [77,78]. The downregulation of a defence-related

gene is intriguing but that pattern has been already observed in other studies, such as down-

regulation of the resistance gene GroES2 in chickpea inoculated with Foc1 [32]. Recently, the

silencing of two apricot MATHd genes has been proved to confer resistance against the Plum
pox virus [79]. There is a need to further explore the exact role of this gene and its interaction

with others during defense to understand deeper the regulatory mechanism.

Concluding remarks

The comparative expression profile between resistant and susceptible inoculated plants

showed that both lines are able to sense, and therefore, respond against the fungal attack. How-

ever, a number of quantitative and qualitative differences between the genotypes arose during

the time-course. The susceptible NIL RIP8-94-11 induces a distinct set of genes that peaked at

different time-point and we may speculate whether the response is not strong enough, or

expressed at a non-appropriate timing. Conversely, the resistant NIL RIP8-94-5 activates early

a defence signalling cascade to protect its primary metabolism from the harmful consequences

of pathogenic mayhem, avoiding wilting, and highlighting that proper defence responses dur-

ing the first hours of fungal attack are crucial to overcome the infection. In this study we have
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shown that the resistant plants combine an active strategy of defence against Foc5 by up-regu-

lating the expression of three genes (LOC101509359, LOC101495941 and LOC101510206)

with a general defensive line independent of Foc race.

NILs, like those used in this study, have the advantage that only a small target region of the

genome is segregating, consequently, the genetic background noise is uniform. Different

expression patterns could be considered more reliable than other plant material. On the basis

of this consideration future re-sequences of this pair of NILs could give us the opportunity to

find key differences in their genomes.
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